MM74HC245A Octal 3-STATE Transceive

SEMICONDUCTOR®

MM74HC245A Octal 3-STATE Transceiver

General Description

The MM74HC245A 3-STATE bidirectional buffer utilizes advanced silicon-gate CMOS technology, and is intended for two-way asynchronous communication between data buses. It has high drive current outputs which enable high speed operation even when driving large bus capacitances. This circuit possesses the low power consumption and high noise immunity usually associated with CMOS circuitry, yet has speeds comparable to low power Schottky TTL circuits.

This device has an active LOW enable input \overline{G} and a direction control input, DIR. When DIR is HIGH, data flows from the A inputs to the B outputs. When DIR is LOW, data flows from the B inputs to the A outputs. The MM74HC245A transfers true data from one bus to the other.

This device can drive up to 15 LS-TTL Loads, and does not have Schmitt trigger inputs. All inputs are protected from damage due to static discharge by diodes to $\rm V_{CC}$ and ground.

Features

- Typical propagation delay: 13 ns
- Wide power supply range: 2–6V
- Low quiescent current: 80 μA maximum (74 HC)
 3-STATE outputs for connection to bus oriented systems
- 3-STATE outputs for connection to b ■ High output drive: 6 mA (minimum)
- Same as the 645

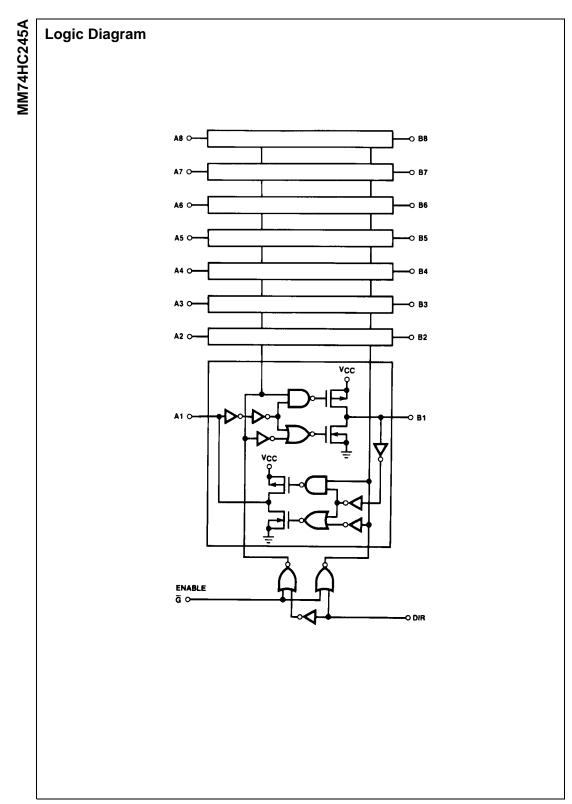
Ordering Code:

Order Number	Package Number	Package Description			
MM74HC245AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide			
MM74HC245ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
MM74HC245AMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
MM74HC245AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSSOP


© 2005 Fairchild Semiconductor Corporation

Truth Table

Control Inputs		Operation
G	DIR	
LL		B data to A bus
L	н	A data to B bus
н х		Isolation

H = HIGH LevelL = LOW Level X = Irrelevant

DS005165

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended	Operating
Conditions	

(Note 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage DIR and \overline{G} pins (V _{IN})	–1.5 to V _{CC} +1.5V
DC Input/Output Voltage (V _{IN} , V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{CD})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

	Min	Max	Units			
Supply Voltage (V _{CC})	2	6	V			
DC Input or Output Voltage						
(V _{IN} , V _{OUT})	0	V _{CC}	V			
Operating Temperature Range (T _A)	-40	+85	°C			
Input Rise/Fall Times						
$(t_r, t_f) V_{CC} = 2.0V$ 1000 ns						
$V_{CC} = 4.5V$		500	ns			
$V_{CC} = 6.0V$		400	ns			
Note 1: Maximum Ratings are those values beyond which damage to the device may occur.						

