

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage to Ground Potential.....-0.5V to +7.0V DC Voltage Applied to Outputs in High Z State $^{[1]}$-0.5V to V_{CC} + 0.5V DC Input Voltage^[1]-0.5V to V_{CC} + 0.5V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	5V ± 10%

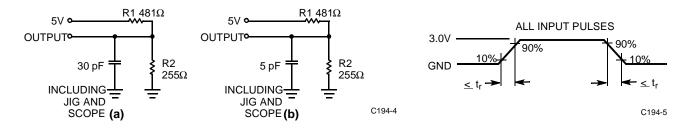
Electrical Characteristics Over the Operating Range

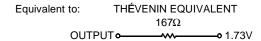
			7C194-12 7C195-12 7C196-12		7C194-15 7C195-15 7C196-15		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3V	2.2	V _{CC} + 0.3V	V
V _{IL} [1]	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-5	+5	-5	+5	μΑ
l _{OZ}	Output Leakage Current	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \\ & \text{Output Disabled} \end{aligned}$	-5	+5	- 5	+5	μΑ
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
Icc	V _{CC} Operating Supply Current	V _{CC} =Max., I _{OUT} =0 mA, f=f _{MAX} =1/t _{RC}		155		145	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs ^[4]	Max. V_{CC} , $\overline{CE}_{1,2} \ge V_{IH}$, $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$		30		30	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs ^[4]	Max. V_{CC} , $\overline{CE}_{1,2} \ge V_{CC}$ - 0.3V, $V_{IN} \ge V_{CC}$ - 0.3V or $V_{IN} \le 0.3$ V, $f = 0$		10		10	mA

Notes:

Minimum voltage is equal to -2.0 V for pulse durations of less than 20 ns. T_A is the "Instant On" case temperature.

Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds. A pull-up resistor to V_{CC} on the CE input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.


Electrical Characteristics Over the Operating Range (continued)


			7C194-20 7C195-20 7C196-20		7C194-25, 35, 45 7C195-25, 35 7C196-25, 35, 45		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3V	2.2	V _{CC} +0.3V	V
V _{IL}	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	- 5	+5	- 5	+5	μΑ
I _{OZ}	Output Leakage Current	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \\ & \text{Output Disabled} \end{aligned}$	- 5	+5	- 5	+5	μА
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} =Max., I _{OUT} =0 mA, f=f _{MAX} =1/t _{RC}		135		115	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs ^[4]	$\begin{aligned} &\text{Max. V}_{CC}, \overline{CE}_{1,2} \geq V_{\text{IH}}, \\ &V_{\text{IN}} \geq V_{\text{IH}} \text{ or } \\ &V_{\text{IN}} \leq V_{\text{IL}}, f = f_{\text{MAX}} \end{aligned}$		30		30	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs ^[4]	$\begin{array}{l} \text{Max. } V_{CC}, \overline{CE}_{1,2} \! \geq \! V_{CC} \! - \! 0.3V, \\ V_{IN} \! \geq \! V_{CC} \! - \! 0.3V \text{ or} \\ V_{IN} \! \leq \! 0.3V, f = 0 \end{array}$		15		15	mA

Capacitance^[5]

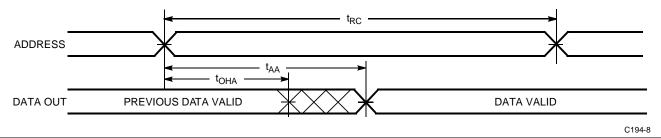
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

AC Test Loads and Waveforms^[6]

Notes:

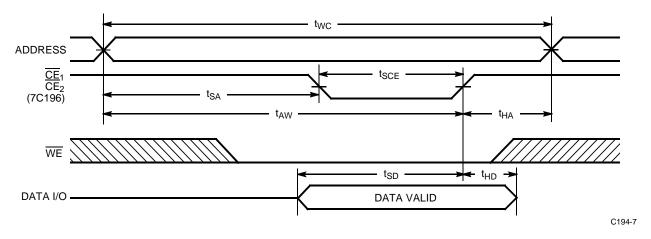
- 5. Tested initially and after any design or process changes that may affect these parameters. 6. $t_r = \le 3$ ns for the -12 and -15 speeds. $T_{-r} = \le 5$ ns for the -20 and slower speeds.

