TABLE OF CONTENTS

Features
Applications
Functional Block Diagrams
General Description
Product Highlights
Revision History
Specifications
15 V Dual Supply3
12 V Single Supply5
5 V Dual Supply7
REVISION HISTORY
6/2016—Rev. C to Rev. D
Changes to Analog Inputs Parameter, Table 69
Added Digital Inputs Parameter, Table 6
5/2016—Rev. B to Rev. C
Changed CP-16-13 to CP-16-26Throughout
Changes to Figure 3
Changes to Figure 5
Updated Outline Dimensions
Changes to Ordering Guide
3/2009—Rev. A to Rev. B
Change to I _{DD} Parameter, Table 2
Change to I _{DD} Parameter, Table 2 4 Change to I _{DD} Parameter, Table 3 6
0.1.1.1.00 10 1.00 1 1.1.1.1.1.1.1.1.1.1
8/2008—Rev. 0 to Rev. A
Changes to Features
Added Table 5; Renumbered Sequentially 8
Changes to Table 69
Added Exposed Pad Notation to Figure 310
Added Exposed Pad Notation to Figure 511
Added Exposed Pad Notation to Outline Dimensions

Continuous Current per channel, S or D	8
Absolute Maximum Ratings	9
Thermal Resistance	9
ESD Caution	9
Pin Configurations and Function Descriptions	10
Typical Performance Characteristics	12
Terminology	16
Test Circuits	17
Outline Dimensions	19
Ordering Guide	19

8/2006—Revision 0: Initial Version

SPECIFICATIONS

15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
On Resistance (R _{ON})	4			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}; \text{ see Figure 26}$
	4.7	5.7	6.7	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Match Between Channels (ΔR _{ON})	0.2			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
	0.78	0.85	1.1	Ω max	
On-Resistance Flatness (RFLAT(ON))	0.5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
, , , , , , , , , , , , , , , , , , ,	0.72	0.77	0.92	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.04			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 27}$
Jeanes en <u>Jeanage</u> , 13 (e,	±0.2	±0.6	±5	nA max	v ₃ =10 v ₁ v ₂ +10 v ₁ see rigate 2/
Drain Off Leakage, I _D (Off)	±0.04	±0.0		nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}$; see Figure 27
Drain on Leakage, ib (on)	±0.45	±2	±30	nA max	vs = ±10 v, vb = +10 v, see Figure 27
Channel On Leakage L. L. (On)	±0.43	±2	±30	_	V = V = ±10 V; see Figure 39
Channel On Leakage, I _D , I _S (On)			130	nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 28
DICITAL INDUTC	±1.5	±3	±30	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current	±0.005			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	4			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time, trransition	140			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
	170	210	240	ns max	$V_s = 10 V$, see Figure 29
Break-Before-Make Time Delay, tbbm	50			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
			30	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 30
ton (EN)	100			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
	120	150	165	ns max	$V_S = 10 \text{ V}$; see Figure 31
toff (EN)	100			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
	120	150	170	ns max	$V_S = 10 \text{ V}$; see Figure 31
Charge Injection	-50			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 32}$
Off Isolation	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 33
Channel-to-Channel Crosstalk	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 34
Total Harmonic Distortion Plus Noise (THD + N)	0.025			% typ	R_L = 110 Ω, 15 V p-p, f = 20 Hz to 20 kHz; see Figure 36
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 35
ADG1408	60			MHz typ	, , ,
ADG1409	115			MHz typ	
Insertion Loss	0.24			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 35
C _S (Off)	14			pF typ	f = 1 MHz
C _D (Off)	17			Pi typ	f = 1 MHz
ADG1408	80			nE typ	1 - 1 1711 12
				pF typ	
ADG1409	40			pF typ	

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
C _D , C _s (On)					f = 1 MHz
ADG1408	135			pF typ	
ADG1409	90			pF typ	
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I_{DD}	0.002			μA typ	Digital inputs = 0 V or V_{DD}
			1	μA max	
	220			μA typ	Digital inputs = 5 V
			380	μA max	
I _{SS}	0.002			μA typ	Digital inputs = 0 V, 5 V or V _{DD}
			1	μA max	
V_{DD}/V_{SS}			±4.5/±16.5	V min/max	

