TABLE OF CONTENTS

Features	1
Enhanced Product Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3

REVISION HISTORY

9/2016—Rev. 0 to Rev. A
Change to Quiescent Current Parameter, Table 1
Changes to Ordering Guide 12

7/2016—Revision 0: Initial Version

Absolute Maximum Ratings	5
Maximum Power Dissipation	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	7
Outline Dimensions	. 12
Ordering Guide	. 12

SPECIFICATIONS

 $V_s = 5 V$, $R_L = 150 \Omega$, $R_G = 110 \Omega$ ($A_V = 10 dB$), f = 70 MHz, $T = 25^{\circ}C$, parameters specified differentially, unless otherwise noted. The gain (A_V) can be set to any value between 0 dB and 26 dB.

Table 1. Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE			175	mux	
-3 dB Bandwidth	$A_V = 6 \text{ dB}, V_{OUT} \le 1.0 \text{ V p-p}$		3000		MHz
S db buildwidth	$A_V = 12 \text{ dB}, V_{OUT} \le 1.0 \text{ V p-p}$		2200		MHz
	$A_V = 18 \text{ dB}, V_{OUT} \le 1.0 \text{ V p-p}$		600		MHz
Bandwidth for 0.1 dB Flatness	$0 \text{ dB} \le A_V \le 20 \text{ dB}, V_{OUT} \le 1.0 \text{ V p-p}$		200		MHz
Bandwidth for 0.2 dB Flatness	$0 \text{ dB} \le A_V \le 20 \text{ dB}, V_{OUT} \le 1.0 \text{ V p-p}$		400		MHz
Gain Accuracy	Using 1% resistor for R_G , 0 dB $\leq A_V \leq 20$ dB		±1		dB
Gain Supply Sensitivity	$V_s \pm 5\%$		0.08		dB/V
Gain Temperature Sensitivity	-55°C to +105°C		3.9		mdB/°C
Slew Rate	$R_L = 1 k\Omega, V_{OUT} = 2 V step$		13,000		V/µs
Siew hate	$R_L = 150 \Omega, V_S = 2 V step$		7500		V/μs V/μs
Cottling Time	1 V step to 1%		<3		-
Settling Time Overdrive Recovery Time			<3 <2		ns
-	$V_{IN} = 4 V \text{ to } 0 V \text{ step}, V_{OUT} \le \pm 10 \text{ mV}$				ns
Reverse Isolation (S12)			-67		dB
			124 20		
Input Common-Mode Voltage Adjustment Range			1.2 to 3.8		V
Maximum Output Voltage Swing	1 dB compressed		4.75		V р-р
Output Common-Mode Offset			40		mV
Output Common-Mode Drift	–55°C to +105°C		0.24		mV/°C
Output Differential Offset Voltage			20		mV
Output Differential Offset Drift	–55°C to +105°C		0.13		mV/°C
Input Bias Current			±15		μΑ
Input Resistance ¹			5		kΩ
Input Capacitance ¹			0.8		pF
Common-Mode Rejection Ratio (CMRR)			43		dB
Output Resistance ¹			150		Ω
Output Capacitance ¹			0.8		рF
POWER INTERFACE					
Supply Voltage		3		5.5	V
PWUP Threshold			1.3		V
PWUP Input Bias Current	PWUP at 5 V		100		μΑ
	PWUP at 0 V		25		μΑ
Quiescent Current	–55°C to +105°C		28	35	mA
NOISE/DISTORTION					
10 MHz					
Second/Third Harmonic Distortion ²	$R_L = 1 \text{ k}\Omega$, $V_{OUT} = 2 \text{ V p-p}$		-95/-93		dBc
	$R_L = 150 \Omega$, $V_{OUT} = 2 V p-p$		-80/-69		dBc
Third-Order Intermodulation Distortion (IMD)	$R_L = 1 \text{ k}\Omega$, f1 = 9.5 MHz, f2 = 10.5 MHz,		-90		dBc
	V _{OUT} = 2 V p-p composite				
	R_L = 150 $\Omega,$ f1 = 9.5 MHz, f2 = 10.5 MHz,		-70		dBc
	V _{OUT} = 2 V p-p composite				
Output Third-Order Intercept	f1 = 9.5 MHz, f2 = 10.5 MHz		33		dBm
Noise Spectral Density (Referred to Input (RTI))			2.65		nV/√Hz
1 dB Compression Point			13.5		dBm

