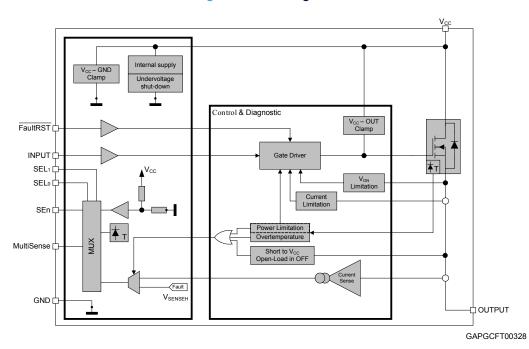
devices are designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, and to provide protection and diagnostics.

The devices integrate advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off.


A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality.

A dedicated multifunction multiplexed analog output pin delivers sophisticated diagnostic functions including high precision proportional load current sense, supply voltage feedback and chip temperature sense, in addition to the detection of overload and short circuit to ground, short to V_{CC} and OFF-state open-load.

A sense enable pin allows OFF-state diagnosis to be disabled during the module lowpower mode as well as external sense resistor sharing among similar devices.

1 Block diagram and pin description

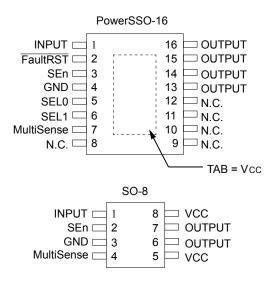
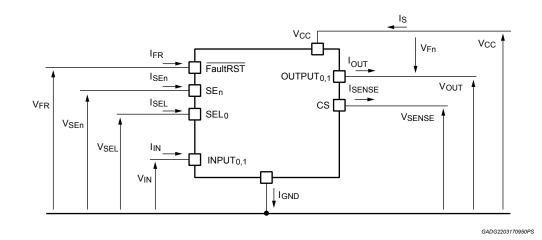


Figure 1. Block diagram

Name	Function
V _{CC}	Battery connection.
OUTPUT	Power outputs.
GND	Ground connection. Must be reverse battery protected by an external diode / resistor network.
INPUT	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.
MultiSense	Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature.
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin.
SEL _{0,1}	Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer.
FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode.

Figure 2. Configuration diagram (top view)

GAPG2601151129CFT


Table 2. Suggested connections for unused and not connected pins

Connection / pin	MultiSense	N.C.	Output	Input	SEn, SELx, FaultRST
Floating	Not allowed	X ⁽¹⁾	Х	Х	Х
To ground	Through 1 k Ω resistor	Х	Not allowed	Through 15 k Ω resistor	Through 15 k Ω resistor

1. X: do not care.

2 Electrical specification

Figure 3. Current and voltage conventions

Note: $V_F = V_{OUT} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in Table 3. Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Table 3.	Absolute	maximum	ratings
----------	----------	---------	---------

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	38	V
-V _{CC}	Reverse DC supply voltage	0.3	V
V _{CCPK}	Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40 V; R _L = 4 Ω)	40	V
V _{CCJS}	Maximum jump start voltage for single pulse short circuit protection	28	V
-I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	OUTPUT DC output current	Internally limited	^
-I _{OUT}	Reverse DC output current	10	A
I _{IN}	INPUT DC input current		
I _{SEn}	SEn DC input current	-1 to 10	m 1
I _{SEL}	SEL _{0,1} DC input current	-1 to 10	mA
I _{FR}	FaultRST DC input current		
$V_{\sf FR}$	FaultRST DC input voltage	7.5	V
1	MultiSense pin DC output current (V _{GND} = V _{CC} and V _{SENSE} < 0 V)	10	
ISENSE	MultiSense pin DC output current in reverse ($V_{CC} < 0 V$)	-20	mA
E _{MAX}	Maximum switching energy (single pulse) (T_{DEMAG} = 0.4 ms; T_{jstart} = 150 °C)	30	mJ