 $^{^1}$ Temperature range: Y version: -40°C to +125°C. 2 Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V _{DD}	V	
On Resistance (R _{ON})	6			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA}; \text{ see Figure } 26$
Control of the contro	8	9.5	11.2	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between	0.2	7.5	11.2	Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -10 \text{ mA}$
Channels (ΔR_{ON})	0.2			12 typ	V5 = 0 V to 10 V, 15 = -10 IIIA
Chamiels (Mion)	0.82	0.85	1.1	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})	1.5	0.63	1.1	-	V 0V/to 10V/
Off-Resistance Flathess (R _{FLAT(ON)})		2.5	2.0	Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA}$
	2.5	2.5	2.8	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}$
Source Off Leakage, Is (Off)	±0.04			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 27}$
	±0.2	±0.6	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.04			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 27}$
•	±0.45	±1	±37	nA max	
Channel On Leakage, ID, IS (On)	±0.06			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V}$; see Figure 28
	±0.44	±1.3	±32	nA max	15 15 11 01 10 1,000 1.gan 2.20
DIGITAL INPUTS				TIT THUX	
			2.0	\/ main	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current	±0.005			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time, trransition	200			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
	260	330	380	ns max	$V_S = 8 \text{ V}$; see Figure 29
Break-Before-Make Time Delay, tbbM	90			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
Dream Derere mane mine Denay, easin			40	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 30
ton (EN)	160		40	ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
CON (LIV)		250	205		•
(FAI)	210	250	285	ns max	$V_s = 8 \text{ V}$; see Figure 31
t _{OFF} (EN)	115			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
	145	180	200	ns max	$V_S = 8 \text{ V}$; see Figure 31
Charge Injection	-12			pC typ	$V_S = 6 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 32
Off Isolation	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 33
Channel-to-Channel Crosstalk	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 34
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 35
ADG1408	36			MHz typ	
ADG1409	72			MHz typ	
Insertion Loss	0.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 35
C _s (Off)	25			pF typ	f = 1 MHz
	23			Pi typ	
C _D (Off)	165				f = 1 MHz
ADG1408	165			pF typ	
ADG1409	80			pF typ	
C_D , C_S (On)					f = 1 MHz
ADG1408	200			pF typ	
ADG1409	120	1		pF typ	

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
POWER REQUIREMENTS					V _{DD} = 13.2 V
lod	0.002			μA typ	Digital inputs = 0 V or V _{DD}
			1	μA max	
	220			μA typ	Digital inputs = 5 V
			380	μA max	
V_{DD}			5/16.5	V min/max	$V_{SS} = 0 \text{ V, GND} = 0 \text{ V}$

 $^{^1}$ Temperature range for Y version: –40°C to +125°C. 2 Guaranteed by design, not subject to production test.

5 V DUAL SUPPLY

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	+25°C	–40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
On Resistance (R _{ON})	7			Ωtyp	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}$; see Figure 26
	9	10.5	12	Ω max	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On-Resistance Match Between Channels (ΔR_{ON})	0.3			Ωtyp	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}$
	0.78	0.91	1.1	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})	1.5			Ωtyp	$V_S = \pm 4.5 \text{ V; } I_S = -10 \text{ mA}$
	2.5	2.5	3	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}; \text{ see Figure 27}$
	±0.2	±0.6	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}; \text{ see Figure 27}$
3	±0.45	±0.8	±20	nA max	
Channel On Leakage, ID, Is (On)	±0.04			nA typ	$V_S = V_D = \pm 4.5 \text{ V}$; see Figure 28
3, -, -, ,	±0.3	±1.1	±22	nA max	
DIGITAL INPUTS	-			-	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current	±0.005			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ²				1 31	
Transition Time, transition	330			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	440	530	550	ns max	V _s = 5 V; see Figure 29
Break-Before-Make Time Delay, t _{BBM}	100			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
			50	ns min	$V_{S1} = V_{S2} = 5 \text{ V}$; see Figure 30
t _{ON} (EN)	245			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
-511 (=: 1)	330	400	440	ns max	V _s = 5 V; see Figure 31
t _{OFF} (EN)	215			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
33.1 (=1.7)	285	335	370	ns max	V _s = 5 V; see Figure 31
Charge Injection	-10			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 32
Off Isolation	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 33
Channel-to-Channel Crosstalk	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 34
Total Harmonic Distortion Plus Noise (THD + N)	0.06			% typ	$R_L = 110 \Omega$, 5 V p-p, $f = 20 Hz$ to 20 kHz; see Figure 36
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 35
ADG1408	40			MHz typ	, , , , , , , , , , , , , , , , , ,
ADG1409	80			MHz typ	
Insertion Loss	0.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 35
C _s (Off)	20			pF typ	f = 1 MHz
C _D (Off)					f = 1 MHz
ADG1408	130			pF typ	
ADG1409	65			pF typ	
C _D , C _S (On)				>	f = 1 MHz
ADG1408	180			pF typ	
ADG1409	120			pF typ	

