SW06—SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ V + = +15 V, V - = -15 V and $T_A = +25^{\circ}C$, unless otherwise noted)

			:	SW06	В		SW06		SW06G			
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
"ON" RESISTANCE	R _{ON}			60 65	80 80		60 65	100 100		100 100	150 150	Ω
R _{ON} MATCH BETWEEN SWITCHES	R _{ON} Match	$V_{S} = 0 V, I_{S} = 100 \ \mu A^{1}$		5	10		5	20			20	%
ANALOG VOLTAGE RANGE	V _A	$ I_S = 1 \ mA^2 \\ I_S = 1 \ mA^2 $	+10 -10	+11 -15		+10 -10	+11 -15		+10 -10	+11 -15		v
ANALOG CURRENT RANGE	I _A	$V_{\rm S} = \pm 10 \ {\rm V}$	10	15		7	12		5	10		mA
ΔR_{ON} VS. APPLIED VOLTAGE	ΔR_{ON}	-10 V \leq V_{S} \leq 10 V, I_{S} = 1.0 mA		5	15		10	20		10	20	%
SOURCE CURRENT IN "OFF" CONDITION	I _{S(OFF)}	$V_{\rm S}$ = 10 V, $V_{\rm D}$ = -10 V ³		0.3	2.0		0.3	2.0		0.3	10	nA
DRAIN CURRENT IN "OFF" CONDITION	I _{D(OFF)}	$V_{\rm S} = 10$ V, $V_{\rm D} = -10$ V ³		0.3	2.0		0.3	2.0		0.3	10	nA
SOURCE CURRENT IN "ON" CONDITION	I _{S(ON)+} I _{D(ON)}	$V_S = V_D = \pm 10 \ V^3$		0.3	2.0		0.3	2.0		0.3	10	nA
LOGICAL "1" INPUT VOLTAGE	V _{INH}	Full Temperature Range ^{2, 4}	2.0			2.0			2.0			v
LOGICAL "0" INPUT VOLTAGE	V _{INL}	Full Temperature Range ^{2, 4}			0.8			0.8			0.8	V
LOGICAL "1" INPUT CURRENT	I _{INH}	$V_{\rm IN}$ = 2.0 V to 15.0 V ⁵			5			5			10	μA
LOGICAL "0" INPUT	I _{INL}	$V_{\rm IN} = 0.8 \ {\rm V}$		1.5	5.0		1.5	5.0		1.5	10.0	μA
TURN-ON TIME	t _{ON}	See Switching Time Test Circuit ^{4, 6}		340	500		340	600		340	700	ns
TURN-OFF TIME	t _{OFF}	See Switching Time Test Circuit ^{4, 6}		200	400		200	400		200	500	ns
BREAK-BEFORE-MAKE TIME	t _{ON} -t _{OFF}	Note 7	50	140		50	140		50	140		ns
SOURCE CAPACITANCE	C _{S(OFF)}	$V_{\rm S} = 0 \ V^3$		7.0			7.0			7.0		pF
DRAIN CAPACITANCE	C _{D(OFF)}	$V_{\rm S} = 0 \ V^3$		5.5			5.5			5.5		pF
CHANNEL "ON" CAPACITANCE	C _{D(ON)+} C _{S(ON)}	$V_S = V_D = 0 \ V^3$		15			15			15		pF
"OFF" ISOLATION	I _{SO(OFF)}			58			58			58		dB
CROSSTALK	C _T	$\label{eq:VS} \begin{split} V_S &= 5 \ V \ rms, \ R_L = 680 \ \Omega, \\ C_L &= 7 \ pF, \ f = 500 \ kHz^3 \end{split}$		70			70			70		dB
POSITIVE SUPPLY CURRENT	I+	All Channels "OFF", DIS = 0^{3}		5.0	6.0		5.0	9.0		6.0	9.0	mA
NEGATIVE SUPPLY CURRENT	I-	All Channels "OFF", DIS = 0^{3}		3.0	5.0		4.0	7.0		4.0	7.0	mA
GROUND CURRENT	I _G	All Channels "ON" or "OFF" ³		3.0	4.0		3.0	4.0		3.0	5.0	mA

