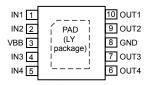
SELECTION GUIDE

Part Number	Package	Packing
A3909GLNx-T*	10-pin SSOP	3000 pieces per 13-in. reel
A3909GLYTR-T	10-pin MSOP with exposed thermal pad	4000 pieces per 13-in. reel

^{*}Contact Allegro Sales for availability of this package option.

ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	Notes	Rating	Unit
Supply Voltage	V _{BB}		18	V
Logic Input Voltage Range	V _{IN}		-0.3 to 6	V
Output Current	I _{OUT}		1	Α
Output Voltage	V _{OUT}		-0.3 to V _{BB} + 1	V
Operating Ambient Temperature	T _A	G temperature range	-40 to 105	°C
Maximum Junction Temperature	T _{J(max)}		150	°C
Storage Temperature	T _{stg}		-55 to 150	°C

Thermal Characteristics may require derating at maximum conditions, see application information

Characteristic	Symbol	Test Conditions*	Value	Unit
Package Thermal Resistance	$ m R_{ heta JA}$	LN package (estimated), on 1-layer PCB with copper limited to pin area	130	°C/W
		LY package, on 2-layer PCB with 2.260 in. ² of copper area each side	48	°C/W

^{*}Additional thermal information available on the Allegro website.

Pinout Diagram

LN and LY packages

Terminal List Table

Number	Name	Function		
1	IN1	Logic input		
2	IN2	Logic input		
3	VBB	Input supply		
4	IN3	Logic input		
5	IN4	Logic input		
6	OUT4	Motor terminal		
7	OUT3	Motor terminal		
8	GND	Ground		
9	OUT2	Motor terminal		
10	OUT1	Motor terminal		
_	PAD	(LY package) Exposed thermal pad		

ELECTRICAL CHARACTERISTICS*: Valid at T_A = 25°C, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
VBB Voltage Range	V _{BB}		4	_	18	V
VBB Supply Current	I _{BB}		-	4	8	mA
		Standby Mode	-	<1	10	μA
Total Driver On-Resistance (Sink +	В	I = 1 A, T _J = 25°C, V _{BB} = 12 V	-	1.6	2	Ω
Source)	R _{DS(on)tot}	I = 1 A, T _J = 25°C, V _{BB} = 4 V	_	2.7	3.5	Ω
Source Driver On-Resistance	R _{DS(on)src}	I = 1 A, T _J = 25°C, V _{BB} = 12 V	-	1.12	_	Ω
Sink Driver On-Resistance	R _{DS(on)snk}	I = 1 A, T _J = 25°C, V _{BB} = 12 V	-	0.48	_	Ω
Input Logic Low Level	V _{IL(Standby)}	All inputs low	-	-	0.4	V
Input Logic Low Level	V _{IL}		-	-	0.8	V
Input Logic High Level	V _{IH}		2	_	_	V
Input Hysteresis	V _{HYS}		100	300	500	mV
Logic Input Current	I _{IN}	$V_{IN} = 5 \text{ V (Pull down} = 50 \text{ k}\Omega)$	-	100	150	μA
VBB UVLO	V _{BBUVLO}	V _{BB} rising	-	3.6	3.95	V
VBB UVLO Hysteresis	V _{BBHYS}		100	300	500	mV
Standby Timer	t _{STB}	IN1 = IN2 = IN3 = IN4 < V _{IL(Standby)}	_	1	1.5	ms
Thermal Shutdown Temperature	T _{JTSD}	Temperature increasing	150	165	180	°C
Thermal Shutdown Hysteresis	$\Delta T_{ m J}$	Recovery = $T_{JTSD} - \Delta T_{J}$	-	20	_	°C

^{*}Specified limits are tested at a single temperature and assured through operating temperature range by design and characterization.