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C¹	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1	μA max	
Iss	0.001			μA typ	Digital inputs = 0 V , 5 V or V_{DD}
			1	μA max	
V_{DD}/V_{SS}			±4.5/±16.5	V min/max	

 $^{^{1}}$ Temperature range for Y version: -40° C to $+125^{\circ}$ C.

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5.

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, S or D1					
15 V Dual Supply					$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
ADG1408	190	105	50	mA max	
ADG1409	140	85	45	mA max	
12 V Single Supply					$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
ADG1408	160	95	50	mA max	
ADG1409	120	75	40	mA max	
5 V Dual Supply					$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
ADG1408	155	90	45	mA max	
ADG1409	115	70	40	mA max	

¹ Guaranteed by design, not subject to production test.

² Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 6.

Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	−0.3 V to +25 V
V _{SS} to GND	+0.3 V to −25 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$ or 30 mA, whichever occurs first
Digital Inputs ¹	GND -0.3 V to $V_{DD} + 0.3$ V or 30 mA, whichever occurs first
Continuous Current, S or D	Table 5 data + 10%
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Maximum)	350 mA
Operating Temperature Range	
Industrial (Y Version)	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Reflow Soldering Peak Temperature (RoHS Compliant)	260(+0/–5)°C

¹ Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

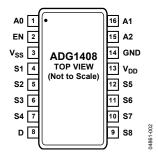
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

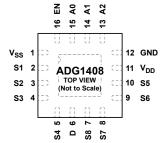
Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 7. Thermal Resistance


Package Type	θја	θις	Unit	Unit	
16-Lead TSSOP	150.4	50	°C/W		
16-Lead LFCSP	30.4		°C/W		

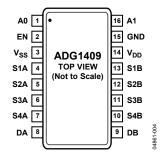

ESD CAUTION

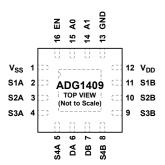
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES
1. THE EXPOSED PAD IS
CONNECTED INTERNALLY. FOR
INCREASED RELIABILITY OF THE
SOLDER JOINTS AND MAXIMUM
THERMAL CAPABILITY, IT IS
RECOMMENDED THAT THE PAD BE
SOLDERED TO THE SUBSTRATE, VSS.

Figure 3. ADG1408 Pin Configuration (LFCSP)


Figure 2. ADG1408 Pin Configuration (TSSOP)


Table 8. ADG1408 Pin Function Descriptions

Pin No).		
TSSOP	LFCSP	Mnemonic	Description
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	1	V_{SS}	Most Negative Power Supply Potential. In single supply applications, it can be connected to ground.
4	2	S1	Source Terminal 1. Can be an input or an output.
5	3	S2	Source Terminal 2. Can be an input or an output.
6	4	S3	Source Terminal 3. Can be an input or an output.
7	5	S4	Source Terminal 4. Can be an input or an output.
8	6	D	Drain Terminal. Can be an input or an output.
9	7	S8	Source Terminal 8. Can be an input or an output.
10	8	S7	Source Terminal 7. Can be an input or an output.
11	9	S6	Source Terminal 6. Can be an input or an output.
12	10	S5	Source Terminal 5. Can be an input or an output.
13	11	V_{DD}	Most Positive Power Supply Potential.
14	12	GND	Ground (0 V) Reference.
15	13	A2	Logic Control Input.
16	14	A1	Logic Control Input.
Not applicable	0	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, Vss.

Table 9. ADG1408 Truth Table

A2	A1	A0	EN	On Switch
X	X	Х	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

NOTES
1. THE EXPOSED PAD IS
CONNECTED INTERNALLY. FOR
INCREASED RELIABILITY OF THE
SOLDER JOINTS AND MAXIMUM
THERMAL CAPABILITY, IT IS
RECOMMENDED THAT THE PAD BE
SOLDERED TO THE SUBSTRATE, V_{SS}.

