
PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

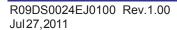
PinNo.	PinName
1	RF1
2	GND
3	RF2
4	V _{cont} 2
5	RFC
6	V _{cont} 1

Remark Exposed pad: GND

SW TRUTH TABLE

ONPath	V _{cont} 1	V _{cont} 2
RFC-RF1	High	Low
RFC-RF2	Low	High

ABSOLUTE MAXIMUM RATINGS (T_A = +25 °C, unless otherwise specified)


Parameter	Symbol	Ratings	Unit
Switch Control Voltage	V _{cont}	+6.0 Note	V
Input Power (ON Port)	P in	+33.0	dBm
Input Power (OFF Port)	P in	+20.0	dBm
Operating Ambient Temperature	T A	-45 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Note: $|V_{cont}1 - V_{cont}2| \le 6.0V$

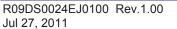
RECOMMENDED OPERATING RANGE (T_A = +25 °C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating Frequency	f	0.5	_	3.0	GHz
Switch Control Voltage (H)	V _{cont (H)}	2.5	3.0	3.3	V
Switch Control Voltage (L)	V _{cont (L)}	-0.2	0	0.2	V
Control Voltage Difference	$\Delta V_{cont(H)}$,	-0.1	0	0.1	V
	△V _{cont (L)}				

Note: $\Delta V_{cont (H)} = V_{cont} 1_{(H)} - V_{cont} 2_{(H)}$ $\Delta V_{cont (L)} = V_{cont} 1_{(L)} - V_{cont} 2_{(L)}$

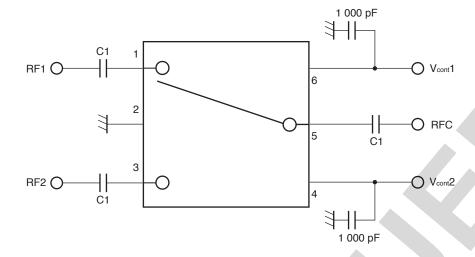
ELECTRICAL CHARACTERISTICS

(T_A = +25°C, V_{cont (H)} = 3.0 V, V_{cont (L)} = 0 V, Z_O = 50 Ω , DC blocking capacitors = 56 pF, unless otherwise specified)

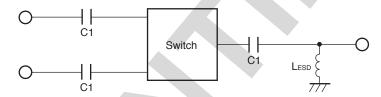

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss	L _{ins}	f = 0.5 to 1.0 GHz	-	0.30	0.50	dB
		f = 1.0 to 2.0 GHz	_	0.37	0.57	dB
		f = 2.0 to 2.5 GHz	-	0.45	0.65	dB
		f = 2.5 to 3.0 GHz	-	0.50	0.70	dB
Isolation	ISL	f = 0.5 to 2.0 GHz	19	23	-	dB
		f = 2.0 to 2.5 GHz	17	21	-	dB
		f = 2.5 to 3.0 GHz	16	20	-	dB
Input Return Loss	RLin	f = 0.5 to 3.0 GHz	15	20	-	dB
Output Return Loss	RL _{out}	f = 0.5 to 3.0 GHz	15	20	-	dB
Unused Port Return Loss	URL	f = 2.0 to 2.4 GHz	-	15	<u> </u>	dB
		f = 2.4 to 2.5 GHz	12	17	_	dB
		f = 2.5 to 3.0 GHz	-	18	_	dB
0.1 dB Loss Compression	P _{in (0.1 dB)}	f = 2.0/2.5 GHz	+26.0	+29.0	_	dBm
Input Power Note1		f = 0.5 to 3.0 GHz	-	+29.0	_	dBm
1 dB Loss Compression	P _{in (1 dB)}	f = 2.0/2.5 GHz	+29.0	+32.0	_	dBm
Input Power Note2		f = 0.5 to 3.0 GHz	-	+32.0	_	dBm
Input 3rd Order Intercept Point	IIP ₃	f = 0.5 to 3.0 GHz, 2 tone,		+60	_	dBm
		5 MHz spicing				
2nd Harmonics	2f0	f = 2.5 GHz, P _{in} = +20 dBm	-	75	_	dBc
3rd Harmonics	3f0	f = 2.5 GHz, P _{in} = +20 dBm	-	75	_	dBc
Switch Control Current	I _{cont}	No RF input	_	0.3	20	μΑ
Switch Control Speed	t _{SW}	50% CTL to 90/10% RF	-	50	500	ns

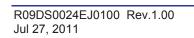
- Notes: 1. P_{in (0.1 dB)} is the measured input power level when the insertion loss increases 0.1 dB more than that of the linear range.
 - 2. $P_{in \, (1 \, dB)}$ is the measured input power level when the insertion loss increases 1 dB more than that of the linear range.