57

Symbol	Parameter	Value	Unit
	Electrostatic discharge (JEDEC 22A-114F)	4000	V
	INPUT	2000	V
V _{ESD}	MultiSense SEn, SEL _{0.1} , FaultRST	4000	V
	• OUTPUT	4000	V
	• V _{CC}	4000	V
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter		Typ. value		
		SO-8	PowerSSO-16	Unit	
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-8) ⁽¹⁾	29.4	6.8		
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-2) ⁽²⁾	67.5	58.5	°C/W	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-2) ⁽¹⁾	45.8	24.5		

1. Device mounted on four-layers 2s2p PCB

2. Device mounted on two-layers 2s0p PCB with 2 cm² heatsink copper trace

2.3 Main electrical characteristics

7 V < V_{CC} < 28 V; -40°C < T_j < 150°C, unless otherwise specified. All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Table 5. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4	13	28	V
V _{USD}	Undervoltage shutdown				4	V
V _{USDReset}	Undervoltage shutdown reset				5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.3		V
	R _{ON} On-state resistance	I _{OUT} = 2 A; T _j = 25°C		50		mΩ
R _{ON}		I _{OUT} = 2 A; T _j = 150°C			100	
		I _{OUT} = 2 A; V _{CC} = 4 V; T _j = 25°C			75	
M	Clamp voltage	I _S = 20 mA; 25°C < T _j < 150°C	41	46	52	V
V _{USD} V _{USDReset} V _{USDhyst}	Clamp voltage	I _S = 20 mA; T _j = -40°C	38			V

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		$V_{CC} = 13 V;$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 V;$ $V_{SEL0,1} = 0 V; T_j = 25^{\circ}C$			0.5	
I _{STBY}	Supply current in standby at V _{CC} = 13 V $^{(1)}$				0.5	μA
					3	-
		V _{CC} = 13 V;				
t _{D_STBY}	Standby mode blanking time		60	300	550	μs
I _{S(ON)}	Supply current	$V_{CC} = 13 V; V_{SEn} = 0 V;$ $V_{SEL0,1} = V_{FR} = 0 V; V_{IN} = 5 V;$ $I_{OUT} = 0 A$		3	5	mA
I _{GND(ON)}	Control stage current consumption in ON-state. All channels active.	$V_{CC} = 13 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{FR} = V_{SEL0,1} = 0 \text{ V}; V_{IN} = 5 \text{ V};$ $I_{OUT} = 2 \text{ A}$			6	mA
	Off-state output current at V _{CC} = 13 V	$V_{IN} = V_{OUT} = 0 V; V_{CC} = 13 V;$ $T_j = 25^{\circ}C$	0	0.01	0.5	
I _{L(off)}		$V_{IN} = V_{OUT} = 0 V; V_{CC} = 13 V;$ $T_j = 125^{\circ}C$	0		3	μA
V _F	Output - V _{CC} diode voltage	I _{OUT} = -2 A; T _j = 150°C			0.7	V

1. PowerMOS leakage included.

2. Parameter specified by design; not subjected to production test.

Table 6. Switching

	V _{CC} = 13 V; -40°C < T _j < 150°C, unless otherwise specified								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
t _{d(on)} (1)	Turn-on delay time at T _j = 25 °C	R _L = 6.5 Ω	10	60	120				
t _{d(off)} ⁽¹⁾	Turn-off delay time at $T_j = 25 \ ^{\circ}C$	NL - 0.0 M	10	40	100	μs			
(dV _{OUT} /dt) _{on} ⁽¹⁾	Turn-on voltage slope at T _j = 25 °C	R ₁ = 6.5 Ω	0.1	0.3	0.7	V/µs			
(dV _{OUT} /dt) _{off} ⁽¹⁾	Turn-off voltage slope at $T_j = 25 \ ^{\circ}C$	NL - 0.0 M	0.1	0.32	0.7	v/μs			
W _{ON}	Switching energy losses at turn-on (t_{won})	R _L = 6.5 Ω	_	0.25	0.33 ⁽²⁾	mJ			
W _{OFF}	Switching energy losses at turn-off (t_{woff})	R _L = 6.5 Ω		0.23	0.31 ⁽²⁾	mJ			
t _{SKEW} ⁽¹⁾	Differential Pulse skew (t _{PHL} - t _{PLH})	R _L = 6.5 Ω	-80	-30	20	μs			

