ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND	0.)
V _{CC} , CB_, EN	0.3V to +6.0V
COM_, NC_, NO	(V_{CC} - 6V) to (V_{CC} + 0.3V)
Continuous Current NO_, NC_,	COM±300mA
Peak Current NO_, NC_, COM_	(pulsed at 1ms,
50% duty cycle)	±400mA
Peak Current NO_, NC_, COM_	(pulsed at 1ms,
10% duty cycle)	±500mA

Continuous Power Dissipation (T _A = +70°C) 16-Pin TQFN, Single-Layer Board	
(derate 15.6mW/°C above +70°C)	1250mW
16-Pin TQFN, Multilayer Board	
(derate 20.8mW/°C above +70°C)	1667mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

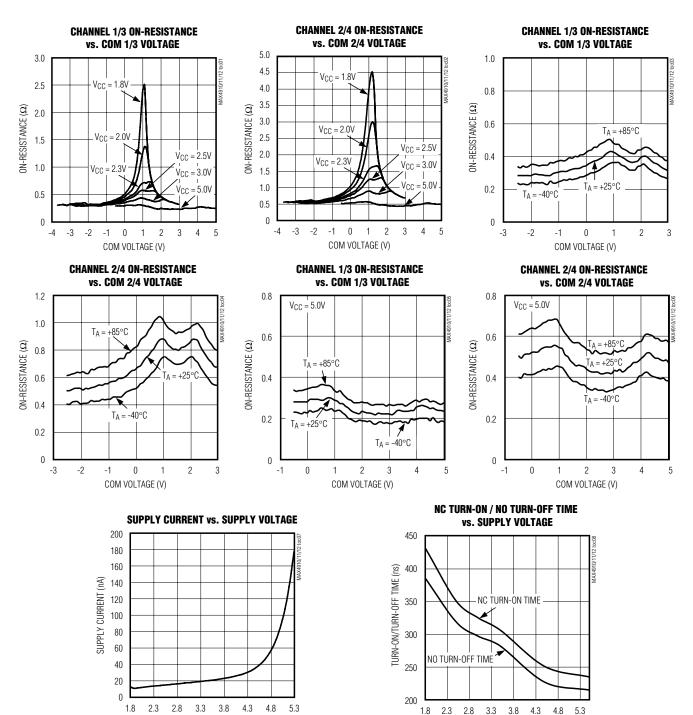
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \overline{\text{EN}} = \text{low (MAX4911 only), unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0V, T_A = +25^{\circ}\text{C.}$) (Note 1)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
POWER SUPPLY	•						•
Supply Voltage	Vcc			1.8		5.5	V
		$V_{CC} = +5.5V$, $V_{CB} = V_{\overline{EN}} = 0$		0.15	2		
Supply Current	Icc	$V_{CC} = +2.7V$, $V_{CB} = V_{\overline{EN}} = -$	+0.5V or +1.4V			4	μΑ
		$V_{CC} = +5.5V$, $V_{CB} = V_{\overline{EN}} = -$	+0.5V or +1.4V			8	
ANALOG SWITCH							
Analog Signal Range	V _{NC} , V _{NO} , V _{COM} ,	(Note 2)		V _{CC} - 5.5V		Vcc	V
		Channels 1 and 3, V _{CC} = +3.3V, V _{NC} or V _{NO} = V _{CC} -	T _A = +25°C		0.37	0.75	Ω
On-Resistance	Davi	5.5V, -1V, 0V, +1V, +2V, V _{CC} , I _{COM1} = I _{COM3} = 100mA	$T_A = T_{MIN}$ to T_{MAX}			0.8	1 12
(Note 3)	R _{ON}	Channels 2 and 4, V _{CC} = +3.3V, V _{NC} or V _{NO} = V _{CC} -	T _A = +25°C		0.72	1.45	
		5.5V, -1V, 0V, +1V, +2V, V _{CC} , I _{COM2} = I _{COM4} = 100mA	$T_A = T_{MIN}$ to T_{MAX}			1.6	Ω
On-Resistance Match	4D.	Channels 1 and 3, $V_{CC} = +3$. $I_{COM} = 100$ mA	$3V$, V_{NC} or $V_{NO} = 0$,			0.1	
Between Channels (Notes 3, 4)	ΔR _{ON}	Channels 2 and 4, $V_{CC} = +3$. $I_{COM} = 100$ mA	$3V$, V_{NC} or $V_{NO} = 0$,			0.1	Ω
On-Resistance Flatness		Channels 1 and 3, V _{CC} = +3.3 V _{CC} - 5.5V, -1V, 0V, +1V, +2V			0.35		
(Note 5)	R _{FLAT}	Channels 2 and 4, V _{CC} = +3.3 V _{CC} - 5.5V, -1V, 0V, +1V, +2V				0.6	Ω
Shunt Switch Resistance	R _{SH}			2	3.8	6	kΩ

