#### **Table 2. PIN DEFINITIONS**

| Pin # | Name    | Description                                          |  |
|-------|---------|------------------------------------------------------|--|
| 1     | NC      | Not Connected                                        |  |
| 2     | Anode   | LED Anode                                            |  |
| 3     | Cathode | LED Cathode                                          |  |
| 4     | NC      | Not Connected                                        |  |
| 5     | Vss     | Negative Supply Voltage                              |  |
| 6     | VO2     | Output Voltage 2 (internally connected to $V_{O1}$ ) |  |
| 7     | V01     | Output Voltage 1                                     |  |
| 8     | VDD     | Positive Supply Voltage                              |  |

### Table 3. SAFETY AND INSULATION RATINGS

As per IEC 60747–5–2. This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

| Symbol                | Parameter                                                                                                                                                     | Min.            | Тур.      | Max. | Unit  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|------|-------|
|                       | Installation Classifications per DIN VDE 0110/1.89 Table 1<br>For Rated Main Voltage < 150 Vrms                                                               |                 | I–IV      |      |       |
|                       | For Rated Main Voltage < 300 Vrms                                                                                                                             |                 | I–IV      |      |       |
|                       | For Rated Main Voltage < 450 Vrms                                                                                                                             |                 | I–III     |      |       |
|                       | For Rated Main Voltage < 600 Vrms                                                                                                                             |                 | I–III     |      |       |
|                       | Climatic Classification                                                                                                                                       |                 | 55/100/21 |      |       |
|                       | Pollution Degree (DIN VDE 0110/1.89)                                                                                                                          |                 | 2         |      |       |
| CTI                   | Comparative Tracking Index                                                                                                                                    | 175             |           |      |       |
| V <sub>PR</sub>       | Input to Output Test Voltage, Method b,<br>V <sub>IORM</sub> x 1.875 = V <sub>PR</sub> , 100% Production Test with tm = 1 second, Partial<br>Discharge < 5 pC | 1669            |           |      |       |
|                       | Input to Output Test Voltage, Method a, $V_{IORM} \times 1.5 = V_{PR}$ , Type and Sample Test with tm = 60 second, Partial Discharge < 5 pC                   | 1335            |           |      |       |
| V <sub>IORM</sub>     | Max Working Insulation Voltage                                                                                                                                | 890             |           |      | Vpeak |
| V <sub>IOTM</sub>     | Highest Allowable Over Voltage                                                                                                                                | 6000            |           |      | Vpeak |
|                       | External Creepage                                                                                                                                             | 8               |           |      | mm    |
|                       | External Clearance                                                                                                                                            | 7.4             |           |      | mm    |
|                       | External Clearance (for Option T-0.4" Lead Spacing)                                                                                                           | 10.16           |           |      | mm    |
|                       | Insulation Thickness                                                                                                                                          | 0.5             |           |      | mm    |
| T <sub>Case</sub>     | Safety Limit Values – Maximum Values Allowed in the Event of a Failure<br>Case Temperature                                                                    | 150             |           |      | °C    |
| I <sub>S,INPUT</sub>  | Input Current                                                                                                                                                 | 25              | 1         |      | mA    |
| P <sub>S,OUTPUT</sub> | Output Power (Duty Factor ≤ 2.7 %)                                                                                                                            | 250             |           |      | mW    |
| R <sub>IO</sub>       | Insulation Resistance at $T_S$ , $V_{IO}$ = 500 V                                                                                                             | 10 <sup>9</sup> |           |      | Ω     |