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

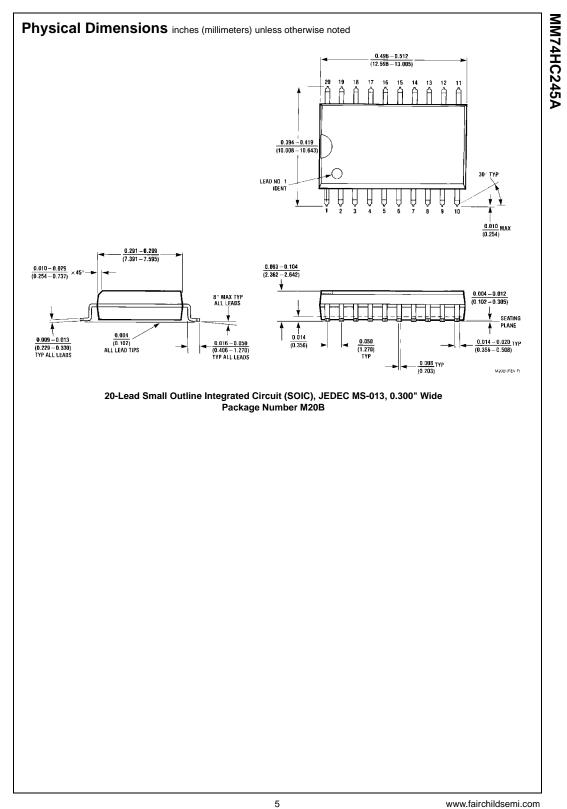
Symbol	Parameter	Conditions	Vcc	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	$T_A=-55 \ to \ 125 ^\circ C$	Units	
Symbol			*cc	Тур		Guaranteed L	imits	Units	
VIH	Minimum HIGH Level Input		2.0V		1.5	1.5	1.5	V	
	Voltage		4.5V		3.15	3.15	3.15	V	
			6.0V		4.2	4.2	4.2	V	
V _{IL}	Maximum LOW Level Input		2.0V		0.5	0.5	0.5	V	
	Voltage		4.5V		1.35	1.35	1.35	V	
			6.0V		1.8	1.8	1.8	V	
V _{OH}	Minimum HIGH Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$							
	Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V	
			4.5V	4.5	4.4	4.4	4.4	V	
			6.0V	6.0	5.9	5.9	5.9	V	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$							
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V	
		I _{OUT} ≤ 7.8 mA	6.0V	5.7	5.48	5.34	5.2	V	
V _{OL}	Maximum LOW Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$							
	Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V	
			4.5V	0	0.1	0.1	0.1	V	
			6.0V	0	0.1	0.1	0.1	V	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$							
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V	
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V	
I _{IN}	Input Leakage	$V_{IN} = V_{CC}$ to GND	6.0V		±0.1	±1.0	±1.0	μA	
	Current (G and DIR)								
I _{OZ}	Maximum 3-STATE Output	$V_{OUT} = V_{CC}$ or GND	6.0V		±0.5	±5.0	±10	μA	
	Leakage Current	Enable $\overline{G} = V_{IH}$							
I _{CC}	Maximum Quiescent Supply	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μA	
	Current	I _{OUT} = 0 μA							

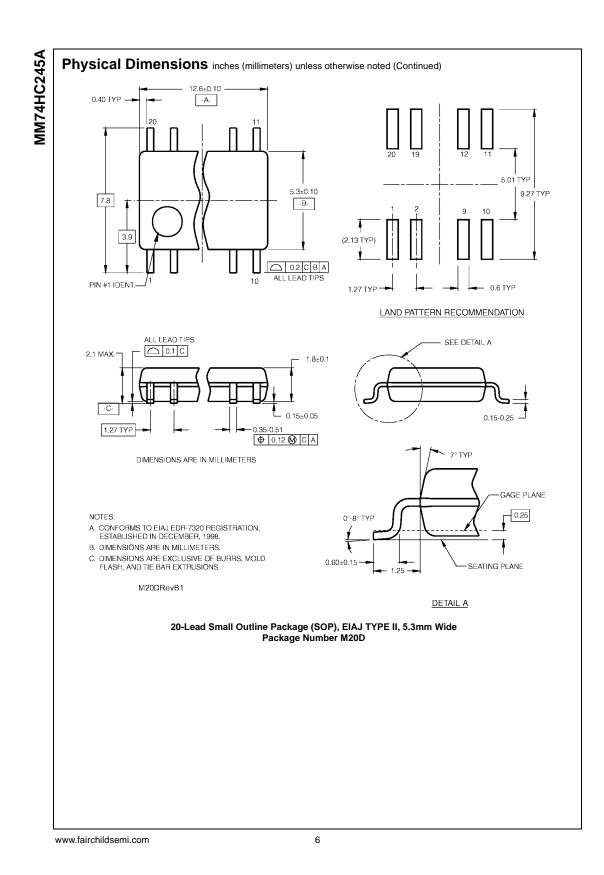
DC Electrical Characteristics (Note 4)

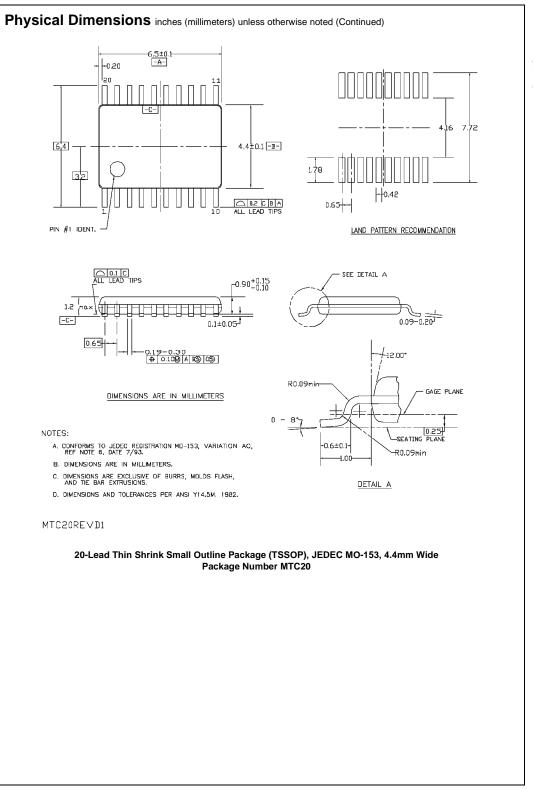
Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_H and V_L occur at V_{CC} = 5.5V and 4.5V respectively. (The V_H value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_r = t_r = 6ns$