1. See Figure 6. Switching time and Pulse skew.

2. Parameter guaranteed by design and characterization; not subjected to production test.

<u> </u>		⁷ V < V _{CC} < 28 V; -40°C < T _j < 15				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni
		INPUT characteristics		1	1	
VIL	Input low level voltage				0.9	V
IIL	Low level input current	V _{IN} = 0.9 V	1			μA
VIH	Input high level voltage		2.1			V
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{I(hyst)}	Input hysteresis voltage		0.2			V
V _{ICL}	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	v
▼ICL	input clamp voltage	I _{IN} = -1 mA		-0.7		V
	Fa	ultRST characteristics (VN7050A.	J only)			
V _{FRL}	Input low level voltage				0.9	V
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{FRH}	Input high level voltage		2.1			V
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{FR(hyst)}	Input hysteresis voltage		0.2			V
	Input clamp voltage	I _{IN} = 1 mA	5.3		7.5	
V _{FRCL}		I _{IN} = -1 mA		-0.7		- V
	SEL _{0,1} cha	racteristics (VN7050AJ only)(7 V	< V _{CC} < 18 V)			
V _{SELL}	Input low level voltage				0.9	V
I _{SELL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{SELH}	Input high level voltage		2.1			V
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V
,		I _{IN} = 1 mA	5.3		7.2	
V _{SELCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
	S	En characteristics (7 V < V _{CC} < 1	8 V)			
V _{SEnL}	Input low level voltage				0.9	V
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{SEnH}	Input high level voltage		2.1			V
I _{SEnH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V
Sentingsty	,,	I _{IN} = 1 mA	5.3		7.2	
V _{SEnCL}	Input clamp voltage	$I_{\rm IN} = -1 \rm{mA}$	0.0	-0.7		v

Table 7. Logic inputs

7 V < V _{CC} < 18 V; -40°C < T _j < 150°C								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
1	DO shart size it surrest	V _{CC} = 13 V	21	30	10			
LIMH	DC short circuit current	4 V < V _{CC} < 18 V ⁽¹⁾			42	A		
I	Short circuit current	V _{CC} = 13 V;		10				
ILIML	during thermal cycling	$T_R < T_j < T_{TSD}$		10				
T _{TSD}	Shutdown temperature		150	175	200			
T _R	Reset temperature ⁽¹⁾		T _{RS} + 1	T _{RS} + 7		1		
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} = 5 V	135			°C		
T _{HYST}	Thermal hysteresis(T _{TSD} - T_R) ⁽¹⁾			7		-		
$\Delta T_{J_{SD}}$	Dynamic temperature	T _j = -40°C; V _{CC} = 13 V		60		к		
t _{LATCH_RST}	Fault reset time for output unlatch (only for VN7050AJ) ⁽¹⁾	V _{FR} = 5 V to 0 V; V _{SEn} = 5 V; V _{IN} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V	3	10	20	μs		
		I _{OUT} = 2 A; L = 6 mH; T _j = -40°C	V _{CC} - 38			V		
V _{DEMAG}	Turn-off output voltage clamp	I _{OUT} = 2 A; L = 6 mH; T _j = 25°C to 150°C	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	V		
V _{ON}	Output voltage drop limitation	I _{OUT} = 0.2 A		20		mV		