| Symbol                                  | Parameter                                                                    | Value                | Units |
|-----------------------------------------|------------------------------------------------------------------------------|----------------------|-------|
| T <sub>STG</sub>                        | Storage Temperature                                                          | -55 to +125          | °C    |
| T <sub>OPR</sub>                        | Operating Temperature                                                        | -40 to +100          | °C    |
| TJ                                      | Junction Temperature                                                         | -40 to +125          | °C    |
| T <sub>SOL</sub>                        | Lead Wave Solder Temperature<br>(refer to page 12 for reflow solder profile) | 260 for 10 sec       | °C    |
| I <sub>F(AVG)</sub>                     | Average Input Current                                                        | 25                   | mA    |
| V <sub>R</sub>                          | Reverse Input Voltage                                                        | 5                    | V     |
| I <sub>O(PEAK)</sub>                    | Peak Output Current (1)                                                      | 3                    | А     |
| $V_{DD} - V_{SS}$                       | Supply Voltage                                                               | 0 to 35              | V     |
| V <sub>O(PEAK)</sub>                    | Peak Output Voltage                                                          | 0 to V <sub>DD</sub> | V     |
| t <sub>R(IN)</sub> , t <sub>F(IN)</sub> | Input Signal Rise and Fall Time                                              | 500                  | ns    |
| PDI                                     | Input Power Dissipation <sup>(2) (4)</sup>                                   | 45                   | mW    |
| PDo                                     | Output Power Dissipation (3) (4)                                             | 250                  | mW    |

#### Table 4. ABSOLUTE MAXIMUM RATINGS (T<sub>A</sub> = 25°C unless otherwise specified.)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Maximum pulse width =  $10 \ \mu$ s, maximum duty cycle =  $1.1 \ \%$ .

2. Derate linearly above 87°C, free air temperature at a rate of 0.77 mW/°C.

3. No derating required across temperature range.

4. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

#### **Table 5. RECOMMENDED OPERATING CONDITIONS**

| Symbol              | Parameter                     | Value       | Units |
|---------------------|-------------------------------|-------------|-------|
| T <sub>A</sub>      | Ambient Operating Temperature | -40 to +100 | °C    |
| $V_{DD} - V_{SS}$   | Power Supply                  | 15 to 30    | V     |
| I <sub>F(ON)</sub>  | Input Current (ON)            | 7 to 16     | mA    |
| V <sub>F(OFF)</sub> | Input Voltage (OFF)           | 0 to 0.8    | V     |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

#### **Table 6. ISOLATION CHARACTERISTICS**

Apply over all recommended conditions, typical value is measured at  $T_A = 25^{\circ}C$ 

| Symbol           | Parameter                      | Conditions                                                                                       | Min. | Тур.             | Max. | Units            |
|------------------|--------------------------------|--------------------------------------------------------------------------------------------------|------|------------------|------|------------------|
| V <sub>ISO</sub> | Input-Output Isolation Voltage | $T_{A}$ = 25°C, R.H.< 50 %, t = 1.0 minute, $I_{I-O}$ $\leq$ 10 $\mu A,$ 50 Hz $^{(5)}$ $^{(6)}$ | 5000 |                  |      | V <sub>RMS</sub> |
| R <sub>ISO</sub> | Isolation Resistance           | V <sub>I-O</sub> = 500 V <sup>(5)</sup>                                                          |      | 10 <sup>11</sup> |      | Ω                |
| C <sub>ISO</sub> | Isolation Capacitance          | $V_{I-O}$ = 0 V, Frequency = 1.0 MHz <sup>(5)</sup>                                              |      | 1                |      | pF               |

5. Device is considered a two terminal device: pins 2 and 3 are shorted together and pins 5, 6, 7 and 8 are shorted together.

6. 5,000 V<sub>RMS</sub> for 1 minute duration is equivalent to 6,000 VAC<sub>RMS</sub> for 1 second duration.

#### **Table 7. ELECTRICAL CHARACTERISTICS**

| Symbol          | Parameter                                     | Conditions             | Min. | Тур. | Max. | Units |
|-----------------|-----------------------------------------------|------------------------|------|------|------|-------|
| V <sub>F</sub>  | Input Forward Voltage                         | I <sub>F</sub> = 10 mA | 1.2  | 1.5  | 1.8  | V     |
|                 | Temperature Coefficient of Forward<br>Voltage |                        |      | -1.8 |      | mV/°C |
| BV <sub>R</sub> | Input Reverse Breakdown Voltage               | I <sub>R</sub> = 10 μA | 5    |      |      | V     |