Enhanced Product

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
70 MHz					
Second/Third Harmonic Distortion ²	$R_L = 1 \ k\Omega$, $V_{OUT} = 2 V \ p-p$		-79/-81		dBc
	$R_L = 150 \Omega$, $V_{OUT} = 2 V p-p$		-65/-66		dBc
Third-Order IMD	$\label{eq:RL} \begin{split} R_L &= 1 \ k\Omega, f1 = 69.5 \ \text{MHz}, f2 = 70.5 \ \text{MHz}, \\ V_{\text{OUT}} &= 2 \ V \ p\text{-}p \ \text{composite} \end{split}$		-85		dBc
	$R_L = 150 \Omega$, f1 = 69.5 MHz, f2 = 70.5 MHz, $V_{OUT} = 2 V p$ -p composite		-69		dBc
Output Third-Order Intercept	f1 = 69.5 MHz, f2 = 70.5 MHz		31		dBm
Noise Spectral Density (RTI)			2.70		nV/√H
1 dB Compression Point			13.3		dBm
140 MHz					
Second/Third Harmonic Distortion ²	$R_L = 1 k\Omega$, $V_{OUT} = 2 V p-p$		-69/-69		dBc
	$R_L = 150 \Omega$, $V_{OUT} = 2 V p-p$		-54/-53		dBc
Third-Order IMD	$\label{eq:RL} \begin{split} R_L &= 1 \ k\Omega, f1 = 139.5 \ \text{MHz}, f2 = 140.5 \ \text{MHz}, \\ V_{\text{OUT}} &= 2 \ V \ p\text{-}p \ \text{composite} \end{split}$		-79		dBc
	$R_L = 150 \ \Omega$, f1 = 139.5 MHz, f2 = 140.5 MHz, $V_{OUT} = 2 V p$ -p composite		-67		dBc
Output Third-Order Intercept	f1 = 139.5 MHz, f2 = 140.5 MHz		29		dBm
Noise Spectral Density (RTI)			2.75		nV/√H
1 dB Compression Point			13		dBm
240 MHz					
Second/Third Harmonic Distortion ²	$R_L = 1 \ k\Omega$, $V_{OUT} = 2 V \ p-p$		-60/-66		dBc
	$R_L = 150 \Omega$, $V_{OUT} = 2 V p-p$		-46/-50		dBc
Third-Order IMD	$R_L = 1 \ k\Omega$, f1 = 239.5 MHz, f2 = 240.5 MHz, $V_{OUT} = 2 V \ p$ -p composite		-76		dBc
	$R_L = 150 \Omega$, f1 = 239.5 MHz, f2 = 240.5 MHz, $V_{OUT} = 2 V p$ -p composite		-62		dBc
Output Third-Order Intercept	f1 = 239.5 MHz, f2 = 240.5 MHz		27		dBm
Noise Spectral Density (RTI)			2.90		nV/√H
1 dB Compression Point			13		dBm

¹ Values are specified differentially.
 ² See the AD8351 data sheet for information about single-ended to differential operation.

ABSOLUTE MAXIMUM RATINGS

Table 2.

14010 21	
Parameter	Rating
Supply Voltage, VPOS	6 V
PWUP Voltage	VPOS
Internal Power Dissipation	320 mW
θ _{JA}	79.1°C/W
Maximum Junction Temperature	125°C
Operating Temperature Range	-55°C to +105°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature Range (Soldering, 60 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by this device is limited by the associated rise in junction temperature. Exceeding a junction temperature of 125°C for an extended period can result in device failure.

To ensure proper operation of the AD8351-EP, it is necessary to observe the maximum power derating curve (see Figure 2) to guarantee that the maximum junction temperature (125°C) is not exceeded under all conditions.