Table 8. Protections

1. Parameter guaranteed by design and characterization; not subjected to production test.

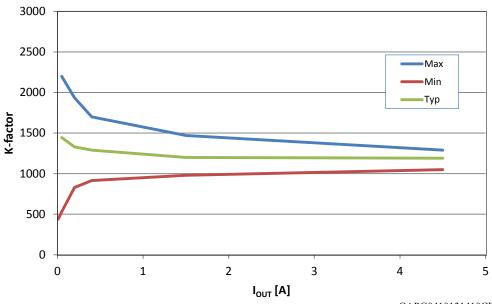
Table 9. MultiSense

7 V < V _{CC} < 18 V; -40°C < T _j < 150°C							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Varuar at	MultiCanae alamp valtage	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	v	
VSENSE_CL	MultiSense clamp voltage	V _{SEn} = 0 V; I _{SENSE} = -1 mA		7		V	
	CurrentS	Sense characteristics					
K _{OL}	IOUT/ISENSE	I _{OUT} = 0.01 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	440				
$dK_{cal}/K_{cal} \stackrel{(1)}{} ^{(2)}$	Current sense ratio drift at calibration point	I _{OUT} = 0.01 A to 0.03 A; I _{cal} = 17.5 mA; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-30		30	%	
K _{LED}	IOUT/ISENSE	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	530	1445	2200		
dK_{LED}/K_{LED} ⁽¹⁾ ⁽²⁾	Current sense ratio drift	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-25		25	%	
κ _o	I _{OUT} /I _{SENSE}	I_{OUT} = 0.2 A; V_{SENSE} = 0.5 V; V_{SEn} = 5 V	830	1330	1935		
dK ₀ /K ₀ ⁽¹⁾ ⁽²⁾	Current sense ratio drift	I _{OUT} = 0.2 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-20		20	%	
К1	IOUT/ISENSE	I _{OUT} = 0.4 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	915	1290	1700		