| Symbol              | Parameter                                       | Conditions                                       | Min.              | Тур.                    | Max.                     | Units |
|---------------------|-------------------------------------------------|--------------------------------------------------|-------------------|-------------------------|--------------------------|-------|
| CIN                 | Input Capacitance                               | f = 1 MHz, V <sub>F</sub> = 0 V                  |                   | 60                      |                          | pF    |
| Іон                 | High Level Output Current (7)                   | $V_0 = V_{DD} - 3 V$                             | -1.0              | -2.0                    |                          | А     |
|                     |                                                 | $V_0 = V_{DD} - 6 V$                             | -2.0              |                         |                          |       |
| IOL                 | Low Level Output Current (7)                    | V <sub>0</sub> = V <sub>SS</sub> + 3 V           | 1.0               | 2.0                     |                          | А     |
|                     |                                                 | V <sub>0</sub> = V <sub>SS</sub> + 6 V           | 2.0               |                         |                          |       |
| Vон                 | High Level Output Voltage                       | I <sub>F</sub> = 10 mA, I <sub>O</sub> = -2.5 A  | $V_{DD}$ – 6.25 V | $V_{DD}$ – 2.5 V        |                          | V     |
|                     |                                                 | I <sub>F</sub> = 10 mA, I <sub>O</sub> = -100 mA | $V_{DD}$ – 0.25 V | $V_{DD}$ – 0.1 V        |                          |       |
| Vol                 | Low Level Output Voltage                        | $I_{\rm F} = 0$ mA, $I_{\rm O} = 2.5$ A          |                   | V <sub>SS</sub> + 2.5 V | V <sub>SS</sub> + 6.25 V | V     |
|                     |                                                 | $I_{\rm F} = 0$ mA, $I_{\rm O} = 100$ mA         |                   | V <sub>SS</sub> + 0.1 V | V <sub>SS</sub> + 0.25 V |       |
| IDDH                | High Level Supply Current                       | $V_0$ = Open, $I_F$ = 7 to 16 mA                 |                   | 2.8                     | 5                        | mA    |
| IDDL                | Low Level Supply Current                        | $V_0 = Open, V_F = 0 \text{ to } 0.8 \text{ V}$  |                   | 2.8                     | 5                        | mA    |
| IFLH                | Threshold Input Current Low to High             | $I_0 = 0 \text{ mA}, V_0 > 5 \text{ V}$          |                   | 2.3                     | 5.0                      | mA    |
| VFHL                | Threshold Input Voltage High to Low             | $I_0 = 0$ mA, $V_0 < 5$ V                        | 0.8               |                         |                          | V     |
| VUVLO+              | Under Voltage Lockout Threshold                 | I <sub>F</sub> = 1 0mA, V <sub>O</sub> > 5 V     | 11                | 12.7                    | 14                       | V     |
| Vuvlo-              |                                                 | $I_{\rm F}$ = 10 mA, V <sub>O</sub> < 5 V        | 9.7               | 11.2                    | 12.7                     | V     |
| UVLO <sub>HYS</sub> | Under Voltage Lockout Threshold Hys-<br>teresis |                                                  |                   | 1.5                     |                          | V     |

### Table 7. ELECTRICAL CHARACTERISTICS

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

7. Maximum pulse width = 10  $\mu$ s, maximum duty cycle = 1.1 %.

#### **Table 8. SWITCHING CHARACTERISTICS**

Apply over all recommended conditions, typical value is measured at  $V_{DD}$  = 30 V,  $V_{SS}$  = Ground,  $T_A$  = 25°C unless otherwise specified.