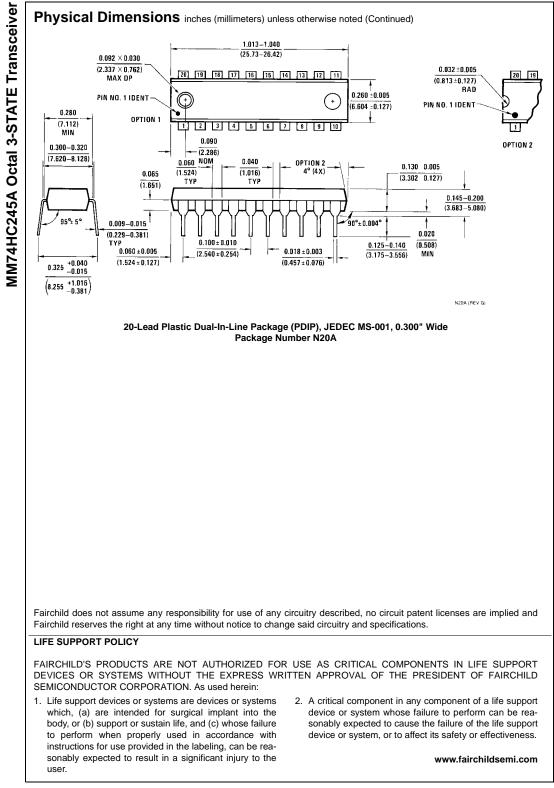
Ve


V _{CC} = 5V, 1A	$v_{\rm CC} = 5v, r_{\rm A} = 25 \rm C, r_{\rm f} = 4 \pm 608$							
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units			
t _{PHL} , t _{PLH}	Maximum Propagation Delay	C _L = 45 pF	12	17	ns			
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 \ k\Omega$	24	35	ns			
	Time	$C_L = 45 \text{ pF}$						
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_L = 1 \ k\Omega$	18	25	ns			
	Time	$C_L = 5 \text{ pF}$						


AC Electrical Characteristics


 v_{CC} = 2.0V to 6.0V, C_L = 50 pF, t_r = t_f = 6ns (unless otherwise specified)

Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol			• CC	Тур		Guaranteed L	imits	Units
t _{PHL} ,	Maximum Propagation	C _L = 50 pF	2.0V	31	90	113	135	ns
t _{PLH}	Delay	$C_L = 150 \text{ pF}$	2.0V	41	96	116	128	ns
		$C_L = 50 \text{ pF}$	4.5V	13	18	23	27	ns
		$C_L = 150 \text{ pF}$	4.5V	17	22	28	33	ns
		$C_L = 50 \text{ pF}$	6.0V	11	15	19	23	ns
		$C_L = 150 \text{ pF}$	6.0V	14	19	23	28	ns
t _{PZH} ,	Maximum Output Enable	$R_L = 1 k\Omega$						
t _{PZL}	Time	C _L = 50 pF	2.0V	71	190	240	285	ns
		$C_L = 150 \text{ pF}$	2.0V	81	240	300	360	ns
		C _L = 50 pF	4.5V	26	38	48	57	ns
		C _L = 150 pF	4.5V	31	48	60	72	ns
		C _L = 50 pF	6.0V	21	32	41	48	ns
		$C_L = 150 \text{ pF}$	6.0V	25	41	51	61	ns
t _{PHZ} ,	Maximum Output Disable	$R_L = 1 k\Omega$	2.0V	39	135	169	203	ns
t _{PLZ}	Time	$C_L = 50 \text{ pF}$	4.5V	20	27	34	41	ns
			6.0V	18	23	29	34	ns
t _{TLH} , t _{THL}	Output Rise and Fall Time	C _L =50 pF	2.0V	20	60	75	90	ns
			4.5V	6	12	15	18	ns
			6.0V	5	10	13	15	ns
C _{PD}	Power Dissipation	$\overline{G} = V_{IL}$		50				pF
	Capacitance (Note 5)	$\overline{G} = V_{IH}$		5				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{IN/OUT}	Maximum Input/Output Capacitance, A or B			15	20	20	20	pF


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f_{+} I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f_{+} I_{CC}$.

MM74HC245A

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.