Figure 4. ADG1409 Pin Configuration (TSSOP)

Figure 5. ADG1409 Pin Configuration (LFCSP)

Table 10. ADG1409 Pin Function Descriptions

Pin No.				
TSSOP	LFCSP	Mnemonic	Description	
1	15	A0	Logic Control Input.	
2	16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.	
3	1	Vss	Most Negative Power Supply Potential. In single supply applications, it can be connected to ground.	
4	2	S1A	Source Terminal 1A. Can be an input or an output.	
5	3	S2A	Source Terminal 2A. Can be an input or an output.	
6	4	S3A	Source Terminal 3A. Can be an input or an output.	
7	5	S4A	Source Terminal 4A. Can be an input or an output.	
8	6	DA	Drain Terminal A. Can be an input or an output.	
9	7	DB	Drain Terminal B. Can be an input or an output.	
10	8	S4B	Source Terminal 4B. Can be an input or an output.	
11	9	S3B	Source Terminal 3B. Can be an input or an output.	
12	10	S2B	Source Terminal 2B. Can be an input or an output.	
13	11	S1B	Source Terminal 1B. Can be an input or an output.	
14	12	V_{DD}	Most Positive Power Supply Potential.	
15	13	GND	Ground (0 V) Reference.	
16	14	A1	Logic Control Input.	
Not applicable	0	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, Vss.	

Table 11. ADG1409 Truth Table

A1	A0	EN	On Switch Pair
X	Χ	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TYPICAL PERFORMANCE CHARACTERISTICS

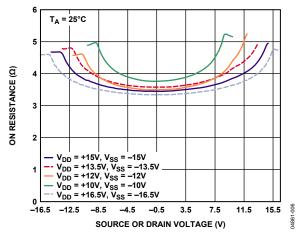


Figure 6. On Resistance vs. V_D, V_s; Dual Supply

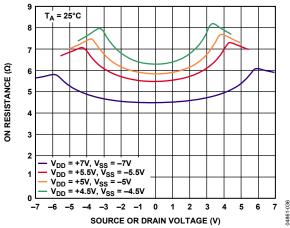


Figure 7. On Resistance vs. V_D , V_S ; Dual Supply

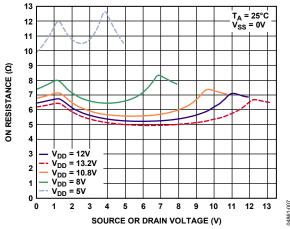


Figure 8. On Resistance vs. V_D, V_S; Single Supply

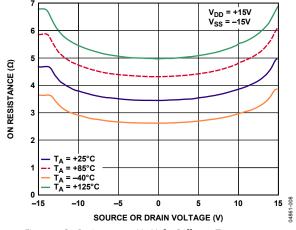


Figure 9. On Resistance vs. V_D , V_S for Different Temperatures; 15 V Dual Supply

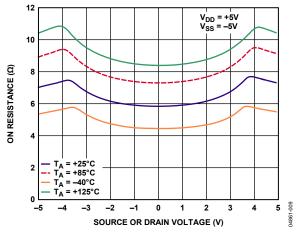


Figure 10. On Resistance vs. V_D , V_S for Different Temperatures; 5 V Dual Supply

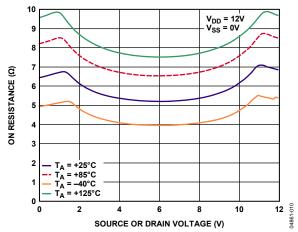


Figure 11. On Resistance vs. V_D , V_S for Different Temperatures; 12 V Single Supply