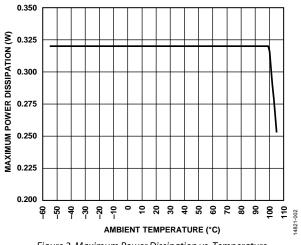
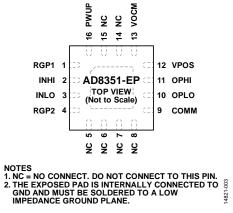


Figure 2. Maximum Power Dissipation vs. Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



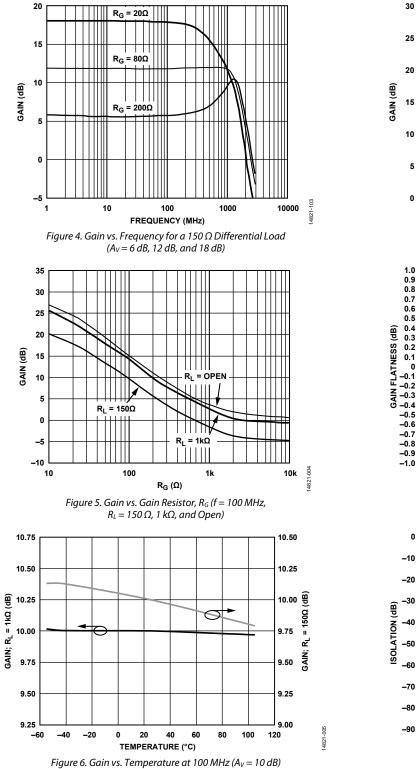

Figure 3. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RGP1	Gain Resistor Input 1.
2	INHI	Balanced Differential Input, High. Biased to midsupply, typically ac-coupled.
3	INLO	Balanced Differential Input, Low. Biased to midsupply, typically ac-coupled.
4	RGP2	Gain Resistor Input 2.
5, 6, 7, 8, 14, 15	NC	No Connect. Do not connect to this pin.
9	COMM	Device Common. Connect this pin to a low impedance ground.
10	OPLO	Balanced Differential Output, Low. Biased to VOCM, typically ac-coupled.
11	OPHI	Balanced Differential Output, High. Biased to VOCM, typically ac-coupled.
12	VPOS	Positive Supply Voltage. 3 V to 5.5 V.
13	VOCM	Input/Output Common-Mode Voltage. The voltage applied to this pin sets the common-mode voltage at both the input and output. This pin is typically decoupled to ground with a 0.1 μ F capacitor.
16	PWUP	Apply a positive voltage (1.3 V \leq V _{PWUP} \leq VPOS) to activate the device.
	EPAD	Exposed Pad. The exposed pad is internally connected to GND and must be soldered to a low impedance ground plane.

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_s = 5 V$, $T = 25^{\circ}C$, unless otherwise noted.

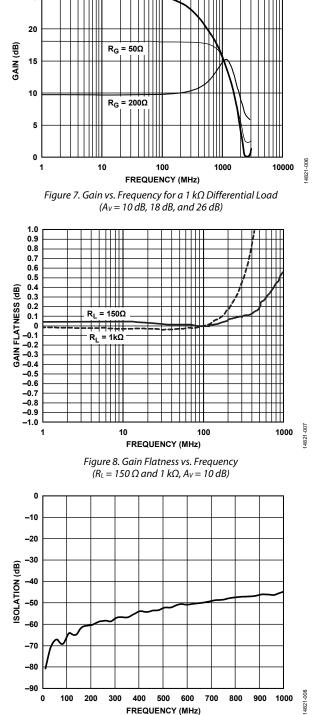


Figure 9. Isolation vs. Frequency ($A_V = 10 \, dB$)

 $R_G = 10\Omega$

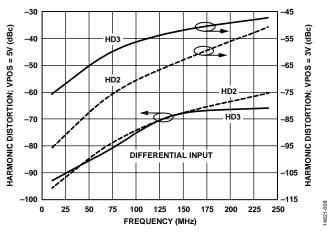


Figure 10. Harmonic Distortion vs. Frequency for 2 V p-p into $R_L = 1 k\Omega$ ($A_V = 10 dB$, at 3 V and 5 V Supplies)

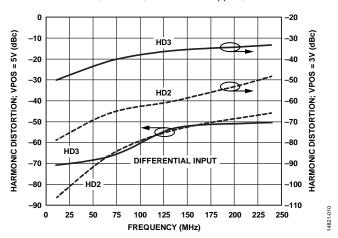


Figure 11. Harmonic Distortion vs. Frequency for 2 V p-p into $R_L = 150 \Omega$ ($A_V = 10 \text{ dB}$)