ELECTRICAL CHARACTERISTICS (continued)

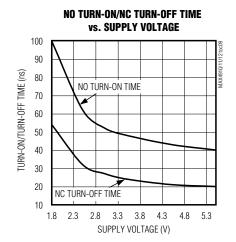

 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \overline{\text{EN}} = \text{low (MAX4911 only), unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0V, T_A = +25^{\circ}\text{C.}$) (Note 1)

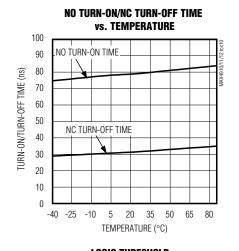
PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
No o"I I o		MAX4912 (NC2 and NC4) only: $V_{CC} = +2.7V$, switch	T _A = +25°C	-10		+10	
NC_ Off-Leakage Current	INC_(OFF)	open, V _{NC} = -2.5V or +2.5V, V _{COM} = +2.5V or -2.5V	$T_A = T_{MIN}$ to T_{MAX}	-50		+50	nA
COM_ On-Leakage Current	loon (on)	V_{CC} = +2.7V, switch closed; V_{NC} or V_{NO} = -2.5V,	T _A = +25°C	-10		+10	nA
COM_On-Leakage Current	ICOM_(ON)	+2.5V, or floating; V_{COM} = -2.5V, +2.5V, or floating	TA = TMIN to TMAX	-100		+100	IIA
DYNAMIC CHARACTERISTIC	cs						
Turn-On Time	ton	V_{CC} = +2.7V, CB_{-} = low to hi C_{L} = 5pF, $V_{NO_{-}}$ = +1.5V, Figure	•		0.055	0.15	μs
Turn-Off Time	toff	$V_{CC} = +2.7V$, $CB_{-} = high to lead to C_{L} = 5pF, V_{NO_{-}} = +1.5V, Figure 1.5V, F$			0.3	1.0	μs
Break-Before-Make Delay Time	t _D	V_{CC} = +2.7V, CB_{-} = low to hig R_{L} = 50 Ω , C_{L} = 5pF, $V_{NC_{-}}$ = V	•	1	25		ns
Charge Injection	Q	V _{GEN} = 0, R _{GEN} = 0, C _L = 1r	F, Figure 4		300		рС
Power-Supply Rejection Ratio	PSRR	$f = 20kHz, V_{COM} = 1V_{RMS}, F$	$R_L = 50\Omega$, $C_L = 5pF$		60		dB
Off-Isolation	V _{ISO}	$f = 20kHz$, $V_{COM} = 1V_{RMS}$, F (Note 6)	$R_L = 50\Omega$, Figure 5		-90		dB
Crosstalk	V _C T	$f = 20kHz, V_{COM} = 1V_{RMS}, F$	$R_L = 50\Omega$, Figure 5		-80		dB
Total Harmonic Distortion	THD	$f = 20Hz$ to $20kHz$, $V_{COM} = 0$ DC bias = 0	$0.5V_{P-P}$, $R_L = 50\Omega$,		0.05		%
NO_, NC_ Off-Capacitance	C _{NO} _(OFF)	$f = 1MHz$, $V_{COM} = 0.5V_{P-P}$, DC	C bias = 0, Figure 6		100		рF
COM On-Capacitance	C _{COM} _(ON)	$f = 1MHz$, $V_{COM} = 0.5V_{P-P}$, DO	C bias = 0, Figure 6		200		рF
DIGITAL INPUTS (CB_, EN)				1			
Input Logic High	VIH			1.4			V
Input Logic Low	V _{IL}					0.5	V
Input Leakage Current	ICB, IEN	$V_{CB} = V_{\overline{EN}} = 0V \text{ or } V_{CC}$		-1		+1	μΑ