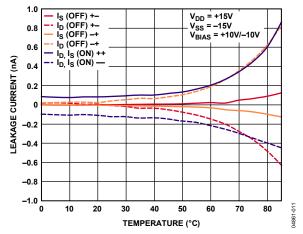


Figure 12. Leakage Current vs. Temperature; 15 V Dual Supply

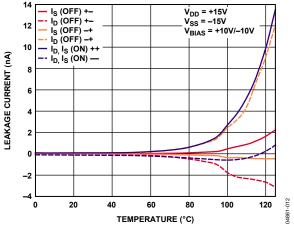


Figure 13. Leakage Current vs. Temperature; 15 V Dual Supply

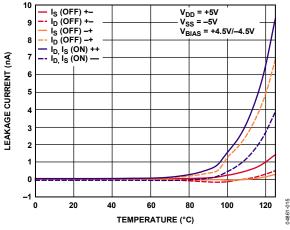


Figure 14. Leakage Current vs. Temperature; 5 V Dual Supply

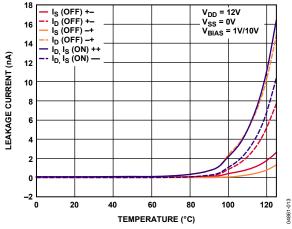


Figure 15. Leakage Current vs. Temperature; 12 V Single Supply

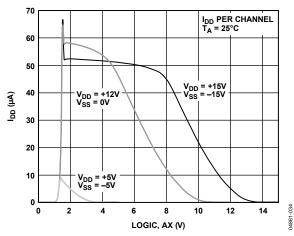


Figure 16. Positive Supply Current vs. Logic Level

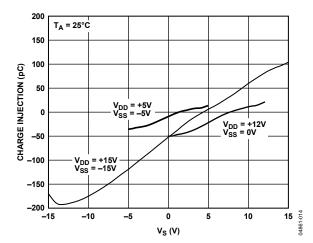


Figure 17. Charge Injection vs. Source Voltage

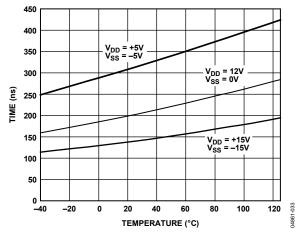


Figure 18. Transition Time vs. Temperature

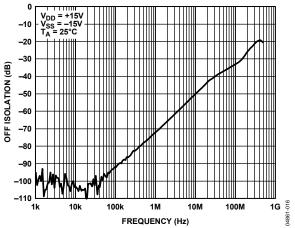


Figure 19. Off Isolation vs. Frequency

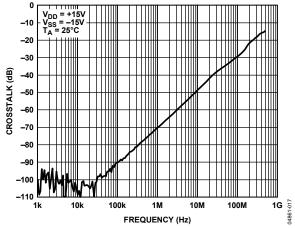


Figure 20. ADG1408 Crosstalk vs. Frequency

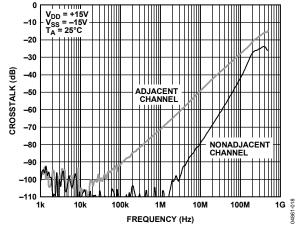


Figure 21. ADG1409 Crosstalk vs. Frequency

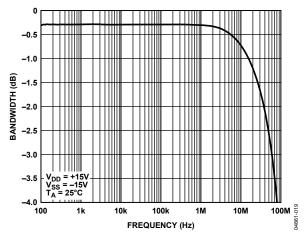


Figure 22. ADG1408 On Response vs. Frequency

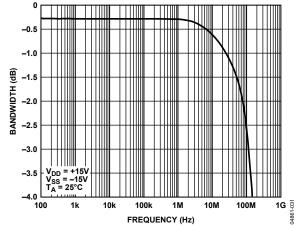


Figure 23. ADG1409 On Response vs. Frequency

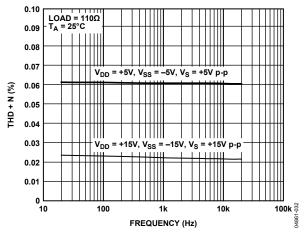


Figure 24. Total Harmonic Distortion Plus Noise vs. Frequency

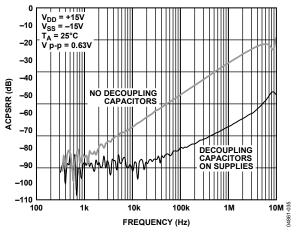


Figure 25. AC Power Supply Rejection Ratio vs. Frequency

TERMINOLOGY

RON

Ohmic resistance between D and S.

 ΔR_{ON}

Difference between the Ron of any two channels.

R_{FLAT(ON}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

Is (Off)

Source leakage current when the switch is off.

I_D (Off)

Drain leakage current when the switch is off.

 I_D , I_S (On)

Channel leakage current when the switch is on.

 $V_D(V_S)$

Analog voltage on Terminal D and Terminal S.

Cs (Off)

Channel input capacitance for off condition.

C_D (Off)

Channel output capacitance for off condition.

 C_D , C_S (On)

On switch capacitance.