Table 1: Motor Operation Truth Table

STEPPER M	OTOR								
IN1	IN2	IN3	IN4	OUT1	OUT2	OUT3	OUT4	Function	
0	0	0	0	Off	Off	Off	Off	Sleep Mode	Sleep Mode
1	0	1	0	Н	L	Н	L	Step 1	Step 1
0	0	1	0	Off	Off	Н	L	_	Step 2
0	1	1	0	L	Н	Н	L	Step 2	Step 3
0	1	0	0	L	Н	Off	Off	_	Step 4
0	1	0	1	L	Н	L	Н	Step 3	Step 5
0	0	0	1	Off	Off	L	Н	_	Step 6
1	0	0	1	Н	L	L	Н	Step 4	Step 7
1	0	0	0	Н	L	Off	Off	_	Step 8
DC MOTORS	S (DUAL)				•	•	•		
IN1 c	or IN3	IN2 o	r IN4	OUT1	OUT2	OUT3	OUT4	Fun	ction
	0	()	Off	Off	Off	Off	High Impedance (Sleep Mode) / Coast	
	1	()	Н	L	Н	L	For	ward
(0	,	1	L	Н	L	Н	Reverse	
	1		1	L	L	L	L	Brake	
DC MOTOR	(SINGLE, PAR	ALLELED)							
IN1 c	or IN3	IN2 o	r IN4	OUT1	OUT2	OUT3	OUT4	Function	
	0	()	Off	Off	Off	Off	High Impedance (Sleep Mode) / Coast	
	1	()	Н	L	Н	L	Forward	
(0		1	L	Н	L	Н	Rev	erse
	1	,	1	L	L	L	L	Bra	ake
DC MOTOR	(EXTERNAL P	WM)				`			
IN1 c	or IN3	IN2 o	r IN4	OUT1	OUT2	OUT3	OUT4	Fun	ction
	1	()	Н	L	Н	L	For	ward
	0)	Off	Off	Off	Off	Fast Decay	
	0		1	L	Н	L	Н	Reverse	
(0)	Off	Off	Off	Off	Fast Decay	
	1	()	Н	L	Н	L	Forward	
	1	,	1	L	L	L	L	Slow Decay	
(0	,	1	L	Н	L	Н	Rev	erse
	1		1	L	L	L	L	Slow Decay	

NOTE: 0 = logic low with $V_{INx} < V_{IN(0)}(max)$, 1 = logic high with $V_{INx} > V_{IN(1)}(min)$, H = voltage high, source driver on, L = voltage low, sink driver on

FUNCTIONAL DESCRIPTION

Device Operation

The 3909 is designed to operate two DC motors or a single stepper motor. The outputs are PMOS source drivers combined with low $R_{DS(on)}$ DMOS sink drivers.

Protection circuitry includes internal thermal shutdown, protection against shorted loads, and against outputs shorted to GND or supply. Undervoltage lockout prevents damage by keeping the outputs off until the driver has enough voltage to operate normally.

A low power standby (Sleep) mode is activated when all inputs are low for longer than 1 ms. Sleep mode disables all of the circuitry making the IC ideal for battery operated applications.

Overcurrent Protection (OCP)

The A3909 is protected against accidental shorts or motor outputs to ground and supply, as well as a shorted load condition. For the source drivers, the current is monitored after the MOSFET is

turned on. If the current exceeds 1.8 A for longer than 2 μ s, then a fault condition is asserted. The sink driver utilizes a drain-to-source voltage monitor. If the voltage exceeds 2 V for longer than 2 μ s, the fault condition is asserted.

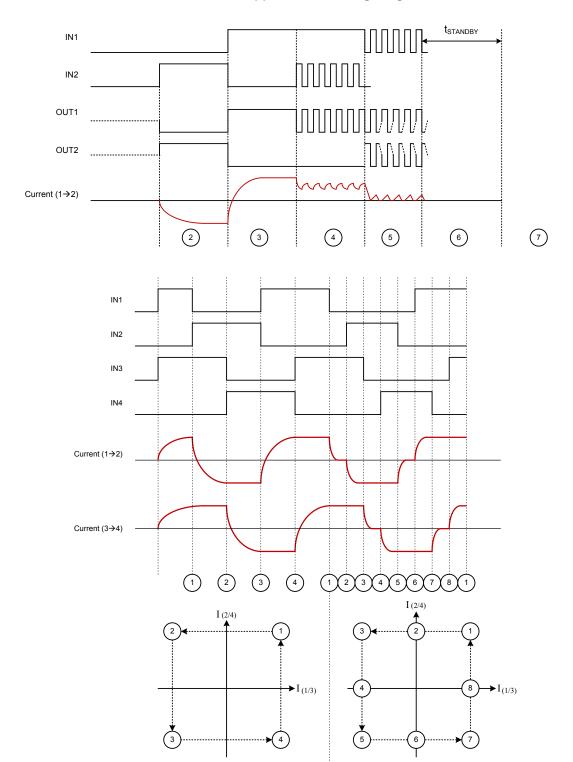

When a fault occurs, the IC immediately disables both sides of the full bridge where the fault occurred. The full bridge input commands will be ignored for a 2 ms period before being allowed to retry. Each channel has independent overcurrent protection.