| Symbol          | Parameter                                                                                      | Conditions                                                                                                            | Min. | Тур. | Max. | Units |
|-----------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| tPHL            | Propagation Delay Time to Logic Low Output                                                     | $I_F = 7 \text{ mA to } 16 \text{ mA},$                                                                               | 100  | 275  | 500  | ns    |
| tPLH            | Propagation Delay Time to Logic High Output                                                    | Rg = 20 Ω, Cg = 10 nF,<br>f = 10 kHz, Duty Cycle = 50 %                                                               | 100  | 255  | 500  | ns    |
| PWD             | Pulse Width Distortion,   tPHL – tPLH                                                          |                                                                                                                       |      | 20   | 300  | ns    |
| PDD<br>(Skew)   | Propagation Delay Difference Between Any Two Parts or Channels, $(t_{PHL} - t_{PLH})$ $^{(8)}$ |                                                                                                                       | -350 |      | 350  | ns    |
| t <sub>r</sub>  | Output Rise Time (10% – 90%)                                                                   |                                                                                                                       |      | 60   |      | ns    |
| t <sub>f</sub>  | Output Fall Time (90% – 10%)                                                                   |                                                                                                                       |      | 60   |      | ns    |
| tUVLO ON        | UVLO Turn On Delay                                                                             | I <sub>F</sub> = 10 mA , V <sub>O</sub> > 5 V                                                                         |      | 1.6  |      | μs    |
| tUVLO OFF       | UVLO Turn Off Delay                                                                            | $I_F = 10 \text{ mA}$ , $V_O < 5 \text{ V}$                                                                           |      | 0.4  |      | μs    |
| CM <sub>H</sub> | Common Mode Transient Immunity at Output<br>High                                               | $T_{A} = 25^{\circ}C, V_{DD} = 30 \text{ V},$<br>$I_{F} = 7 \text{ to } 16 \text{ mA}, V_{CM} = 2000 \text{ V}^{(9)}$ | 20   | 50   |      | kV/μs |
| CM <sub>L</sub> | Common Mode Transient Immunity at Output<br>Low                                                | $\begin{split} T_A &= 25^\circ C, \ V_{DD} = 30 \ V, \ V_F = 0 \ V, \\ V_{CM} &= 2000 \ V \ ^{(10)} \end{split}$      | 20   | 50   |      | kV/μs |

8. The difference between t<sub>PHL</sub> and t<sub>PLH</sub> between any two FOD3150A parts under same test conditions.
9. Common mode transient immunity at output high is the maximum tolerable negative dVcm/dt on the trailing edge of the common mode impulse signal, Vcm, to assure that the output will remain high (i.e., V<sub>O</sub> > 15.0 V).
10. Common mode transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, Vcm to assure the the output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, Vcm to assure the the provide the transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, Vcm to assure the the provide the transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, Vcm to assure the the provide the transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, Vcm to assure the the provide the term to term to term to term to the term to ter

Vcm, to assure that the output will remain low (i.e., Vo < 1.0 V).