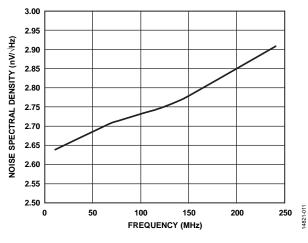


Figure 12. Noise Spectral Density (RTI) vs. Frequency ($R_L = 150 \Omega$, 5 V Supply, $A_V = 10 dB$)

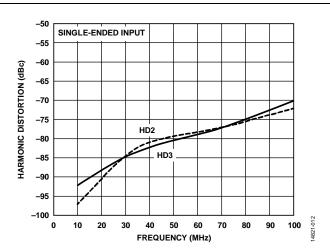


Figure 13. Harmonic Distortion vs. Frequency for 2 V p-p into $R_L = 1 \ k\Omega$ Using Single-Ended Input ($A_V = 10 \ dB$)

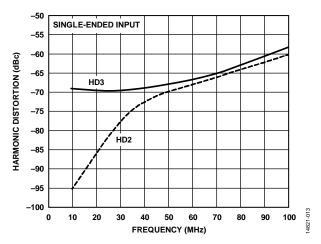


Figure 14. Harmonic Distortion vs. Frequency for 2 V p-p into $R_L = 150 \Omega$ Using Single-Ended Input ($A_V = 10 \text{ dB}$)

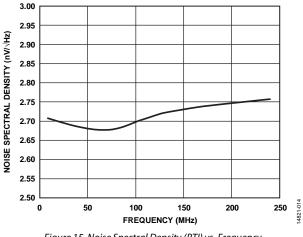
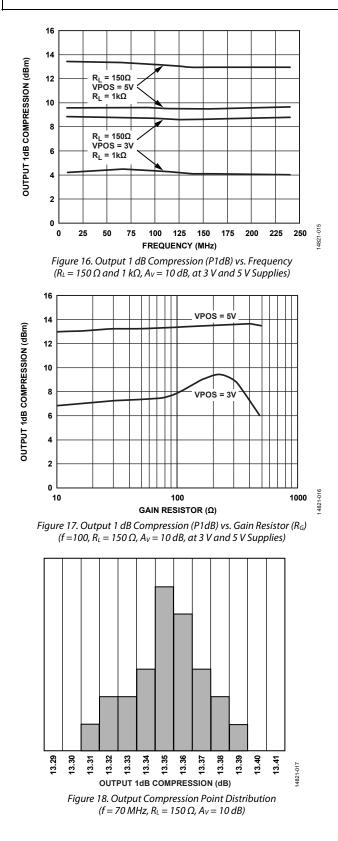



Figure 15. Noise Spectral Density (RTI) vs. Frequency $(R_L = 150 \Omega, 3 V Supply, A_V = 10 dB)$

Enhanced Product

Enhanced Product

AD8351-EP

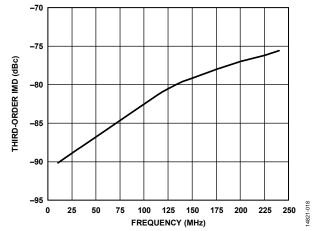


Figure 19. Third-Order Intermodulation Distortion (IMD) vs. Frequency for a 2 V p-p Composite Signal into $R_L = 1 k\Omega$ ($A_V = 10 dB$, at 5 V Supplies)

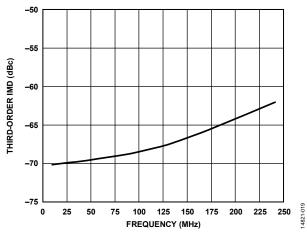


Figure 20. Third-Order Intermodulation Distortion vs. Frequency for a 2 V p-p Composite Signal into $R_L = 150 \Omega (A_V = 10 \text{ dB}, \text{ at 5 V Supplies})$

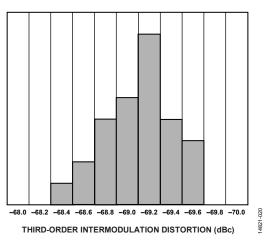


Figure 21. Third-Order Intermodulation Distortion Distribution (f = 70 MHz, $R_L = 150 \Omega$, $A_V = 10 \text{ dB}$)

4000 3500 IMPEDANCE MAGNITUDE (Ω) 3000 -25 PHASE (Degrees) 2500 2000 -50 1500 1000 -75 500 \Box 0 -100 14821-021 100 10 1000 FREQUENCY (MHz)

