ADG704—**SPECIFICATIONS**¹ ($V_{DD} = +5 V \pm 10\%$, GND = 0 V. All Specifications -40°C to +85°C, unless otherwise noted.)

	B Version				
		-40°C to			
Parameter	+25°C	+85°C	Units	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 V to V_{DD}	V		
On-Resistance (R _{ON})	2.5		Ω typ	$V_{s} = 0 V$ to V_{DD} , $I_{Ds} = -10 mA$;	
	4	4.5	Ω max	Test Circuit 1	
On-Resistance Match Between	_				
Channels (ΔR_{ON})		0.1	Ω typ	$V_{s} = 0 V \text{ to } V_{DD}, I_{DS} = -10 \text{ mA}$	
		0.4	Ω max		
On-Resistance Flatness (RELATION)	0.75		Ω typ	$V_s = 0$ V to V_{DD} , $I_{Ds} = -10$ mA	
		1.2	Ω max		
LEAKAGE CURRENTS				V _{DD} = +5.5 V	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_{S} = 4.5 \text{ V/1 V}, V_{D} = 1 \text{ V/4.5 V};$	
	±0.1	±0.3	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_{S} = 4.5 \text{ V/1 V}, V_{D} = 1 \text{ V/4.5 V};$	
	±0.1	±0.3	nA max	Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_{S} = V_{D} = 4.5 \text{ V or } 1 \text{ V};$	
	±0.1	±0.3	nA max	Test Circuit 3	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INI}		0.8	V max		
Input Current					
I _{INI} or I _{INH}	0.005		uA typ	$V_{IN} = V_{INI}$ or V_{INH}	
		± 0.1	µA max		
DVNAMIC CHARACTERISTICS ²					
	14		ne typ	$R_{r} = 300 \Omega C_{r} = 35 pE$	
ton	14	20	ns max	$V_{-} = 3 V$ Test Circuit A	
tem	6	20	ns typ	$R_{r} = 300 \text{ O} \text{ C}_{r} = 35 \text{ pE}$	
COFF	0	13	ns max	$V_{0} = 3 V$ Test Circuit 4	
Break-Before-Make Time Delay to	8	15	ns typ	$R_{x} = 300 Q_{y} C_{x} = 35 \text{pF}$	
Dreak Derore Make Time Deray, ()	0	1	ns min	$V_{c1} = V_{c2} = 3 V$. Test Circuit 5	
Charge Injection	3	1	nC typ	$V_{S1} = 2 V_{r} R_{s} = 0 Q_{r} C_{r} = 1 nF;$	
			p C typ	Test Circuit 6	
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$	
	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 7	
Channel-to-Channel Crosstalk	-62		dB typ	$R_{I} = 50 \Omega, C_{I} = 5 pF, f = 10 MHz$	
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;	
				Test Circuit 8	
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 9	
$C_{S}(OFF)$	9		pF typ		
C _D (OFF)	37		pF typ		
$C_D, C_S(ON)$	54		pF typ		
POWER REQUIREMENTS				V_{DD} = +5.5 V	
				Digital Inputs = $0 \text{ V or } 5 \text{ V}$	
I _{DD}	0.001		μA typ		
		1.0	μA max		

NOTES ¹Temperature ranges are as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

SPECIFICATIONS¹ ($V_{DD} = +3 V \pm 10\%$, GND = 0 V. All Specifications -40°C to +85°C, unless otherwise noted.)