### TYPICAL PERFORMANCE CURVES

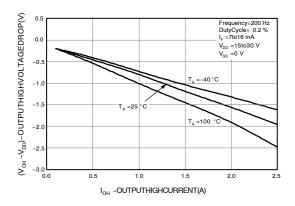



Figure 1. Output High Voltage Drop vs. Output High Current

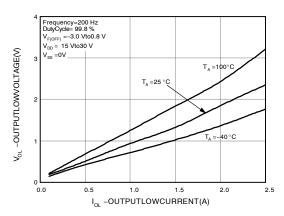



Figure 3. Output Low Voltage vs. Output Low Current

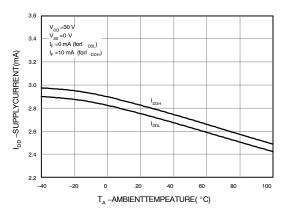



Figure 5. Supply Current vs. Ambient Temperature

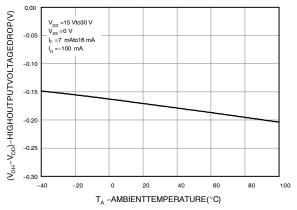



Figure 2. Output High Voltage Drop vs. Ambient Temperature

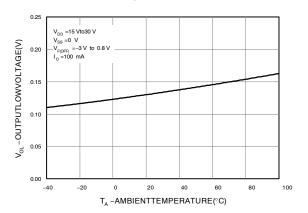



Figure 4. Output Low Voltage vs. Ambient Temperature

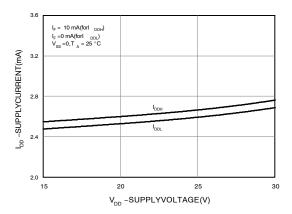



Figure 6. Supply Current vs. Supply Voltage

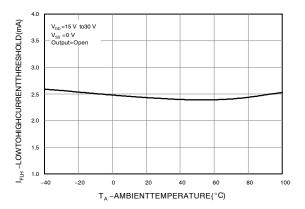



Figure 7. Low to High Input Current Threshold vs. Ambient Temperature

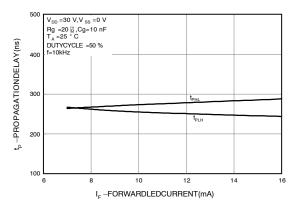



Figure 9. Propagation Delay vs. LED Forward Current

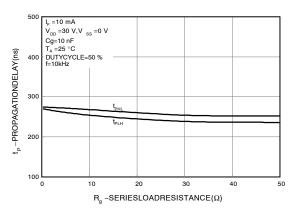



Figure 11. Propagation Delay vs. Series Load Resistance

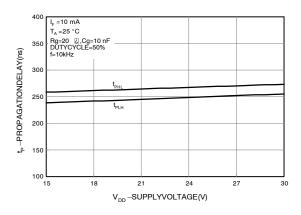



Figure 8. Propagation Delay vs. Supply Voltage

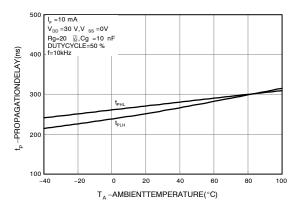



Figure 10. Propagation Delay vs. Ambient Temperature

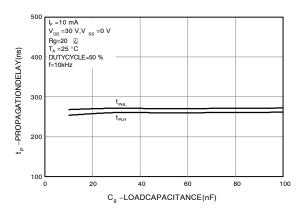



Figure 12. Propagation Delay vs. Load Capacitance

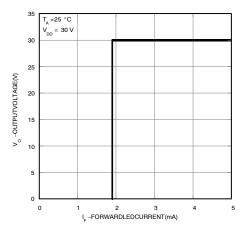



Figure 13. Transfer Characteristics

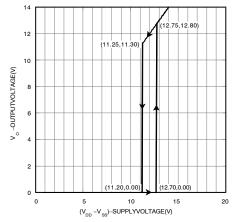
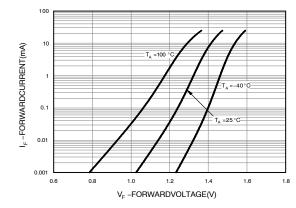
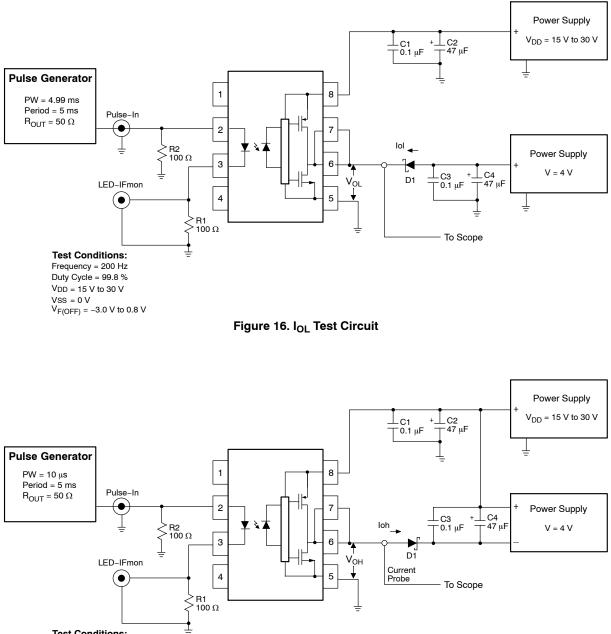
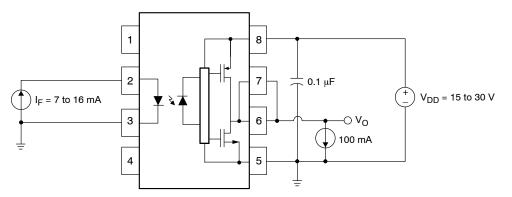
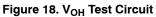
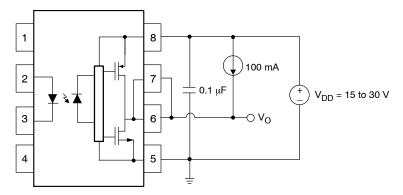