 C_{IN}

Digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and switch on condition.

toff (EN)

Delay time between the 50% and 90% points of the digital input and switch off condition.

ttransition

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

tввм

Off time measured between the 80% point of both switches when switching from one address state to another.

 $\mathbf{V}_{ ext{INI}}$

Maximum input voltage for Logic 0.

VINH

Minimum input voltage for Logic 1.

IINL, IINH

Input current of the digital input.

 I_{DD}

Positive supply current.

 I_{SS}

Negative supply current.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

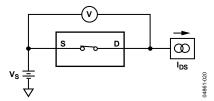
A measure of the glitch impulse transferred from the digital input to the analog output during switching.

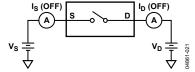
Bandwidth

Frequency at which the output is attenuated by 3 dB.

On Response

Frequency response of the on switch.


Total Harmonic Distortion Plus Noise (THD + N)


Ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

A measure of the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

TEST CIRCUITS

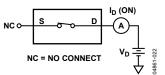


Figure 26. On Resistance

Figure 27. Off Leakage

Figure 28. On Leakage

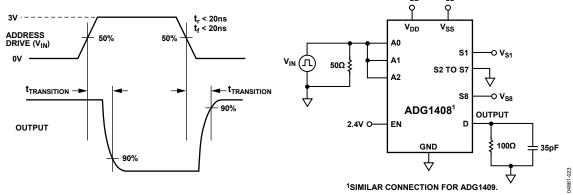


Figure 29. Address to Output Switching Times, t_{TRANSITION}

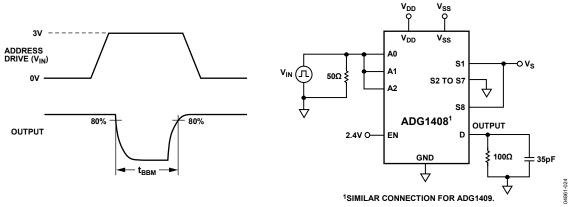


Figure 30. Break-Before-Make Delay, t_{BBM}

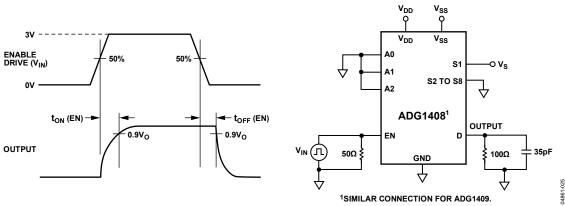


Figure 31. Enable Delay, t_{ON} (EN), t_{OFF} (EN)

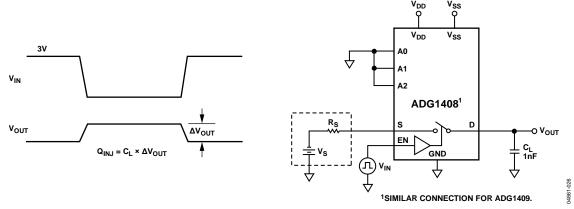


Figure 32. Charge Injection

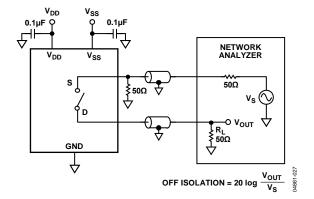


Figure 33. Off Isolation

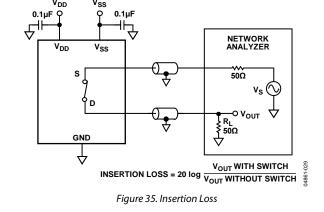


Figure 34. Channel-to-Channel Crosstalk

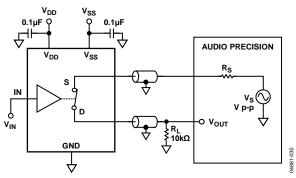
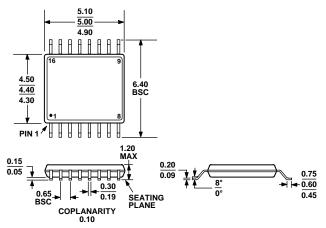



Figure 36. THD + N

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 37. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

Figure 38. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-26) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG1408YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1408YRUZ-REEL	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1408YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1408YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1409YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1409YRUZ-REEL	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1409YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1409YCPZ-REEL7	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26

 $^{^{1}}$ Z = RoHS Compliant Part.

©2006–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

D04861-0-6/16(D)

www.analog.com