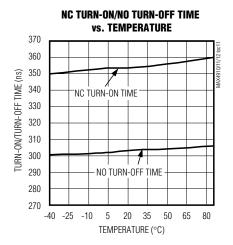
- **Note 1:** All parameters are production tested at $T_A = +85^{\circ}C$ and guaranteed by design over the specified temperature range.
- Note 2: Signals on COM_, NO_, or NC_ exceeding V_{CC} are clamped by internal diodes. Limit forward-diode current to maximum current rating.
- Note 3: Guaranteed by design; not production tested.
- **Note 4:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- **Note 6:** Off-isolation = $20log_{10}$ [V_{COM}_/V_{NO}_], V_{COM}_ = output, V_{NO}_ = input to off switch.

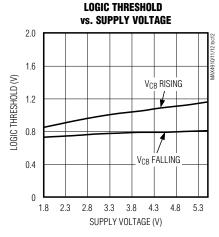
Typical Operating Characteristics

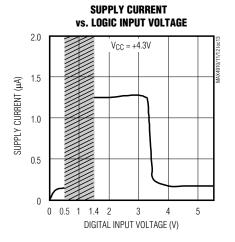
($V_{CC} = 3.0V$, $T_A = +25$ °C, unless otherwise noted.)

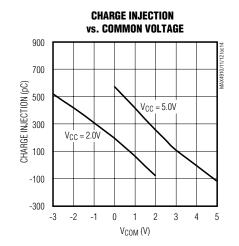


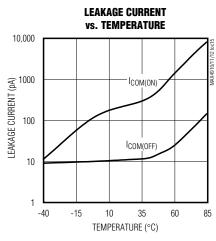

SUPPLY VOLTAGE (V)

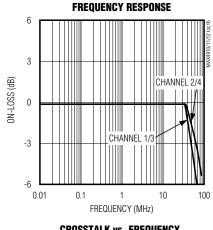

SUPPLY VOLTAGE (V)

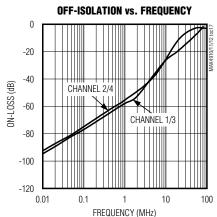

Typical Operating Characteristics (continued)


($V_{CC} = 3.0V$, $T_A = +25$ °C, unless otherwise noted.)

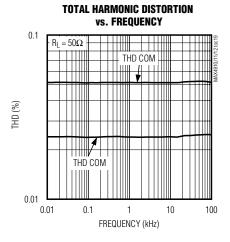


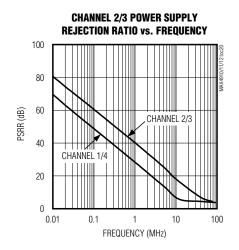





MIXIM

Typical Operating Characteristics (continued)


($V_{CC} = 3.0V$, $T_A = +25$ °C, unless otherwise noted.)



5 ______*NIXI/*/

Pin Description

PI	IN		
MAX4910/ MAX4912	MAX4911	NAME	FUNCTION
1	1	NC1	Analog Switch 1—Normally Closed Terminal
2	_	CB1	Digital Control Input for Analog Switch 1 and Analog Switch 3
_	2	СВ	Digital Control Input for All Analog Switches
3	3	NO2	Analog Switch 2—Normally Open Terminal
4	4	COM2	Analog Switch 2—Common Terminal
5	5	NC2	Analog Switch 2—Normally Closed Terminal
6	6	GND	Ground
7	7	NO3	Analog Switch 3—Normally Open Terminal
8	8	COM3	Analog Switch 3—Common Terminal
9	9	NC3	Analog Switch 3—Normally Closed Terminal
10	_	CB2	Digital Control Input for Analog Switch 2 and Analog Switch 4.
_	10	ĒN	Enable Input. Driving $\overline{\text{EN}}$ high causes all switches to be high impedance. Pull $\overline{\text{EN}}$ low for normal operation.
11	11	NO4	Analog Switch 4—Normally Open Terminal
12	12	COM4	Analog Switch 4—Common Terminal
13	13	NC4	Analog Switch 4—Normally Closed Terminal
14	14	Vcc	Positive Supply Voltage Input
15	15	NO1	Analog Switch 1—Normally Open Terminal
16	16	COM1	Analog Switch 1—Common Terminal
_	_	EP	Exposed Pad. Connect to Ground