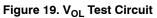

Figure 15. Under Voltage Lockout

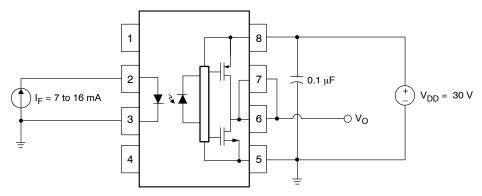





Figure 14. Input Forward Current vs. Forward Voltage


### **TEST CIRCUIT**





 $\label{eq:starsess} \begin{array}{l} \mbox{Test Conditions:} \\ \mbox{Frequency} = 200 \mbox{ Hz} \\ \mbox{Duty Cycle} = 0.2 \ \% \\ \mbox{V}_{DD} = 15 \mbox{ V to } 30 \mbox{ V} \\ \mbox{V}_{SS} = 0 \ V \\ \mbox{I}_{F} = 7 \ mA \ to \ 16 \ mA \end{array}$ 















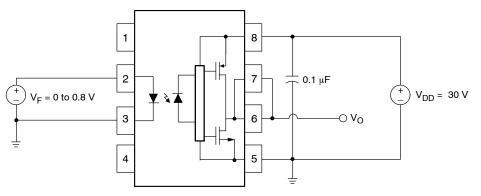
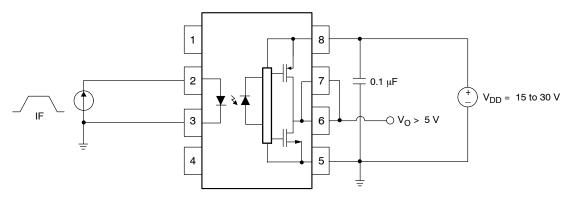





Figure 21. I<sub>DDL</sub> Test Circuit





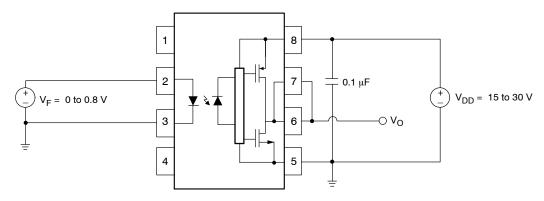
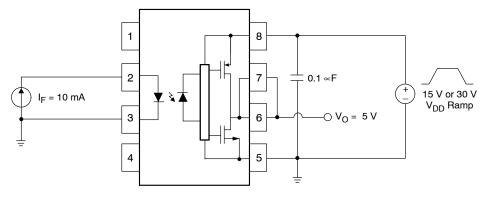




Figure 23. V<sub>FHL</sub> Test Circuit





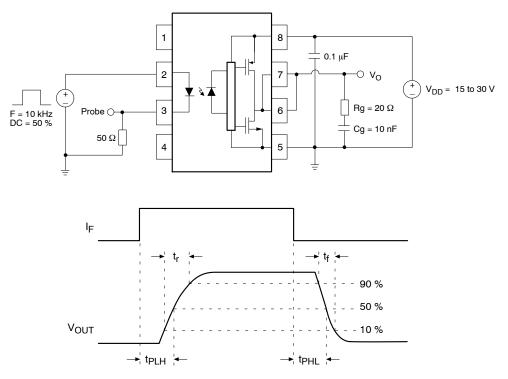



Figure 25.  $t_{PHL}$ ,  $t_{PLH}$ ,  $t_R$  and  $t_F$  Test Circuit and Waveforms

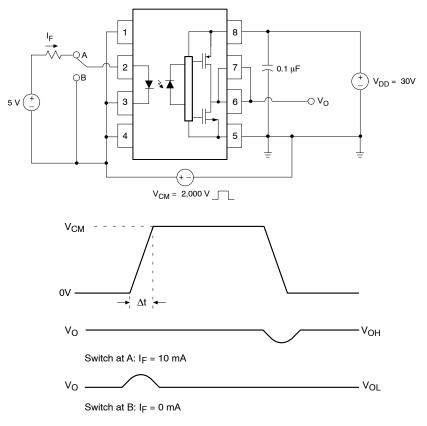
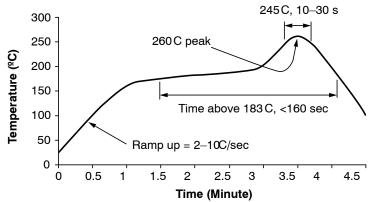