	7 V < V _{CC} < 18	3 V; -40°C < T _j < 150°C				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	U
dK ₁ /K ₁ ^{(1) (2)}	Current sense ratio drift	I _{OUT} = 0.4 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-15		15	9
K ₂	I _{OUT} /I _{SENSE}	I _{OUT} = 1.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	980	1200	1470	
dK ₂ /K ₂ ^{(1) (2)}	Current sense ratio drift	I _{OUT} = 1.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-10		10	Ģ
K ₃	I _{OUT} /I _{SENSE}	I _{OUT} = 4.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1050	1190	1290	
dK ₃ /K ₃ ^{(1) (2)}	Current sense ratio drift	I _{OUT} = 4.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-5		5	ç
		MultiSense disabled: V _{SEn} = 0 V	0		0.5	
		MultiSense disabled: -1 V < V _{SENSE} < 5 V ⁽¹⁾	-0.5		0.5	
I _{SENSE0} MultiSense	MultiSense leakage current	MultiSense enabled: $V_{SEn} = 5 V$; Channel ON; $I_{OUT} = 0 A$; Diagnostic selected; $V_{IN} = 5 V$; $V_{SEL0} = 0 V$; $V_{SEL1} = 0 V$; $I_{OUT} = 0 A$	0		2	ŀ
		MultiSense enabled: $V_{SEn} = 5 V$; Channel OFF; Diagnostic selected: $V_{IN} = 0 V$; $V_{SEL0} = 0 V$; $V_{SEL1} = 0 V$	0		2	
V _{OUT_MSD} ⁽¹⁾	Output Voltage for MultiSense shutdown	$V_{IN} = 5 V; V_{SEn} = 5 V; V_{SEL0} = 0 V;$ $V_{SEL1} = 0 V; R_{SENSE} = 2.7 k\Omega;$ $I_{OUT} = 2 A$		5		
V _{SENSE_SAT}	Multisense saturation voltage	$\begin{split} & V_{\text{CC}} = 7 \; V; \; R_{\text{SENSE}} = 2.7 \; k\Omega; \\ & V_{\text{SEn}} = 5 \; V; \; V_{\text{IN}} = 5 \; V; \; V_{\text{SEL0}} = 0 \; V; \\ & V_{\text{SEL1}} = 0 \; V; \; I_{\text{OUT}} = 2 \; A; \; T_{j} = 150^\circ \text{C} \end{split}$	5			
ISENSE_SAT ⁽¹⁾	CS saturation current	$V_{CC} = 7 \text{ V}; V_{SENSE} = 4 \text{ V}; V_{IN} = 5 \text{ V};$ $V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 0 \text{ V};$ $T_j = 150^{\circ}\text{C}$	4			n
I _{OUT_SAT} ⁽¹⁾	Output saturation current	$V_{CC} = 7 \text{ V}; V_{SENSE} = 4 \text{ V}; V_{IN} = 5 \text{ V};$ $V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 0 \text{ V};$ $T_j = 150^{\circ}\text{C}$	6			
	OFF-s	tate diagnostic				
V _{OL}	OFF-state open-load voltage detection threshold	$V_{IN} = 0 V; V_{SEn} = 5 V; V_{SEL0} = 0 V; V_{SEL1} = 0 V$	2	3	4	
I _{L(off2)}	OFF-state output sink current	V _{IN} = 0 V; V _{OUT} = V _{OL}	-100		-15	1
t _{DSTKON}	OFF-state diagnostic delay time from falling edge of INPUT (see Figure 9. T _{DSTKON})	V _{IN} = 5 V to 0 V; V _{SEn} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V; I _{OUT} = 0 A; V _{OUT} = 4 V	100	350	700	
t _{D_OL_V}	Settling time for valid OFF- state open load diagnostic indication from rising edge of SEn	$\begin{split} V_{\text{IN}} &= 0 \; V; \; V_{\text{FR}} = 0 \; V; \; V_{\text{SEL0}} = 0 \; V; \\ V_{\text{SEL1}} &= 0 \; V; \; V_{\text{OUT}} = 4 \; V; \\ V_{\text{SEn}} &= 0 \; V \; \text{to} \; 5 \; V \end{split}$			60	
t _{D_VOL}	OFF-state diagnostic delay time from rising edge of V_{OUT}	$V_{IN} = 0 V; V_{SEn} = 5 V; V_{SEL0} = 0 V;$ $V_{SEL1} = 0 V; V_{OUT} = 0 V to 4 V$		5	30	