$\label{eq:Electrical characteristics} \begin{array}{l} (@~V+=+15~V,~V-=-15~V,~-55^\circ\text{C} \leq T_A \leq +125^\circ\text{C} \text{ for SW06BQ},~-40^\circ\text{C} \leq T_A \leq +85^\circ\text{C} \text{ for SW06BQ},~-40^\circ\text{C} \leq T_A \leq +85^\circ\text{C} \text{ for SW06GP/GS}, \text{ unless otherwise noted} \end{array}$

	İ	1			1		1 1					
Parameter	Symbol	Conditions		SW06 Tvn	B Max		SW06 Tvn	F Max		5W060 Tvn	G Max	Units
TEMPERATURE RANGE	T _A	Operating	-55	-JP	+125	-25	- J P	+85	0	- J P	70	°C
"ON" RESISTANCE	R _{ON}	$V_{S} = 0 V, I_{S} = 1.0 mA$ $V_{S} = \pm 10 V, I_{S} = 1.0 mA$	-33	75 80	110 110	-23	75 80	+35 125 125	0	75 80	175 175	Ω
ΔR _{ON} MATCH BETWEEN SWITCHES	R _{ON} Match	$V_{S} = 0 V, I_{S} = 100 \ \mu A^{1}$		6	20		6	25		10		%
ANALOG VOLTAGE RANGE	V _A	$\begin{split} I_S &= 1.0 \ \text{mA}^2 \\ I_S &= 1.0 \ \text{mA}^2 \end{split}$		+11 -15		+10 -10	+11 -15		+10 -10	+11 -15		V
ANALOG CURRENT RANGE	I _A	$V_{\rm S} = \pm 10 \ {\rm V}$	7	12		5	11			11		mA
ΔR _{ON} WITH APPLIED VOLTAGE	ΔR_{ON}	-10 V \leq V_{S} \leq 10 V, I_{S} = 1.0 mA		10			12			15		%
SOURCE CURRENT IN "OFF" CONDITION	I _{S(OFF)}	$V_{S} = 10 \text{ V}, V_{D} = -10 \text{ V}$ $T_{A} = Max \text{ Operating Temp}^{3, 9}$			60			30			60	nA
DRAIN CURRENT IN "OFF" CONDITION	I _{D(OFF)}	$V_S = 10 \text{ V}, V_D = -10 \text{ V}$ $T_A = \text{Max Operating Temp}^{3, 9}$			60			30			60	nA
LEAKAGE CURRENT IN "ON" CONDITION	I _{S(ON)+} I _{D(ON)}	$V_{\rm S} = V_{\rm D} = \pm 10 \text{ V}$ $T_{\rm A} = \text{Max Operating Temp}^{3, 9}$			100			30			60	nA
LOGICAL "1" INPUT CURRENT	I _{INH}	$V_{\rm IN}$ = 2.0 V to 15.0 V ⁵			10			10			15	μΑ
LOGICAL "0" INPUT CURRENT	I _{INL}	$V_{\rm IN} = 0.8 \ {\rm V}$		4	10		4	10		5	15	μA
TURN-ON TIME	t _{ON}	See Switching Time Test Circuit ^{4, 8}		440	900		500	900			1000	ns
TURN-OFF TIME	t _{OFF}	See Switching Time Test Circuit ^{4, 8}		300	500		330	500			500	ns
BREAK-BEFORE-MAKE TIME	t _{ON} -t _{OFF}	Note 7		70			70			50		ns
POSITIVE SUPPLY CURRENT	I+	All Channels "OFF," DIS = " 0 " ³			9.0			13.5			13.5	mA
NEGATIVE SUPPLY CURRENT	I-	All Channels "OFF," DIS = " 0^{3}			7.5			10.5			10.5	mA
GROUND CURRENT	I _G	All Channels "ON" or "OFF" ³			6.0			7.5			7.5	mA

NOTES

¹V_S = 0 V, I_S = 100 μ A. Specified as a percentage of R_{AVERAGE} where: R_{AVERAGE} = $\frac{R_{ON1} + R_{ON2} + R_{ON3} + R_{ON4}}{4}$.

 2 Guaranteed by R_{ON} and leakage tests. For normal operation maximum analog signal voltages should be restricted to less than (V+) –4 V.