Figure 22. Input Impedance vs. Frequency

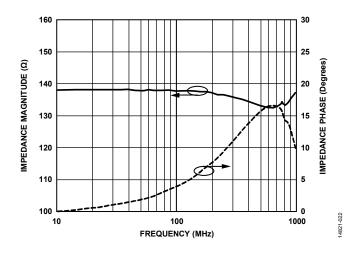


Figure 23. Output Impedance Magnitude and Phase vs. Frequency

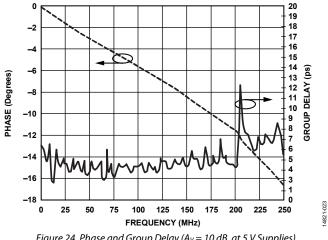


Figure 24. Phase and Group Delay ($A_V = 10 \text{ dB}$, at 5 V Supplies)

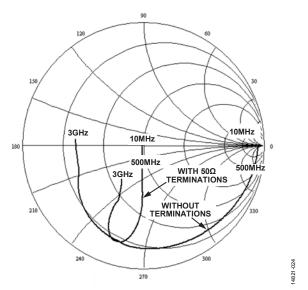
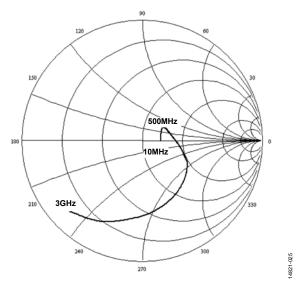
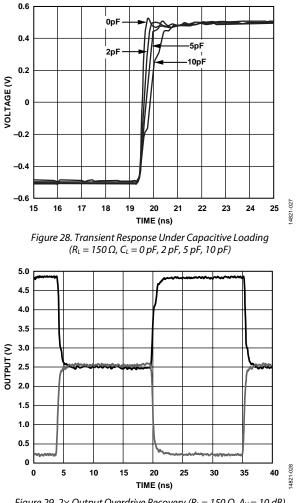


Figure 25. Input Reflection Coefficient vs. Frequency ($R_s = R_L = 100 \Omega$ With and Without 50 Ω Terminations)




Figure 26. Output Reflection Coefficient vs. Frequency ($R_s = R_L = 100 \Omega$)

Enhanced Product

Enhanced Product

80 70 $R_L = 150\Omega$ 60 CMRR (dB) 50 1kΩ R 40 30 20 10 100 1000 4821-026 1 FREQUENCY (MHz)

Figure 27. Common-Mode Rejection Ratio, CMRR ($R_s = 100 \Omega$)



Figure 30. Overdrive Recovery Using Sinusoidal Input Waveform $R_L = 150 \Omega$ $(A_V = 10 \, dB, at 5 \, V \, Supplies)$

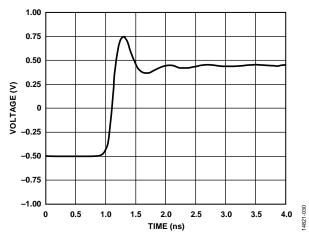


Figure 31. Large Signal Transient Response for a 1 V p-p Output Step $(A_V = 10 \, dB, R_{IP} = 25 \, \Omega)$

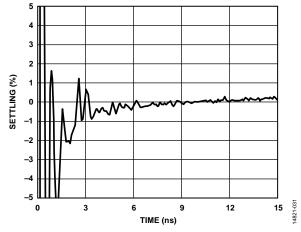
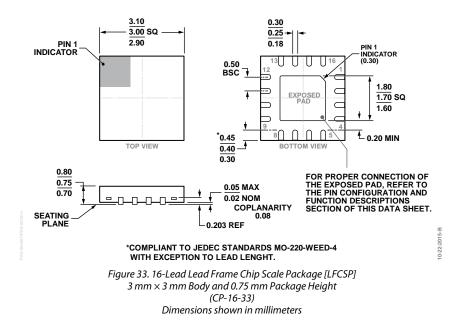



Figure 32. 1% Settling Time for a 2 V p-p Step ($A_V = 10 \text{ dB}, R_L = 150 \Omega$)

AD8351-EP

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
AD8351SCPZ-EP-R7	-55°C to +105°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-33	Q26

 1 Z = RoHS Compliant Part.

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D14821-0-9/16(A)

www.analog.com