Switching Characteristics Over the Operating Range^[7]


	meter Description		7C1	94-12 95-12 96-12	7C1	94-15 95-15 96-15	7C19	94-20 95-20 96-20	7C19	94-25 95-25 96-25	7C19	94-35 95-35 96-35		94-45 96-45	
Parameter			Min.	Max.	Min.	Max.	Unit								
READ CYC	LE		,		•		,	,	,	,		•	•	•	,
t _{RC}	Read Cycle	Time	12		15		20		25		35		45		ns
t _{AA}	Address to D Valid	ata		12		15		20		25		35		45	ns
t _{OHA}	Output Hold Address Cha		3		3		3		3		3		3		ns
t _{ACE1} , t _{ACE2}	CE LOW to Data Valid			12		15		20		25		35		45	ns
t _{DOE}	OE LOW to Data Valid	7C195, 7C196		5		7		9		10		16		16	ns
t _{LZOE}	OE LOW to Low Z	7C195, 7C196	0		0		0		3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[8]	7C195, 7C196		5		7		9		11		15		15	ns
t _{LZCE1} , t _{LZCE2}	CE LOW to Low Z ^[8]		3		3		3		3		3		3		ns
t _{HZCE1} , t _{HZCE2}	CE HIGH to High Z ^[8,8]			5		7		9		11		15		15	ns
t _{PU}	CE LOW to Power-Up		0		0		0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down	l		12		15		20		25		35		45	ns
WRITE CYC	CLE ^[10]		ı					ı	ı	l					ı
t _{WC}	Write Cycle	Гime	12		15		20		25		35		45		ns
t _{SCE}	CE LOW to V	Vrite End	9		10		15		18		22		22		ns
t _{AW}	Address Set- Write End	·Up to	9		10		15		20		25		35		ns
t _{HA}	Address Hold Write End	d from	0		0		0		0		0		0		ns
t _{SA}	Address Set- Write Start	Up to	0		0		0		0		0		0		ns
t _{PWE}	WE Pulse W	idth	8		9		15		18		22		22		ns
t _{SD}	Data Set-Up to Write End		8		9		10		10		15		15		ns
t _{HD}	Data Hold from Write End		0		0		0		0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[8]		3		3		3		3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[8, 9]			7		7		10	0	13	0	15	0	20	ns

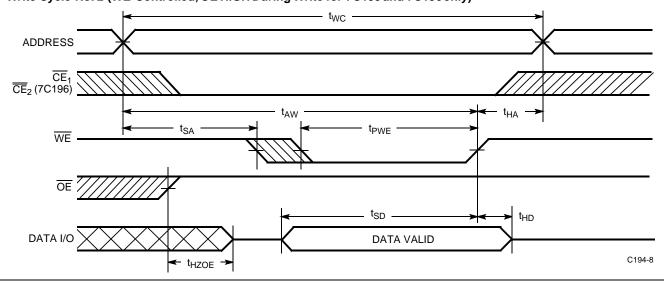
- Test conditions assume signal transition time of 3 ns or less for -12 and -15 speeds and 5 ns or less for -20 and slower speeds, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. I_{HZOE} , and I_{HZWE} are specified with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. At any given temperature and voltage condition, I_{HZCE} is less than I_{LZCE} and I_{HZWE} for any given device. The internal write time of the memory is defined by the overlap of CE_1 LOW, CE_2 LOW, and WE LOW. All signals must be LOW to initiate a write and any signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