 3S witch being tested ON or OFF as indicated, $V_{\rm INH}$ = 2.0 V or $V_{\rm INL}$ = 0.8 V, per logic truth table.

⁴Also applies to disable pin.

⁵Current tested at V_{IN} = 2.0 V. This is worst case condition.

⁶Sample tested.

⁷Switch is guaranteed by design to provide break-before-make operation.

⁸Guaranteed by design.

⁹Parameter tested only at $T_A = +125$ °C for military grade device.

Specifications subject to change without notice.

SW06 WAFER TEST LIMITS (@ V+ = +15 V, V- = -15 V, T_A = +25°C, unless otherwise noted)

Parameter	Symbol	Conditions	SW06N Limit	SW06G Limit	Units
"ON" RESISTANCE	R _{ON}	$-10~V \leq V_A \leq 10~V,~I_S \leq 1~mA$	80	100	Ω max
R _{ON} MATCH BETWEEN SWITCHES	R _{ON} Match	$V_A = 0 \ V, \ I_S \leq 100 \ \mu A$	15	20	% max
ΔR_{ON} VS. V_A	ΔR_{ON}	$-10~V \leq V_A \leq 10~V,~I_S \leq 1~mA$	10	20	% max
POSITIVE SUPPLY CURRENT	I+	Note 1	6.0	9.0	mA max
NEGATIVE SUPPLY CURRENT	I-	Note 1	5.0	7.0	mA max
GROUND CURRENT	I _G	Note 1	4.0	4.0	mA max
ANALOG VOLTAGE RANGE	VA	$I_S = 1 \text{ mA}$	±10.0	±10.0	V min
LOGIC "1" INPUT VOLTAGE	V _{INH}	Note 2	2.0	2.0	V min
LOGIC "0" INPUT VOLTAGE	V _{INL}	Note 2	0.8	0.8	V max
LOGIC "0" INPUT CURRENT	I _{INL}	$0~V \leq V_{\rm IN} \leq 0.8~V$	5.0	5.0	μA max
LOGIC "1" INPUT CURRENT	I _{INH}	$2.0~V \leq V_{\rm IN} \leq 15~V^3$	5	5	μA max
ANALOG CURRENT RANGE	I _A	$V_{\rm S} = \pm 10 \text{ mV}$	10	7	mA min

NOTE

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS (@ V+ = +15 V, V- = -15 V, T_A = +25°C, unless otherwise noted)

Parameter	Symbol	Conditions	SW06N Typical	SW06G Typical	Units
"ON" RESISTANCE	R _{ON}	$-10~V \leq V_A \leq 10~V,~I_S \leq 1~mA$	60	60	Ω
TURN-ON TIME	t _{ON}		340	340	ns
TURN-OFF TIME	t _{OFF}		200	200	ns
DRAIN CURRENT IN "OFF" CONDITION	I _{D(OFF)}	$V_{\rm S} = 10 \text{ V}, V_{\rm D} = -10 \text{ V}$	0.3	0.3	nA
"OFF" ISOLATION	I _{SO(OFF)}	$f = 500 \text{ kHz}, R_L = 680 \Omega$	58	58	dB
CROSSTALK	CT	$f = 500 \text{ kHz}, R_L = 680 \Omega$	70	70	dB

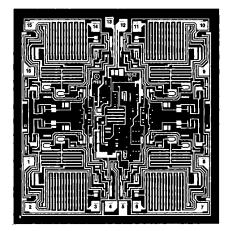
NOTES

¹Power supply and ground current specified for switch "ON" or "OFF."

²Guaranteed by R_{ON} and leakage tests. ³Current tested at $V_{IN} = 2.0$ V. This is worst case condition.