7 V < V _{CC} < 18 V; −40°C < T _j < 150°C								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Un		
			2.325	2.41	2.495	V		
V _{SENSE_TC}	MultiSense output voltage proportional to chip temperature		1.985	2.07	2.155	v		
		$V_{SEn} = 5 V; V_{SEL0} = 0 V; V_{SEL1} = 5 V;$ $V_{IN} = 0 V; R_{SENSE} = 1 k\Omega; T_j = 125^{\circ}C$	1.435	1.52	1.605	v		
$dV_{SENSE_TC}/dT^{(1)}$	Temperature coefficient	$T_j = -40^{\circ}C$ to $150^{\circ}C$		-5.5		m\ K		
Trar	sfer function	$V_{\text{SENSE_TC}}(T) = V_{\text{SENSE_TC}}(T_0) + dV_{\text{SENSE_TC}}(T_0)$	ENSE_T	_C / dT '	* (T - T ₀)		
	V _{CC} supply voltage and	alog feedback (VN7050AJ only)						
V _{SENSE_VCC}	MultiSense output voltage proportional to V _{CC} supply voltage		3.16	3.23	3.3	v		
Trans	fer function ⁽³⁾	$V_{SENSE_VCC} = V_{CC} / 4$	1	1	1			
	Fault diagnostic feedb	ack (see Table 10. Truth table)						
V _{SENSEH}	MultiSense output voltage in fault condition		5		6.6	v		
ISENSEH	MultiSense output current in fault condition	V _{CC} = 13 V; V _{SENSE} = 5 V	7	20	30	m		
MultiSense	timings (current sense mode - see	Figure 7. MultiSense timings (current se	ense mo	de)) ⁽⁴⁾)			
t _{DSENSE1H}	Current sense settling time from rising edge of SEn				60	μ		
t _{DSENSE1L}	Current sense disable delay time from falling edge of SEn	$V_{\text{IN}} = 5 \text{ V}; V_{\text{SEn}} = 5 \text{ V to } 0 \text{ V};$ $R_{\text{SENSE}} = 1 \text{ k}\Omega; R_{\text{L}} = 6.5 \Omega$		5	20	μ		
t _{DSENSE2H}	Current sense settling time from rising edge of INPUT			100	250	μ		
$\Delta t_{DSENSE2H}$	Current sense settling time from rising edge of I_{OUT} (dynamic response to a step change of I_{OUT})	$ V_{\text{IN}} = 5 \text{ V}; \text{V}_{\text{SEn}} = 5 \text{ V}; \text{R}_{\text{SENSE}} = 1 \text{k} \Omega; \\ I_{\text{SENSE}} = 90 \% \text{ of } \text{I}_{\text{SENSEMAX}}; \\ R_{\text{L}} = 6.5 \Omega $			100	μ		
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	V_{IN} = 5 V to 0 V; V_{SEn} = 5 V; R_{SENSE} = 1 k Ω ; R_L = 6.5 Ω		50	250	μ		
MultiSense timings (chip		gure 8. Multisense timings (chip tempera 050AJ only)) ⁽⁴⁾	iture an	d V _{CC}	sense n	node		
t _{DSENSE3H}	$V_{\text{SENSE}_\text{TC}}$ settling time from rising edge of SEn	$\label{eq:VSEn} \begin{split} V_{SEn} &= 0 \; V \; to \; 5 \; V; \; V_{SEL0} = 0 \; V; \\ V_{SEL1} &= 5 \; V; \; R_{SENSE} = 1 \; k\Omega \end{split}$			60	μ		
t _{DSENSE3L}	$V_{\text{SENSE}_\text{TC}}$ disable delay time from falling edge of SEn	$\label{eq:VSEn} \begin{split} V_{SEn} &= 5 \; V \; to \; 0 \; V; \; V_{SEL0} = 0 \; V; \\ V_{SEL1} &= 5 \; V; \; R_{SENSE} = 1 \; k\Omega \end{split}$			20	μ		
MultiSense timings (V		re 8. Multisense timings (chip temperatu 050AJ only)) ⁽⁴⁾	re and \	√ _{CC} se	nse mo	de)		
t _{DSENSE4H}	$V_{\text{SENSE}_\text{VCC}}$ settling time from rising edge of SEn				60	μ		
t _{DSENSE4L}	V _{SENSE_VCC} disable delay time from falling edge of SEn	V_{SEn} = 5 V to 0 V; V_{SEL0} = 5 V; V _{SEL1} = 5 V; R _{SENSE} = 1 k Ω			20	μ		

	7 V < V _{CC} < 18 V; -40°C < T _j < 150°C							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
	MultiSense timings (Multiple)	ker transition times) (VN7050AJ only) ⁽⁴⁾						
t _{D_CStoTC}	MultiSense transition delay from current sense to ${\rm T}_{\rm C}$ sense				60	μs		
tD_TCtoCS	MultiSense transition delay from T_C sense to current sense				20	μs		
tD_CStoVCC	MultiSense transition delay from current sense to V_{CC} sense				60	μs		
tD_VCCtoCS	MultiSense transition delay from V_{CC} sense to current sense				20	μs		
tD_TCtoVCC	MultiSense transition delay from T_C sense to V_{CC} sense				20	μs		
t _{D_} vссютс	MultiSense transition delay from V_{CC} sense to T_C sense				20	μs		