CAUTION


It is necessary to use DC blocking capacitors with this device.

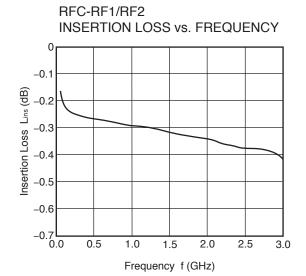
The value of DC blocking capacitors should be chosen to accommodate the frequency of operation, bandwidth, switching speed and the condition with actual board of your system.

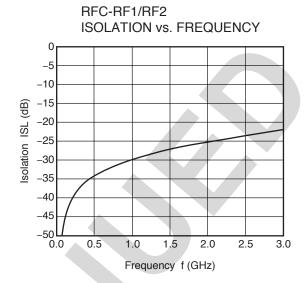

EVALUATION CIRCUIT

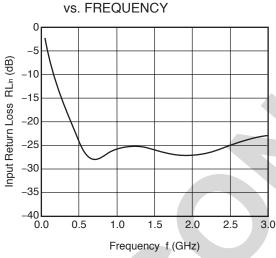

Remark C1: 56 pF

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

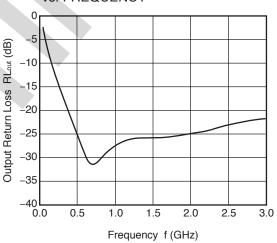
APPLICATION INFORMATION

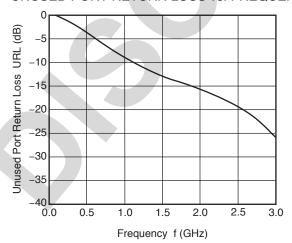

- L_{ESD} provides a means to increase the ESD protection on a specific RF port, typically the port attached to the
 antenna.
- The value may be tailored to provide specific electrical responses.
- The RF ground connections should be kept as short as possible and connected to directly to a good RF ground for best performance.



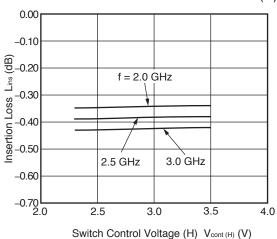

TYPICAL CHARACTERISTICS

(T_A = +25°C, V_{cont (H)} = 3.0 V, V_{cont (L)} = 0 V, Z_O = 50 Ω , DC blocking capacitors = 56 pF, unless otherwise specified)

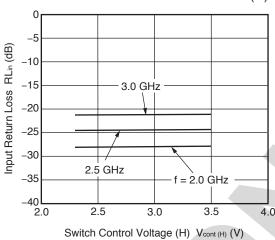



INPUT (RFC) RETURN LOSS

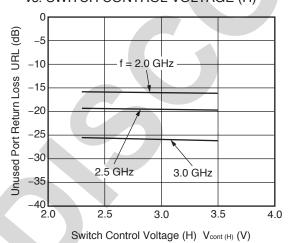
OUTPUT (RF1/RF2) RETURN LOSS vs. FREQUENCY



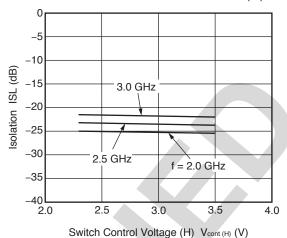
RFC-RF1/RF2 UNUSED PORT RETURN LOSS vs. FREQUENCY



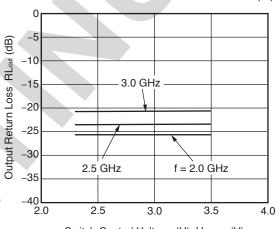
Remark The graphs indicate nominal characteristics.


RFC-RF1/RF2 INSERTION LOSS, vs. SWITCH CONTROL VOLTAGE (H)

INPUT (RFC) RETURN LOSS vs. SWITCH CONTROL VOLTAGE (H)

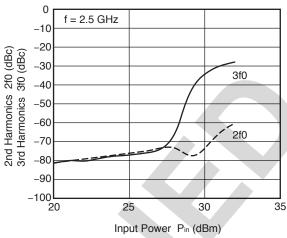


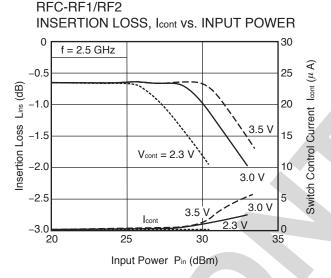
RFC-RF1/RF2 UNUSED PORT RETURN LOSS vs. SWITCH CONTROL VOLTAGE (H)