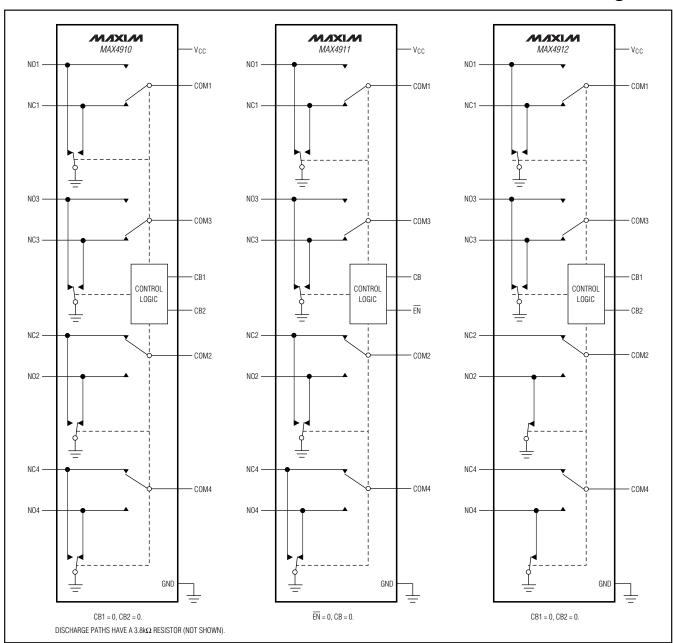
Detailed Description

The MAX4910/MAX4911/MAX4912 quad SPDT audio switches are low on-resistance, low supply current, high power-supply rejection ratio (PSRR) devices that operate from a +1.8V to +5.5V single supply. These devices feature a negative signal capability that allows signals below GND to pass through without distortion and break-before-make switching.

The MAX4910/MAX4912 have two digital control inputs CB1 and CB2 where each bit controls a pair of switches (see Table 1). The MAX4911 has an active-low enable $\overline{\text{EN}}$ and a digital control bit CB. Driving $\overline{\text{EN}}$ low takes the switches out of high impedance and CB controls all four switches (see Table 2). The MAX4910/MAX4911 have shunt resistors on all their NO and NC terminals to suppress click-and-pop sounds that may occur from switching to a precharged terminal. The MAX4912 does not have click-and-pop suppression resistors on NC2 and NC4 for applications that do not require predischarge switching.

Table 1. MAX4910/MAX4912 Truth Tables

CB1	NC1	NO1	NC3	NO3
0	On	Off	On	Off
1	Off	On	Off	On
CB2	NC2	NO2	NC4	NO4
0	On	Off	On	Off
1	Off	On	Off	On


Table 2. MAX4911 Truth Table

ĒN	СВ	NC_	NO_
1	X	Off	Off
0	1	Off	On
0	0	On	Off

X = Don't care.

Functional Diagrams

_Applications Information

Digital Control Inputs

The MAX4910/MAX4911/MAX4912 logic inputs accept up to +5.5V, regardless of supply voltage. For example, with a +3.3V supply, CB1, CB2, CB, and EN can be dri-

ven low to GND and high to +5.5V, allowing for mixed logic levels in a system. Driving CB, CB1, CB2, and \overline{EN} rail-to-rail minimizes power consumption. For a +3.3V supply voltage, the logic thresholds are +0.5V (low) and +1.4V (high).

_______/N/XI/M

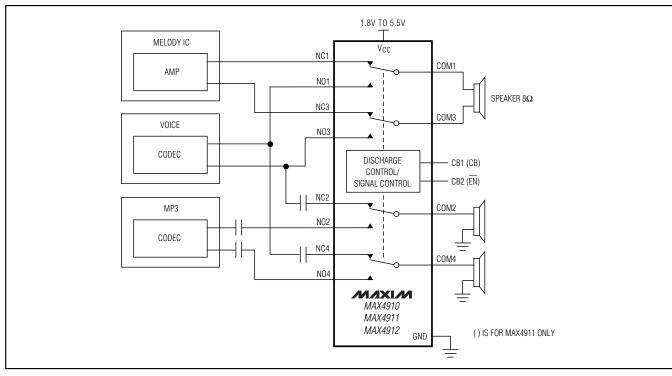


Figure 1. Typical Application Circuit

Analog Signal Levels

The MAX4910/MAX4911/MAX4912 on-resistance is channel dependant. Channels 1 and 3 have an on-resistance of 0.37Ω (typ), and channels 2 and 4 have an on-resistance of 0.72Ω (typ). The on-resistance flatness is guaranteed over temperature and shows minimal variation over the entire voltage supply range (see the *Typical Operating Characteristics*). The on-resistance flatness and low-leakage features make it ideal for bidirectional operation. The switches are bidirectional, so the NO_, NC_, and COM_ pins can be either inputs or outputs.