ABSOLUTE MAXIMUM RATINGS¹

Operating Temperature Range
SW06BQ, BRC $\dots \dots
SW06FQ
SW06GP, GS40°C to +85°C
Storage Temperature Range
Lead Temperature (Soldering, 60 sec) +300°C
Maximum Junction Temperature
V+ Supply to V- Supply +36 V
V+ Supply to Ground
Logic Input Voltage
Analog Input Voltage Range
Continuous V– Supply to V+ Supply +20 V
Maximum Current Through
Any Pin Including Switch 30 mA
·


Package Type	$\theta_{JA}{}^2$	θ _{JC}	Units
16-Pin Hermetic DIP (Q)	100	16	°C/W
16-Pin Plastic DIP (P)	82	39	°C/W
20-Contact LCC (RC)	98	38	°C/W
16-Pin SOL (S)	98	30	°C/W

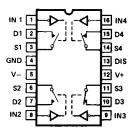
NOTES

 $^1\!\mathrm{Absolute}$ maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

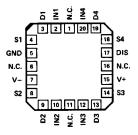
 $^{2}\theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for Cerdip, P-DIP, and LCC packages; θ_{JA} is specified for device soldered to printed circuit board for SO package.

DICE CHARACTERISTICS Die Size 0.101 × 0.097 inch, 9797 sq. mils (2.565 × 2.464 mm, 6320 sq. mm)

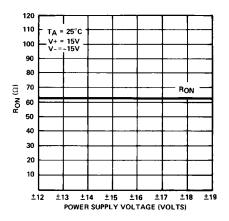
ORDERING GUIDE

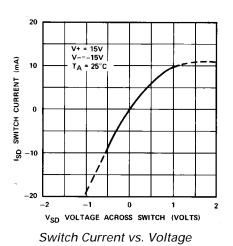

Model	Temperature Range	Package Description	Package Option
SW06BQ	-55°C to +125°C	Cerdip	Q-16
SW06BRC	-55°C to +125°C	LCC	E-20A
SW06FQ	-40°C to +85°C	Cerdip	Q-16
SW06GP	-40°C to +85°C	Plastic DIP	N-16
SW06GS	-40°C to +85°C	SOL	R-16

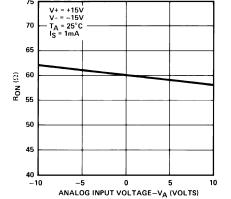
TRUTH TABLE


		Switch State				
Disable Input	Logic Input	Channels 1 & 2	Channels 3 & 4			
0	X	OFF	OFF			
1 or NC	0	OFF	ON			
1 or NC	1	ON	OFF			

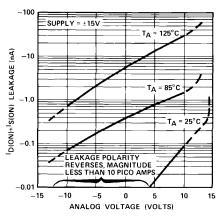
PIN CONNECTIONS


16-Pin DIP (Q or P-Suffix) 16-Pin SOL (S-Suffix)

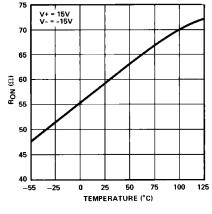

SW06BRC/883 LCC Package (RC-Suffix)

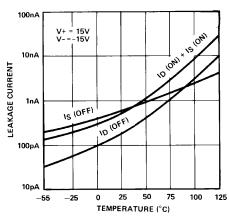


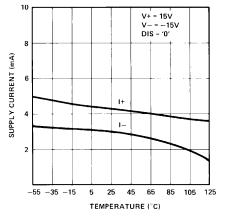
SW06–Typical Performance Characteristics

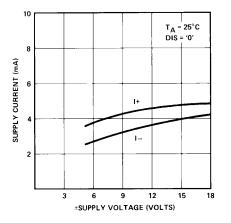


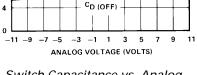
"ON" Resistance vs. Power Supply Voltage



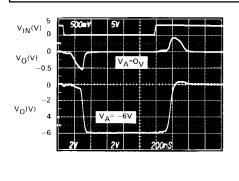

"ON" Resistance vs. Analog Voltage

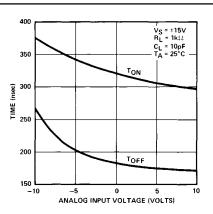

Leakage Current vs. Analog Voltage


R_{ON} vs. Temperature


Leakage Current vs. Temperature

Supply Current vs. Temperature


Supply Current vs. Supply Voltage



Switch Capacitance vs. Analog Voltage

Downloaded from Arrow.com.