1. Parameter specified by design; not subjected to production test.

2. All values refer to V_{CC} = 13 V; T_i = 25°C, unless otherwise specified.

3. V_{CC} sensing and T_C are referred to GND potential.

4. Transition delay are measured up to +/- 10% of final conditions.

Figure 4. I_{OUT}/I_{SENSE} versus I_{OUT}

GAPG0410131410CFT

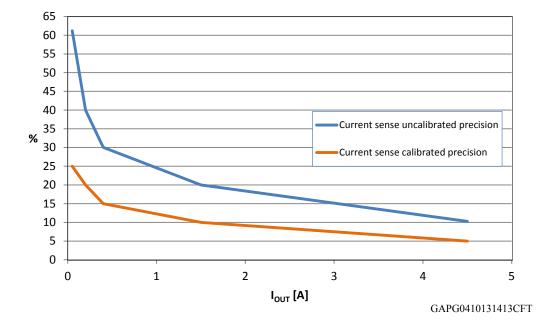
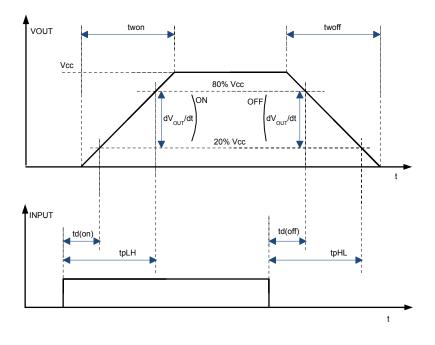
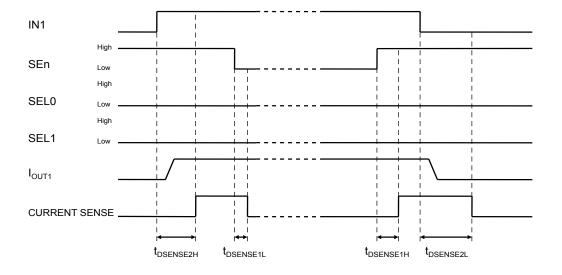
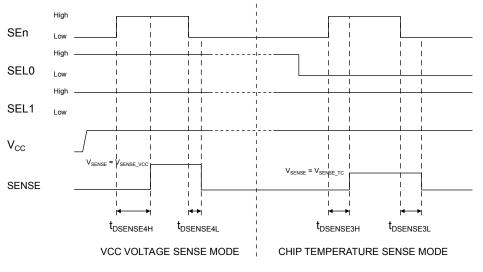
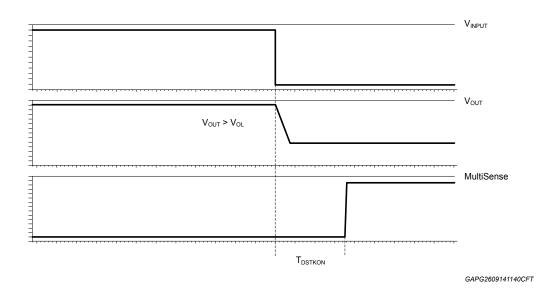