	B Version				
		-40°C to			
Parameter	+25°C	+85°C	Units	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 V to V _{DD}	V		
On-Resistance (R _{ON})	4.5	5	Ω typ	$V_{S} = 0 V \text{ to } V_{DD}, I_{DS} = -10 \text{ mA};$	
		8	Ω max	Test Circuit 1	
On-Resistance Match Between					
Channels (ΔR_{ON})	0.1		Ω typ	$V_{\rm S}$ = 0 V to $V_{\rm DD}$, $I_{\rm DS}$ = -10 mA	
		0.4	Ω max		
On-Resistance Flatness (R _{FLAT(ON)})		2.5	Ω typ	$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm DS} = -10$ mA	
LEAKAGE CURRENTS				$V_{DD} = +3.3 V$	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_{\rm S} = 3 \text{ V/1 V}, V_{\rm D} = 1 \text{ V/3 V};$	
	± 0.1	± 0.3	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_{\rm S} = 3 \text{ V}/1 \text{ V}, V_{\rm D} = 1 \text{ V}/3 \text{ V};$	
	±0.1	±0.3	nA max	Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	± 0.01		nA typ	$V_{\rm S} = V_{\rm D} = 3 \text{ V or } 1 \text{ V};$	
	±0.1	±0.3	nA max	Test Circuit 3	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0	V min		
Input Low Voltage, V _{INL}		0.4	V max		
Input Current					
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		± 0.1	μA max		
DYNAMIC CHARACTERISTICS ²					
t _{ON}	16		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$	
		24	ns max	$V_{\rm S}$ = 2 V, Test Circuit 4	
t _{OFF}	8		ns typ	$R_L = 300 \Omega, C_L = 35 pF$	
		16	ns max	$V_{\rm S}$ = 2 V, Test Circuit 4	
Break-Before-Make Time Delay, t_D	9		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$	
		1	ns min	$V_{S1} = V_{S2} = 2 V$, Test Circuit 5	
Charge Injection	3		pC typ	$V_{\rm S} = 1.5 \text{ V}, \text{ R}_{\rm S} = 0 \Omega, \text{ C}_{\rm L} = 1 \text{ nF};$	
Off Isolation	-60		dB typ	$R_{x} = 50 \Omega C_{x} = 5 pE f = 10 MHz$	
On isolation	-80		dB typ	$R_{L} = 50.92$, $C_{L} = 5 \text{ pF}$, $f = 10 \text{ MHz}$	
	00		ab typ	Test Circuit 7	
Channel-to-Channel Crosstalk	-62		dB typ	$R_{\rm L} = 50 \ \Omega, C_{\rm L} = 5 \ pF, f = 10 \ MHz$	
	-82		dB typ	$R_{L} = 50 \Omega, C_{L} = 5 pF, f = 1 MHz;$	
				Test Circuit 8	
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 9	
C _S (OFF)	9		pF typ		
C _D (OFF)	37		pF typ		
$C_D, C_S(ON)$	54		pF typ		
POWER REQUIREMENTS				$V_{DD} = +3.3 \text{ V}$	
-				Digital Inputs = 0 V or 3 V	
I _{DD}	0.001		μA typ		
		1.0	μA max		

NOTES ¹Temperature ranges are as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG704

ABSOLUTE MAXIMUM RATINGS¹

 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

V_{DD} to GND
Continuous Current, S or D 30 mA
Peak Current, S or D 100 mA
(Pulsed at 1 ms, 10% Duty Cycle Max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature
µSOIC Package, Power Dissipation
θ_{IA} Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec) +215°C Infrared (15 sec) +220°C ESD 2 kV

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature Range	Brand ¹	Package Option ²
ADG704BRM	-40°C to +85°C	S9B	RM-10

NOTES

¹Brand = Due to small package size, these three characters represent the part number.

 2 RM = μ SOIC.

PIN CONFIGURATION (10-Lead µSOIC)

TERMINOLOGY

V _{DD}	Most positive power supply potential.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
A0, A1	Logic control inputs.
EN	Logic control input.
R _{ON}	Ohmic resistance between D and S.
ΔR_{ON}	On resistance match between any two channels i.e., $R_{ON}max-R_{ON}min$.
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resis- tance as measured over the specified analog signal range.
I _D (OFF)	Drain leakage current with the switch "OFF."
I _S (OFF)	Source leakage current with the switch "OFF."
I _D , I _S (ON)	Channel leakage current with the switch "ON."
$V_{\rm D}$ ($V_{\rm S}$)	Analog voltage on terminals D, S.
C _S (OFF)	"OFF" switch source capacitance.
C _D (OFF)	"OFF" switch drain capacitance.
$C_D, C_S (ON)$	"ON" switch capacitance.
t _{ON}	Delay between applying the digital control input and the output switching on. See Test Circuit 4.
t _{OFF}	Delay between applying the digital control input and the output switching off.
t _D	"OFF" time or "ON" time measured between the 90% points of both switches, when switching from one address state to another. See Test Circuit 5.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Charge	A measure of the glitch impulse transferred
Injection	from the digital input to the analog output during switching.
Bandwidth	The frequency at which the output is attenuated by -3 dBs.
On Response	The frequency response of the "ON" switch.
On Loss	The voltage drop across the "ON" switch, seen on the On Response vs. Frequency plot as how many dBs the signal is away from 0 dB at very low frequencies.

Table I. Truth Table

A1	A0	EN	ON Switch
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

CAUTION.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG704 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics-ADG704

Figure 1. On Resistance as a Function of $V_{\text{D}}\left(V_{\text{S}}\right)$ Single Supplies

Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures; $V_{DD} = 3 V$

Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures; $V_{DD} = 5 V$

Figure 4. Supply Current vs. Input Switching Frequency

Figure 5. Off Isolation vs. Frequency

Figure 6. Crosstalk vs. Frequency

ADG704

Figure 7. On Response vs. Frequency

Figure 8. Charge Injection vs. Source Voltage

APPLICATIONS

Figure 9. 4-Channel Video Multiplexing

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay, t_D

Test Circuit 6. Charge Injection

ADG704

Test Circuit 8. Channel-to-Channel Crosstalk

Test Circuit 9. Bandwidth

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

10-Lead μSOIC (RM-10)

