FAIRCHILD

SEMICONDUCTOR

CD4066BC Quad Bilateral Switch

General Description

The CD4066BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4016BC, but has a much lower "ON" resistance, and "ON" resistance is relatively constant over the input-signal range.

Features

- Wide supply voltage range 3V to 15V
- High noise immunity 0.45 V_{DD} (typ.)
- Wide range of digital and ±7.5 V_{PEAK} analog switching
- \blacksquare "ON" resistance for 15V operation 80 Ω
- Matched "ON" resistance $\Delta R_{ON} = 5\Omega$ (typ.) over 15V signal input
- "ON" resistance flat over peak-to-peak signal range
- High "ON"/"OFF" 65 dB (typ.) output voltage ratio $@ f_{is} = 10 \text{ kHz}, R_L = 10 \text{ k}\Omega$
- Control Line Biasing: Switch On (Logic 1), $V_C = V_{DD}$ Switch Off (Logic 0), $V_{C} = V_{SS}$

- High degree linearity 0.1% distortion (typ.) High degree linearity @ $f_{is} = 1 \text{ kHz}, V_{is} = 5V_{p-p}$, High degree linearity $~V_{DD} - V_{SS} =$ 10V, $R_L =$ 10 $k\Omega$
- Extremely low "OFF" 0.1 nA (typ.)
- switch leakage: @ $V_{DD} V_{SS}$ = 10V, T_A = 25°C

November 1983

Revised October 2005

- Extremely high control input impedance $10^{12}\Omega(typ.)$ ■ Low crosstalk -50 dB (typ.)
- between switches $~@~f_{is}$ = 0.9 MHz, R $_L$ = 1 $k\Omega$
- Frequency response, switch "ON" 40 MHz (typ.)

Applications

- Analog signal switching/multiplexing
 - Signal gating
 - Squelch control
 - Chopper
 - Modulator/Demodulator
 - · Commutating switch
- · Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal-gain

Ordering Code:

Order Number	Package Number	Package Description
CD4066BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4066BCSJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4066BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available	in Tape and Reel. Specify	by appending suffix letter "X" to the ordering code.

Connection Diagram

Schematic Diagram

Downloaded from Arrow.com.

CD4066BC

Absolute Maximum Ratings (Note 1)

(Note 2)	
Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	-0.5V to V _{CC} +0.5V
Storage Temperature Range (T _S)	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	300°C

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{DD})	3V to 15V
Input Voltage (V _{IN})	0V to V _{DD}
Operating Temperature Range (T _A)	–55°C to +125°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Paramotor	Conditions	-5	5°C		+ 25°C		+12	25°C	Unite
Symbol	Falancici	Conditions	Min	Max	Min	Тур	Max	Min	Max	5111.5
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$		0.25		0.01	0.25		7.5	
		$V_{DD} = 10V$		0.5		0.01	0.5		15	μΑ
		$V_{DD} = 15V$		1.0		0.01	1.0		30	
SIGNAL	INPUTS AND OUTPUTS									
R _{ON}	"ON" Resistance	R_L = 10 k Ω to (V_{DD} - V_{SS}/2)								
		$V_{C} = V_{DD}, V_{SS}$ to V_{DD}								
		$V_{DD} = 5V$		800		270	1050		1300	
		$V_{DD} = 10V$		310		120	400		550	Ω
		$V_{DD} = 15V$		200		80	240		320	
ΔR_{ON}	∆"ON" Resistance Between	$R_L = 10 \text{ k}\Omega \text{ to } (V_{DD} - V_{SS}/2)$								
	Any 2 of 4 Switches	V_{CC} = V $_{DD},~V_{IS}$ = V_{SS} to V_{DD}								
		$V_{DD} = 10V$				10				0
		$V_{DD} = 15V$				5				52
IIS	Input or Output Leakage	$V_{C} = 0$		±50		±0.1	±50		±500	nA
	Switch "OFF"									
CONTRO	L INPUTS									
V _{ILC}	LOW Level Input	$V_{IS} = V_{SS}$ and V_{DD}								
	Voltage	V_{OS} = V $_{DD}$ and V_{SS}								
		$I_{IS}=\pm 10\mu A$								
		$V_{DD} = 5V$		1.5		2.25	1.5		1.5	
		$V_{DD} = 10V$		3.0		4.5	3.0		3.0	V
		$V_{DD} = 15V$		4.0		6.75	4.0		4.0	
VIHC	HIGH Level Input	$V_{DD} = 5V$	3.5		3.5	2.75		3.5		
	Voltage	V _{DD} = 10V (Note 7)	7.0		7.0	5.5		7.0		V
		$V_{DD} = 15V$	11.0		11.0	8.25		11.0		
I _{IN}	Input Current	$V_{DD}-V_{SS} = 15V$		-0.1		-10 ⁻⁵	-0.1		-0.1	ıιΔ
		V _{DD} ≥V _{IS} ≥V _{SS}		0.1		10 ⁻⁵	0.1		0.1	μΑ
		V _{DD} ≥V _C ≥V _{SS}								