These devices pass signals as low as $V_{\rm CC}$ - 5.5V, including signals below ground with minimal distortion.

Click-and-Pop Suppression

The MAX4910/MAX4911 have a $3.8k\Omega$ (typ) shunt resistor on all their NO and NC terminals to automatically discharge any capacitance when they are not connected to COM. The MAX4912 has shunt resistors on all NO, NC1, and NC3 terminals. The shunt resistors reduce audible click-and-pop sounds that occur when switching between audio sources.

Audible clicks and pops are caused when a step DC voltage is switched into the speaker. The DC step tran-

sients can be reduced by automatically discharging the side that is not connected to the COM terminal, reducing any residual DC voltage and reducing clicks and pops.

Break-Before-Make Switching

The MAX4910/MAX4911/MAX4912 feature break-before-make switching, which is configured to break (open) the first set of contacts before engaging (closing) the new contacts. This prevents the momentary connection of the old and new signal paths to the output, reducing click-and-pop sounds.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the Absolute Maximum Ratings since stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Improper supply sequencing can force the switch into latchup causing it to draw excessive supply current. The only way out of latchup is to recycle the power and properly reapply it. Connect all ground pins first, then apply power to $V_{\rm CC}$, and finally apply signals to NO_, NC_, and COM_. Follow the reverse order upon power-down.

Test Circuits/Timing Diagrams

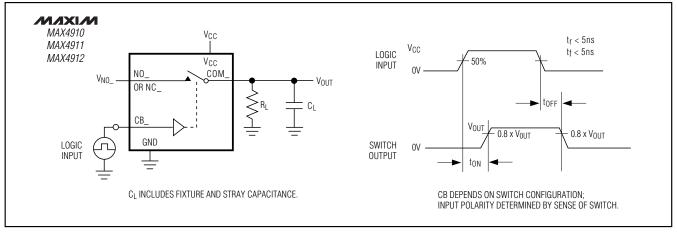


Figure 2. Switching Time

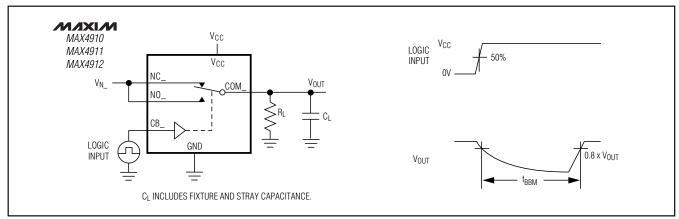


Figure 3. Break-Before-Make Interval

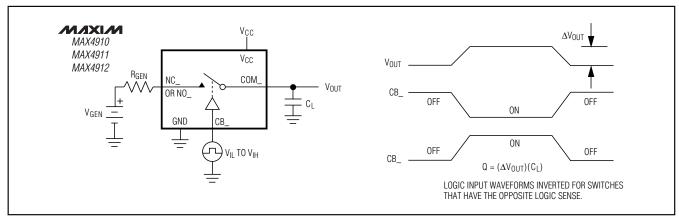


Figure 4. Charge Injection

10 ______ 10 _____ 10 ____ 10 ____ 10 ____ 10 ____ 10 ____ 10 ____ 10 ___ 10 ___

Test Circuits/Timing Diagrams (continued)