T_{ON}/T_{OFF} Switching Response

Switching Time vs. Analog Voltage

TA = 25°C

V+ = 15V V-=-15V

100

qn

80

70

60

50

 $\frac{\Delta V^+}{\Delta V_D}$

∆v_ ∆v_D

+PSRR

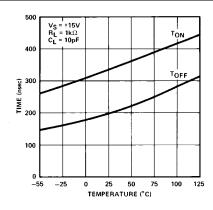
1M

10M

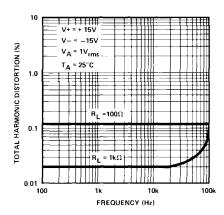
PSR

100k

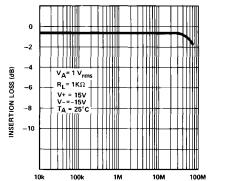
Power Supply Rejection vs.


FREQUENCY (Hz)

CROSSTA


OFF ISOLAT

TON


OFF ISOLATION AND CROSSTALK (dB)

Switching Time vs. Temperature

Total Harmonic Distortion

Insertion Loss vs. Frequency

70 60

50

40

30

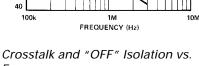
20

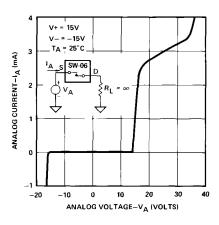
10 1k T_A= 25°C

V+=15V

V--= -15V

R_ = 1kΩ

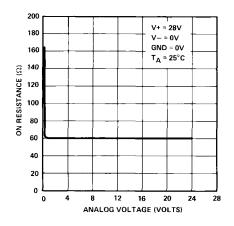

10k

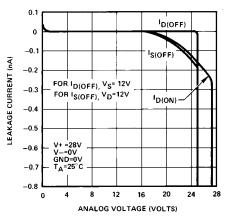

Frequency

SWITCH CLOSE

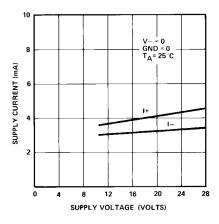
POWER SUPPLY REJECTION (dB)

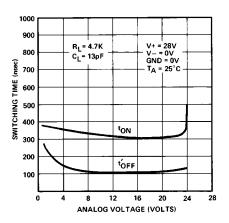
FREQUENCY (Hz)



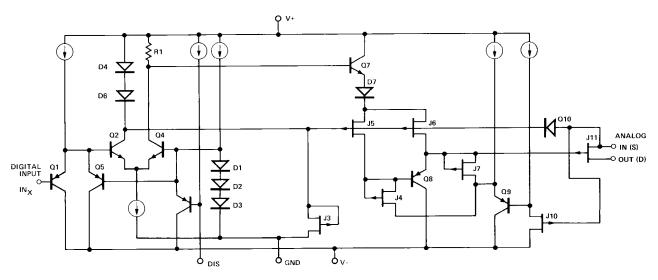

Overvoltage Characteristics

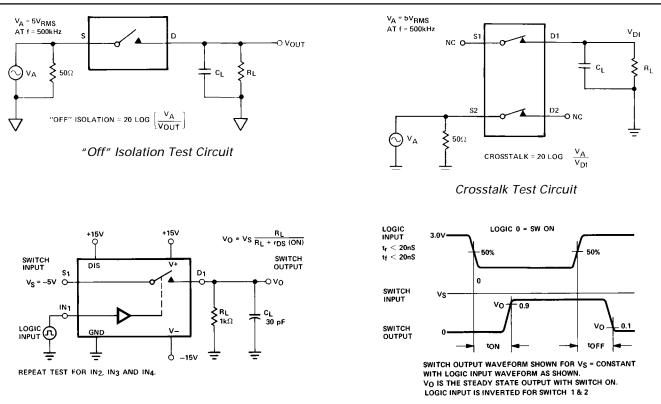
Frequency


SW06–Typical Performance Characteristics (Operating and Single Supply)


"On" Resistance vs. Analog Voltage

Leakage Current vs. V_{ANALOG}


Supply Current vs. Supply Voltage


Switching Time vs. Supply Voltage

NOTE

These single-supply-operation characteristic curves are valid when the negative power supply V– is tied to the logic ground reference pin "GND." TTL input compatibility is still maintained when "GND" is the same potential as the TTL ground. $t_{\rm OFF}$ is measured from 50% of logic input waveform to 0.9 $V_{\rm O}.$ The analog voltage range extends from 0 V to V+ –4 V; the switch will no longer respond to logic control when $V_{\rm A}$ is within 4 volts of V+.