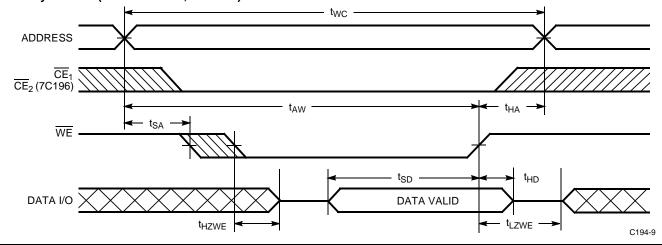

Read Cycle No. 1 $^{[11, 12]}$

Read Cycle No. 2 [11, 13]

Write Cycle No. 1 (CE Controlled)^[10, 14, 15]


Notes:

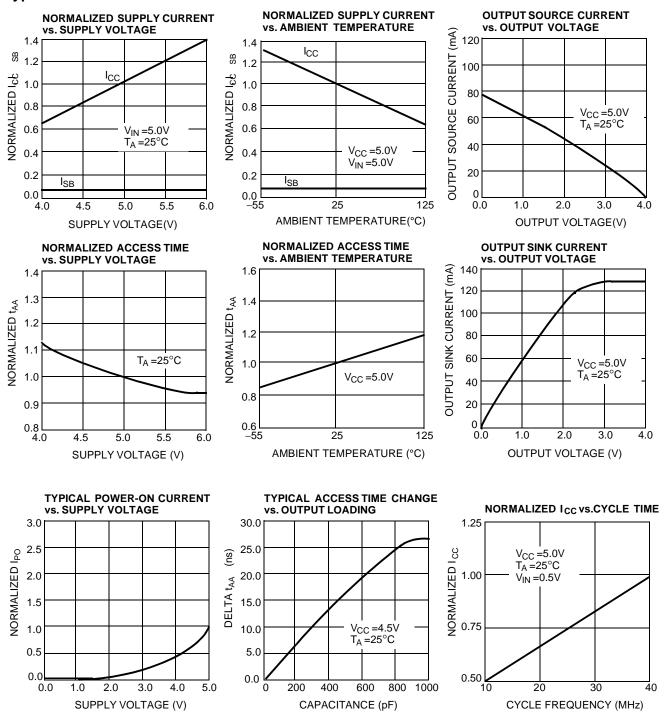
- WE is HIGH for read cycle.
 Device is continuously selected: \(\overline{CE}_1 = V_{|||}\), \(\overline{CE}_2 = V_{|||}\) (7C196), and \(\overline{OE} = V_{|||}\) (7C195 and 7C196).
 Address valid prior to or coincident with \(\overline{CE}_1\) and \(\overline{CE}_2\) transition LOW.
 Data \(|\overline{I/O}\) will be high impedance if \(\overline{OE} = V_{|||}\) (7C195 and 7C196).
 If any \(\overline{CE}\) goes HIGH simultaneously with \(\overline{WE}\) HIGH, the output remains in a high-impedance state.



Switching Waveforms (continued)

Write Cycle No. 2 (WE Controlled, OE HIGH During Write for 7C195 and 7C196 only) [10, 14, 15]

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[15,\ 16]}$


Note:

16. The minimum write cycle time for Write Cycle No. 3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .

[+] Feedback

Typical DC and AC Characteristics

Document #: 38-05162 Rev. ** Page 7 of 12

7C194 Truth Table

CE	WE	Data I/O	Mode	Power
Н	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Data Out	Read	Active (I _{CC})
L	L	Data In	Write	Active (I _{CC})

7C195 Truth Table

CE ₁	WE	OE	Data I/O	Mode	Power
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect	Active (I _{CC})