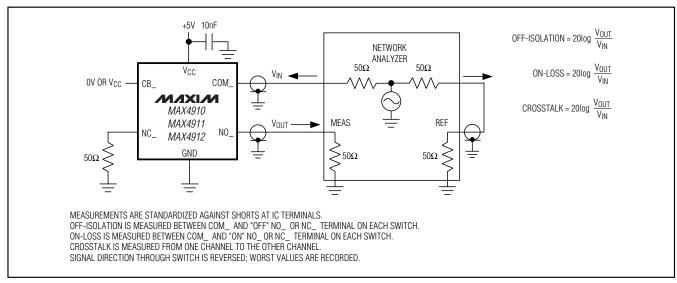


Figure 5. On-Loss, Off-Isolation, and Crosstalk

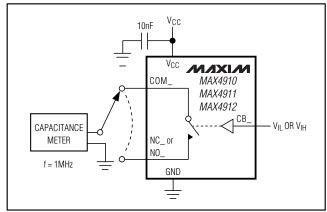
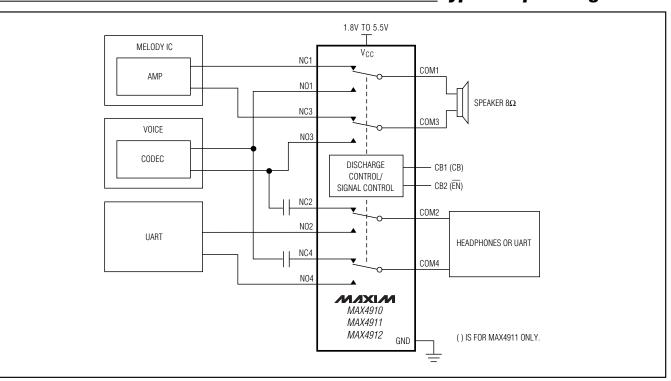
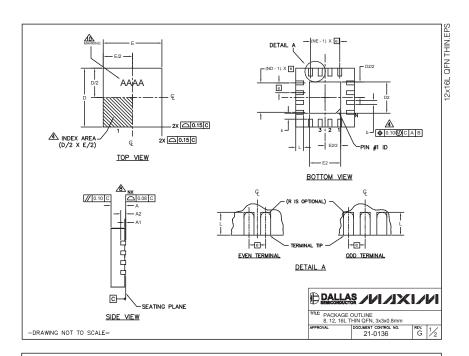



Figure 6. Channel Off-/On-Capacitance

Typical Operating Circuit


_____Chip Information

PROCESS: BICMOS

12 ______**/V/XI/V**I

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

PKG	_	8L 3x3			2L 3x3			6L 3x3					EXF	POSE	D PAD	VAR	IATIC	NS		
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		PKG.		D2			E2				DOWN
Α	0.70		0.80	0.70	_	0.80	0.70	0.75	0.80	C	CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	PIN ID	JEDEC	BONDS ALLOWED
b	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30	Т	TQ833-1	0.25	0.70	1.25	0.25	0.70	1.25	0.35 x 45°	WEEC	NO
D	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10	Т	T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1	NO
E	2.90	3.00 .65 BS	3.10	2.90	3.00 .50 BS	3.10	2.90	3.00 .50 BS	3.10	Т	T1233-3	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1	YES
ı		0.55		0.45		0.65	0.30	0.40	0.50	Т	T1233-4	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1	YES
N	0.33	8	0.75	0.43	12	0.00	0.30	16	0.50	Т	T1633-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	NO
ND	\vdash	2		_	3	_	_	4	-	Т	Г1633-2	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	YES
NE	\vdash	2			3			4	_	Т	T1633F-3	0.65	0.80	0.95	0.65	0.80	0.95	0.225 x 45°	WEED-2	N/A
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	Т	T1633FH-3	0.65	0.80	0.95	0.65	0.80	0.95	0.225 x 45°	WEED-2	N/A
A2	,	20 RF		_	20 RF		-	20 RF	-	Т	Г1633-4	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	NO
k	0.25	-	-	0.25	-	-	0.25	-	_	_			•	•						
										Y14.5M-1										
2	1. DIN 2. ALI 3. N I 4. TH JE: WI MA 6. DIN	L DIME S THE E TER SD 95- THIN T RKED MENSI OM TE	TOTA MINAL 1 SPP THE ZO FEAT ON b A	NS AR L NUM .#1 IDI .012. I DNE IN URE. .PPLIE AL TIP	E IN M IBER C ENTIFI DETAIL DICAT	ILLIME OF TER ER AN S OF ED. TH	TERS MINAI ID TER TERM HE TER	. ANGI .S. RMINAI INAL # RMINA	ES ARE I NUMBER 1 IDENTIF _ #1 IDEN INAL AND	IN DEGREE RING CO FIER ARE NTIFIER M D IS MEA		L, BUT HER A	MUST E MOLD	BE LOC OR nm AND	ATED	m				

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ___

_ 13

© 2006 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products, Inc.

21-0136

REV. 2/2