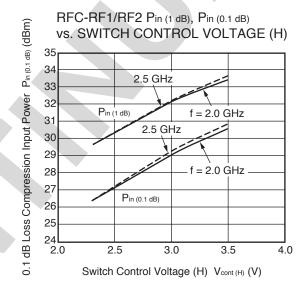


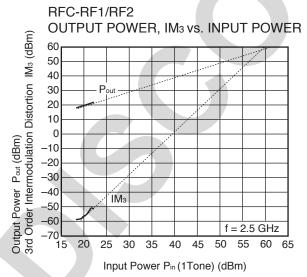
Remark The graphs indicate nominal characteristics.

RFC-RF1/RF2 ISOLATION vs. SWITCH CONTROL VOLTAGE (H)

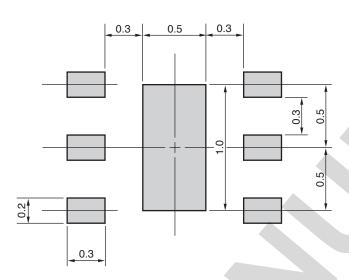

OUTPUT (RF1/RF2) RETURN LOSS vs. SWITCH CONTROL VOLTAGE (H)



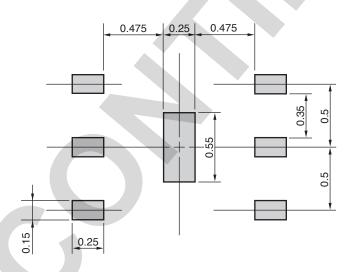

Switch Control Voltage (H) $V_{cont(H)}(V)$


RFC-RF1/RF2 INSERTION LOSS, Icont vs. INPUT POWER Switch Control Current Icont (µ A) -0.5 50 Insertion Loss Lins (dB) 40 2.5 GHz f = 2.0 GHz 30 -1.5 -2.0 20 f = 2.0 GHz 2.5 GHz -2.5 -3.0 20 25 30 35 Input Power Pin (dBm)

RFC-RF1/RF2 2f0, 3f0 vs. INPUT POWER -10 -20 2nd Harmonics 2f0 (dBc) 3rd Harmonics 3f0 (dBc) -30 -40 -50 -60 -70 -80 -90 -100 20



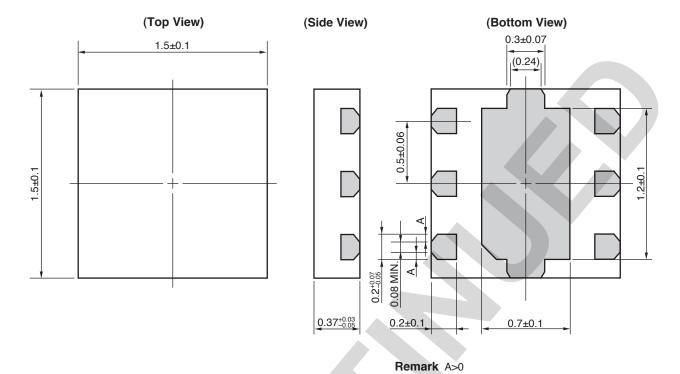
Remark The graphs indicate nominal characteristics.


MOUNTING PAD AND SOLDER MASK LAYOUT DIMENSIONS

6-PIN PLASTIC TSON (UNIT: mm)

MOUNTING PAD

SOLDER MASK


Solder thickness: 0.08 mm

Remark The mounting pad and solder mask layouts in this document are for reference only. When designing PCB, please consider workability of mounting, solder joint reliability, prevention of solder bridge and so on, in order to optimize the design.

() : Reference value

PACKAGE DIMENSIONS

6-PIN PLASTIC TSON (T6X) (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature)	: 260°C or below	IR260
	Time at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher	: 60 seconds or less	
	Preheating time at 120 to 180°C	: 120±30 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Partial Heating	Peak temperature (terminal temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	

CAUTION

Do not use different soldering methods together (except for partial heating).

Caution GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

Revision History	Revision	Histor\
-------------------------	----------	---------

μ PG2418T6X Data Sheet

Ī			Description	
	Rev.	Date	Page	Summary
ſ	1.00	Jul 27, 2011	-	First edition issued

Bluetooth is a trademark owned by Bluetooth SIG, Inc., U.S.A.

All trademarks and registered trademarks are the property of their respective owners.