During OCP events, the absolute ratings may be exceeded for a short period of time before the outputs are disabled.

Thermal Shutdown

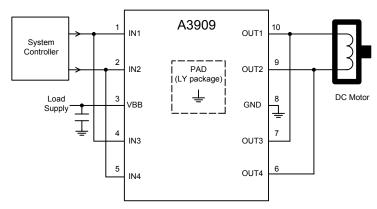
If the die temperature increases to $T_{\rm JTSD}$, then all outputs are disabled until the internal temperature falls below a hysteresis level, $T_{\rm TSDHYS}$, of 20°C. Internal UVLO is detected on VBB to prevent output drivers from turning on when below the UVLO threshold.

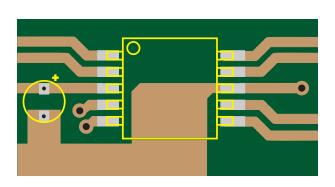
DC Motor Timing Diagram

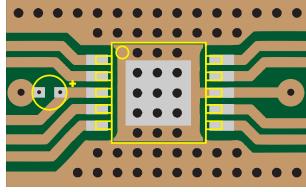


- 1) Low power standby (Sleep) mode ($I_{BB} = 0$)
- 2) On, reverse 100% duty cycle
- 3) On, forward 100% duty cycle
- 4) Slow decay PWM

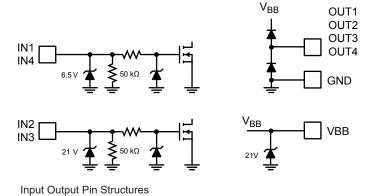
- 5) Fast decay PWM
- 6) Coast
- 7) Low power standby (Sleep) mode after t_{STANBY} (I_{BB} = 0)

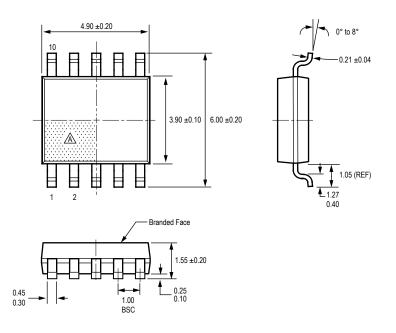

Stepper Motor Timing Diagram




Full Step

APPLICATION INFORMATION

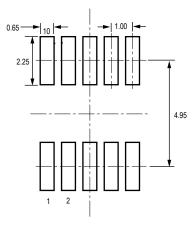

Configuration for parallel operation with 1.8 A output current capability


LN package board

LY package board via layout for thermal dissipation

#ALLEGRO

Package LN, 10-Pin SSOP



For Reference Only; not for tooling use (reference Allegro MCO-000061) Dimensions in millimeters Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown

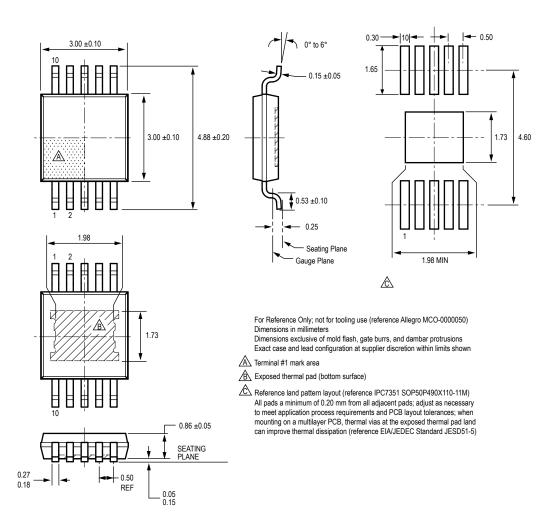
A Terminal #1 mark area

Branding scale and appearance at supplier discretion

Reference land pattern layout. All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances; when mounting on a multilayer PCB, thermal vias near the pin lands can improve thermal dissipation (reference EIA/JEDEC Standard JESD51-7)

PCB Layout Reference View

Standard Branding Reference View


N = Device part number \mathcal{A} = Supplier emblem Y = Last two digits of year of manufacture

W = Week of manufacture

L = Lot number

Package LY, 10-Pin MSOP With Exposed Thermal Pad

A3909

Dual Full Bridge Motor Driver

Revision History

Number	Date	Description			
_	November 15, 2018	orrected Output Current units in Absolute Maximum Ratings table (page 2)			
1	December 6, 2019	Minor editorial updates			
2	January 20, 2021	Updated Package Outline Drawing reference numbers (pages 8-9).			

Copyright 2021, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