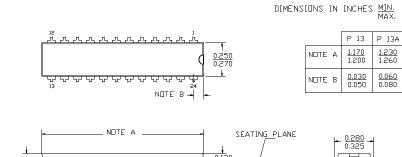
7C196 Truth Table

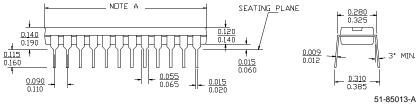
CE ₁	CE ₂	WE	OE	Data I/O	Mode	Power
Н	Х	Х	Χ	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Н	Х	Χ			
L	L	Н	L	Data Out	Read	Active (I _{CC})
L	L	L	Χ	Data In	Write	Active (I _{CC})
L	L	Н	Н	High Z	Deselect	Active (I _{CC})

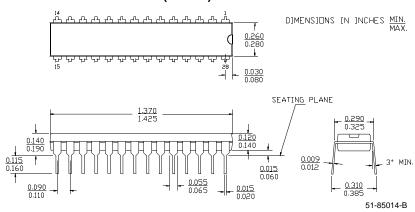
Document #: 38-05162 Rev. ** Page 8 of 12

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C194-12PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-12VC	V13	24-Lead Molded SOJ	
15	CY7C194-15PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-15VC	V13	24-Lead Molded SOJ	
20	CY7C194-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-20VC	V13	24-Lead Molded SOJ	
25	CY7C194-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-25VC	V13	24-Lead Molded SOJ	
35	CY7C194-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-35VC	V13	24-Lead Molded SOJ	
45	CY7C194-45PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-45VC	V13	24-Lead Molded SOJ	

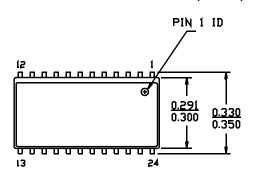

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C195-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-12VC	V21	28-Lead Molded SOJ	
15	CY7C195-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-15VC	V21	28-Lead Molded SOJ	
20	CY7C195-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-20VC	V21	28-Lead Molded SOJ	
25	CY7C195-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-25VC	V21	28-Lead Molded SOJ	
35	CY7C195-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-35VC	V21	28-Lead Molded SOJ	
45	CY7C195-45PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-45VC	V21	28-Lead Molded SOJ	


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C196-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-12VC	V21	28-Lead Molded SOJ	
15	CY7C196-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-15VC	V21	28-Lead Molded SOJ	
20	CY7C196-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-20VC	V21	28-Lead Molded SOJ	
25	CY7C196-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-25VC	V21	28-Lead Molded SOJ	
35	CY7C196-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-35VC	V21	28-Lead Molded SOJ	

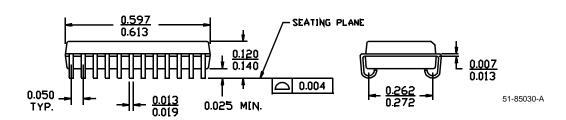

Package Diagrams

24-Lead (300-Mil) Molded DIP P13/P13A

28-Lead (300-Mil) Molded DIP P21

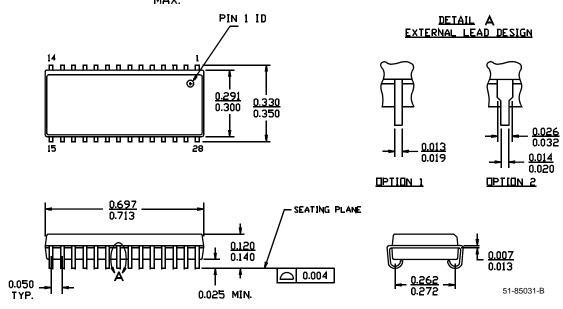


[+] Feedback



Package Diagrams (continued)

24-Lead (300-Mil) Molded SOJ V13



DIMENSIONS IN INCHES MIN. MAX.

28-Lead (300-Mil) Molded SOJ V21

DIMENSIONS IN INCHES MIN. MAX.

[+] Feedback

Document Title: CY7C194/CY7C195/CY7C196 64K x 4 Static RAM Document Number: 38-05162				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	110172	09/29/01	SZV	Change from Spec number: 38-00081 to 38-05162