$T_A = 25^{\circ}C$, $t_r = t_f = 20$ ns and $V_{SS} = 0V$ unless otherwise noted						
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time Signal	$V_{C} = V_{DD}, C_{L} = 50 \text{ pF}, \text{(Figure 1)}$				
	Input to Signal Output	$R_L = 200k$				
		$V_{DD} = 5V$		25	55	ns
		$V_{DD} = 10V$		15	35	ns
		$V_{DD} = 15V$		10	25	ns
t _{PZH} , t _{PZL}	Propagation Delay Time	$R_L = 1.0 \text{ k}\Omega, C_L = 50 \text{ pF}, \text{ (Figure 2, Figure 3)}$				
	Control Input to Signal	$V_{DD} = 5V$			125	ns
	Output High Impedance to	$V_{DD} = 10V$			60	ns
	Logical Level	$V_{DD} = 15V$			50	ns
t _{PHZ} , t _{PLZ}	Propagation Delay Time	$R_L = 1.0 \text{ k}\Omega, C_L = 50 \text{ pF}, \text{ (Figure 2, Figure 3)}$				
	Control Input to Signal	$V_{DD} = 5V$			125	ns
	Output Logical Level to	$V_{DD} = 10V$			60	ns
	High Impedance	$V_{DD} = 15V$			50	ns
	Sine Wave Distortion	$V_{C} = V_{DD} = 5V, V_{SS} = -5V$		0.1		%
		$R_L = 10 \text{ k}\Omega$, $V_{IS} = 5V_{p-p}$, f= 1 kHz, (Figure 4)				
	Frequency Response-Switch	$V_{\rm C} = V_{\rm DD} = 5V, V_{\rm SS} = -5V,$		40		MHz
	"ON" (Frequency at -3 dB)	$R_L = 1 \ k\Omega$, $V_{IS} = 5V_{p-p}$,				
		20 Log ₁₀ V _{OS} /V _{OS} (1 kHz)–dB,				
		(Figure 4)				
	Feedthrough — Switch "OFF"	$V_{DD} = 5.0V, V_{CC} = V_{SS} = -5.0V,$		1.25		
	(Frequency at -50 dB)	$R_{l} = 1 \text{ k}\Omega, V_{lS} = 5.0 V_{p-p}, 20 \text{ Log}_{10},$				
		$V_{OS}/V_{IS} = -50$ dB, (Figure 4)				
	Crosstalk Between Any Two	$V_{DD} = V_{C(A)} = 5.0V; V_{SS} = V_{C(B)} = 5.0V,$		0.9		MHz
	Switches (Frequency at –50 dB)	$R_1 1 k\Omega, V_{1S(A)} = 5.0 V_{p_2p_1} 20 Log_{10}$				
		$V_{OS(B)}/V_{IS(A)} = -50 \text{ dB} \text{ (Figure 5)}$				
	Crosstalk: Control Input to	$V_{DD} = 10V, R_{I} = 10 \text{ k}\Omega, R_{IN} = 1.0 \text{ k}\Omega.$		150		mVn.n
	Signal Output	$V_{CC} = 10V$ Square Wave, $C_1 = 50 \text{ pF}$				φ-φ
		(Figure 6)				
	Maximum Control Input	$R_{\rm r} = 1.0 \text{ k}\Omega$, $C_{\rm r} = 50 \text{ pE}$ (Figure 7)				
		$V_{00}(n = \frac{1}{2} V_{00}(1.0 \text{ kHz}))$				
		$V_{DD} = 5.0V$		60		MHz
		$V_{DD} = 0.00$		8.0		MH7
		$V_{} = 15V$		8.5		MHz
Circ	Signal Input Capacitance	*DD - 104		8.0		nF
Cas	Signal Output Capacitance	V ₁ = - 10V		0.0		pi pE
Curr	Feedthrough Capacitance	$v_{DD} = 10v$		0.0		ρF
CIOS		*C - 0 *		0.5		рі —

Note 4: These devices should not be connected to circuits with the power "ON".

Note 5: In all cases, there is approximately 5 pF of probe and jig capacitance in the output; however, this capacitance is included in C_L wherever it is specified.

Note 6: V_{IS} is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_C is the voltage at the control input.

Note 7: Conditions for V_{IHC}: a) V_{IS} = V_{DD}, I_{OS} = standard B series I_{OH} b) V_{IS} = 0V, I_{OL} = standard B series I_{OL}.

Special Considerations

In applications where separate power sources are used to drive V_{DD} and the signal input, the V_{DD} current capability should exceed V_{DD}/R_L (R_L = effective external load of the 4 CD4066BC bilateral switches). This provision avoids any permanent current flow or clamp action of the V_{DD} supply when power is applied or removed from CD4066BC.

In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To

avoid drawing V_{DD} current when switch current flows into terminals 1, 4, 8 or 11, the voltage drop across the bidirectional switch must not exceed 0.6V at T_A \leq 25°C, or 0.4V at T_A > 25°C (calculated from R_{ON} values shown). No V_{DD} current will flow through R_L if the switch current flows into terminals 2, 3, 9 or 10.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.