Figure 26. CMR Test Circuit and Waveforms

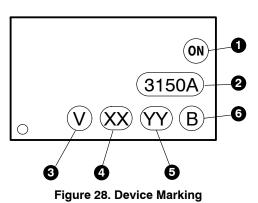
### **REFLOW PROFILE**



Notes:

• Peak reflow temperature: 260 C (package surface temperature)

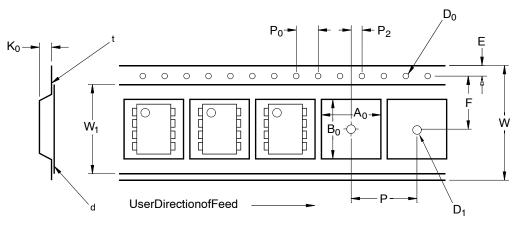
• Time of temperature higher than 183 C for 160 seconds or less


• One time soldering reflow is recommended

#### Figure 27. Reflow Profile

#### **ORDERING INFORMATION**

| Part Number | Package                                                  | Shipping <sup>†</sup> |
|-------------|----------------------------------------------------------|-----------------------|
| FOD3150A    | DIP 8–Pin                                                | 50 / Tube             |
| FOD3150AS   | SMT 8-Pin (Lead Bend)                                    | 50 / Tube             |
| FOD3150ASD  | SMT 8-Pin (Lead Bend)                                    | 1,000 / Tape & Reel   |
| FOD3150AV   | DIP 8-Pin, IEC60747-5-2 option                           | 50 / Tube             |
| FOD3150ASV  | SMT 8-Pin (Lead Bend), DIN EN/IEC60747-5-2 option        | 50 / Tube             |
| FOD3150ASDV | SMT 8-Pin (Lead Bend), DIN EN/IEC60747-5-2 option        | 1,000 / Tape & Reel   |
| FOD3150ATV  | DIP 8-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-2 option | 50 / Tube             |


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D



### MARKING INFORMATION

|   | Definitions                                                                     |  |  |  |  |
|---|---------------------------------------------------------------------------------|--|--|--|--|
| 1 | Company logo                                                                    |  |  |  |  |
| 2 | Device number                                                                   |  |  |  |  |
| 3 | DIN EN/IEC60747-5-2 Option (only appears on component ordered with this option) |  |  |  |  |
| 4 | Two digit year code, e.g., '08'                                                 |  |  |  |  |
| 5 | Two digit work week ranging from '01' to '53'                                   |  |  |  |  |
| 6 | Assembly package code                                                           |  |  |  |  |

### **CARRIER TAPE SPECIFICATIONS**



| Fiaure 29. | Carrier | Tape \$ | Specifications |
|------------|---------|---------|----------------|
|            |         |         |                |

| Symbol         | Description                     | Dimension in mm |
|----------------|---------------------------------|-----------------|
| W              | Tape Width                      | 16.0 ± 0.3      |
| t              | Tape Thickness                  | $0.30\pm0.05$   |
| P <sub>0</sub> | Sprocket Hole Pitch             | 4.0 ± 0.1       |
| D <sub>0</sub> | Sprocket Hole Diameter          | 1.55 ± 0.05     |
| E              | Sprocket Hole Location          | 1.75 ± 0.10     |
| F              | Pocket Location                 | 7.5 ± 0.1       |
| P <sub>2</sub> |                                 | 2.0 ± 0.1       |
| Р              | Pocket Pitch                    | 12.0 ± 0.1      |
| A <sub>0</sub> | Pocket Dimensions               | 10.30 ± 0.20    |
| B <sub>0</sub> |                                 | 10.30 ± 0.20    |
| K <sub>0</sub> |                                 | 4.90 ± 0.20     |
| W <sub>1</sub> | Cover Tape Width                | 13.2±0.2        |
| d              | Cover Tape Thickness            | 0.1 max         |
|                | Max. Component Rotation or Tilt | 10°             |
| R              | Min. Bending Radius             | 30              |

OPTOPLANAR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

### TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

#### North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