Simplified Schematic Diagram (Typical Switch)

Switching Time Test Circuit

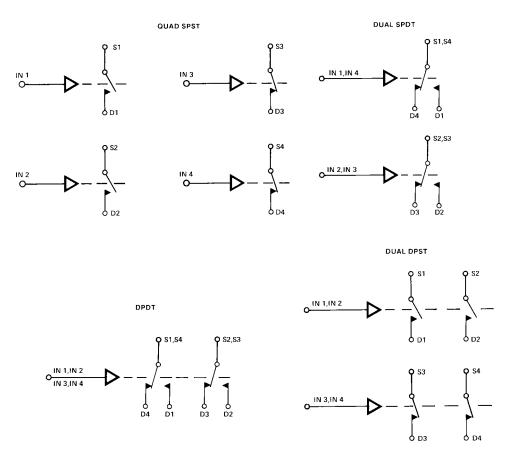


Figure 1. Functional Applications of SW06

APPLICATIONS INFORMATION

The single analog switch product configures, by appropriate pin connections, into four switch applications. As shown in Figure 1, the SW06 connects as a QUAD SPST, a DUAL SPDT, a DUAL DPST, or a DPDT analog switch. This versatility increases further when taking advantage of the disable input (DIS) which turns all switches OFF when taken active low.

Ion-implantation of the JFET analog switch achieves low ON resistance and tight channel-to-channel matching. Combining the low ON resistance and low leakage currents results in a worst case voltage error figure V_{ERROR} @ $+125^{\circ}C$ = $I_{D(ON)}\times R_{SD(ON)}$ = 100 nA \times 100 Ω = 11 microvolts. This amount of error is negligible considering dissimilar-metal thermally-induced offsets will be in the 5 to 15 microvolt range.

LOGIC INPUTS

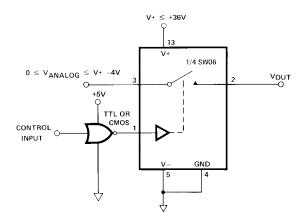
The logic inputs (IN_X) and disable input (DIS) are referenced to a TTL logic threshold value of two forward diode drops $(1.4 V at +25^{\circ}C)$ above the GND terminal. These inputs use PNP transistors which draw maximum current at a logic "0" level and drops to a leakage current of a reverse biased diode as the logic input voltage raises above 1.4 volts. Any logic input voltage greater than 2.0 volts becomes logic "1," less than 0.8 volts becomes logic "0" resulting in full TTL noise immunity not available from similar CMOS input analog switches. The PNP transistor inputs require such low input current that the SW06 approaches fan-ins of CMOS input devices. These bipolar logic inputs exceed any CMOS input circuit in resistance to static voltage and radiation susceptibility. No damage will occur to the SW06 if logic high voltages are present when the SW06 power supplies are OFF. When the V+ and V- supplies are OFF, the logic inputs present a reverse bias diode loading to active logic inputs. Input logic thresholds are independent of V+ and V- supplies making single V+ supply operation possible by simply connecting GND and V- together to the logic ground supply.

ANALOG VOLTAGE AND CURRENT ANALOG VOLTAGE

These switches have constant ON resistance for analog voltages from the negative power supply (V–) to within 4 volts of the positive power supply. This characteristic shown in the plots results in good total harmonic distortion, especially when compared to CMOS analog switches that have a 20 to 30 percent variation in ON resistance versus analog voltage. Positive analog input voltage should be restricted to 4 volts less than V+ assuring the switch remains open circuit in the OFF state. No increase in switch ON resistance occurs when operating at supply voltages less than ± 15 volts (see plot). Small signals have a 3 dB down frequency of 70 MHz (see insertion loss versus frequency plot).

ANALOG CURRENT

The analog switches in the ON state are JFETs biased in their triode region and act as switches for analog current up to the I_A specification (see plot of I_{DS} vs V_{DS}). Some applications require pulsed currents exceeding the I_A spec. For example, an integrator reset switch discharging a shunt capacitor will produce a peak current of $I_{A(PEAK)} = V_{CAP}/R_{DS(ON)}$. In this application, it is best to connect the source to the most positive end of the capacitor, thereby achieving the lowest switch resistance and

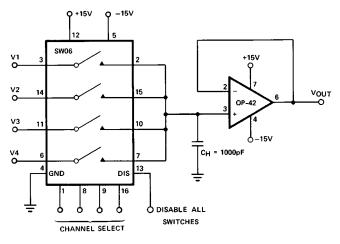

fastest reset times. The switch can easily handle any amount of capacitor discharge current subject only to the maximum heat dissipation of the package and the maximum operating junction temperature from which repetition can be established.

SWITCHING

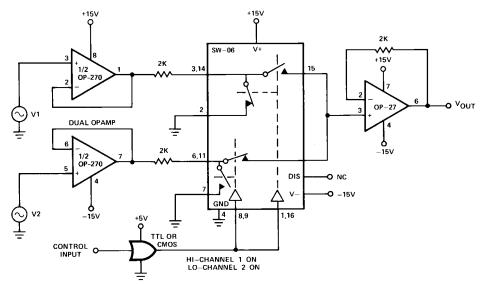
Switching time t_{ON} and t_{OFF} characteristics are plotted versus V_{ANALOG} and temperature. In all cases, t_{OFF} is designed faster than t_{ON} to ensure a break-before-make interval for SPDT and DPDT applications. The disable input (DIS) has the same switching times (t_{ON} and t_{OFF}) as the logic inputs (IN_X).

Switching transients occurring at the source and drain contacts results from ac coupling of the switching FETs gate-to-source and gate-to-drain coupling capacitance. The switch turn ON will cause a negative going spike to occur and the turn OFF will cause a positive spike to occur. These spikes can be reduced by additional capacitance loading, lower values of R_L , or switching an additional switch (with its extra contact floating) to the opposite state connected to the spike sensitive node.

Typical Applications

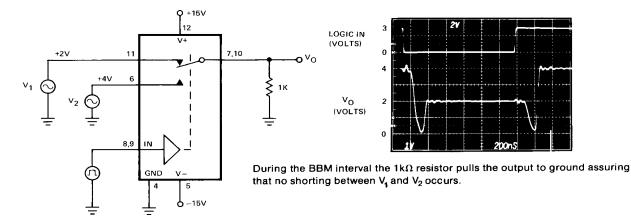

Operation from Single Positive Power Supply

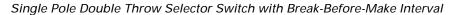
DISABLE NODE


This TTL compatible node is similar to the logic inputs IN_X but has an internal 2 μ A current source pull-up. If disable is left unconnected, it will assume the logic "1" state, then the state of the switches is controlled only by the logic inputs IN_X .

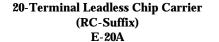
POWER SUPPLIES

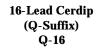
This product operates with power supply voltages ranging from ± 12 to ± 18 volts; however, the specifications only guarantee device parameters with ± 15 volt $\pm 5\%$ power supplies. The power supply sensitive parameters have plots to indicate effects of supply voltages other than ± 15 volts.

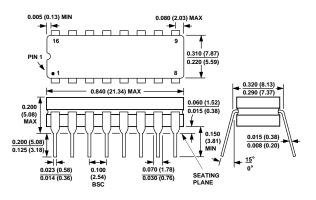



4-Channel Sample Hold Amplifier

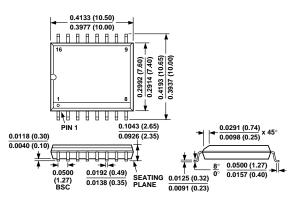
THIS SWITCH ARRANGEMENT IMPROVES OFF ISOLATION BY 30dB

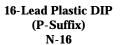

High Off Isolation Selector Switch (Shunt-Series Switch)

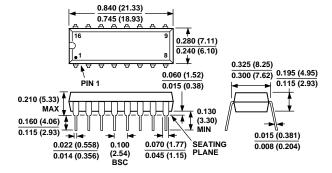



OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).







16-Lead Wide Body SOL (S-Suffix) R-16/SOL-16