Figure 5. Current sense accuracy versus IOUT





GAPGCFT00319

Figure 9. T_{DSTKON}

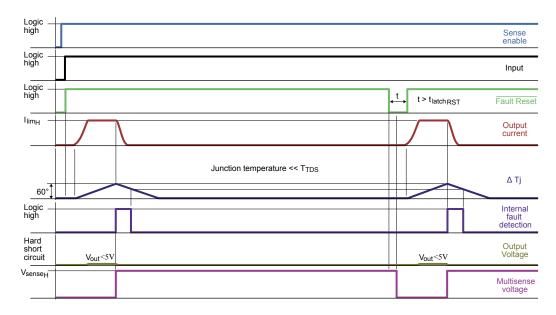
Table 10. Truth table

Mode	Conditions	INX	FR ⁽¹⁾	SEn	SEL _X ⁽¹⁾	OUT _X	MultiSense	Comments				
Standby	All logic inputs low	L	L	L	L	L	Hi-Z	Low quiescent current consumption				
		L	Х			L	See (2)					
Normal	Nominal load connected; T _i < 150 °C		L	See ⁽²⁾		н	See (2)	Outputs configured for auto-restart				
	1 100 0	н	нн		НН		нн			н	See (2)	Outputs configured for latch-off ⁽¹⁾
	Overload or short to GND	L	Х	See ⁽²⁾		L	See (2)					
Overload	causing: T _j > T _{TSD} or	н	L			See ⁽²⁾		н	See (2)	Output cycles with temperature hysteresis		
	$\Delta T_j > \Delta T_j _SD$	Н	Н			L	See (2)	Output latches-off ⁽¹⁾				
Undervoltage	V _{CC} < V _{USD} (falling)	x	x	x	x	L	Hi-Z Hi-Z	Re-start when V _{CC} > V _{USD} +				
								V _{USDhyst} (rising)				
OFF-state	Short to V _{CC}	L	Х		ee ⁽²⁾	Н	See (2)					
diagnostics	Open-load	L	x		366 -		See (2)	External pull-up				
Negative output voltage	Inductive loads turn-off	L	х	s	ee ⁽²⁾	< 0 V	See (2)					

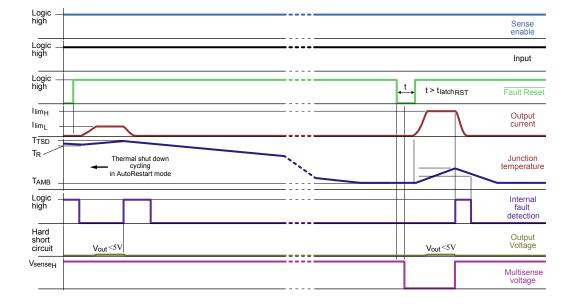
1. VN7050AJ only

2. Refer to Table 11. MultiSense multiplexer addressing

Table 11. MultiSense multiplexer addressing

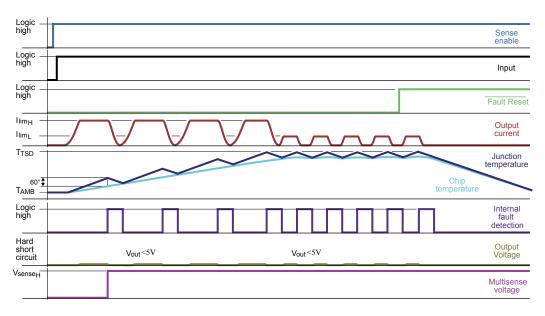

SEn	SEL .	SEL ₀	MUX channel	MultiSense output					
SEII	5LL1	SEL0		Normal mode	Overload	OFF-state diag. ⁽¹⁾	Negative output		
	SO-8								

SEn	SEL₁	SEL	MUX channel	MultiSense output				
SEII	3CL1	SEL0		Normal mode	Overload	OFF-state diag. ⁽¹⁾	Negative output	
L	N.A.	N.A.	N.A.	Hi-Z				
Н	N.A.	N.A.	Channel diagnostic	I _{SENSE} = 1/K * I _{OUT}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z	
				PowerS	SO-16			
Н	L	L	Channel diagnostic	$I_{\text{SENSE}} = 1/K * I_{\text{OUT}}$	$V_{SENSE} = V_{SENSEH}$	$V_{SENSE} = V_{SENSEH}$	Hi-Z	
Н	L	Н	Channel diagnostic	I _{SENSE} = 1/K * I _{OUT}	$V_{SENSE} = V_{SENSEH}$	$V_{SENSE} = V_{SENSEH}$	Hi-Z	
Н	Н	L	T _{CHIP} Sense	V _{SENSE} = V _{SENSE_TC}				
н	Н	Н	V _{CC} Sense	V _{SENSE} = V _{SENSE_VCC}				


 In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN = 0; OUT = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0. Example 2: FR = 1; IN = 0; OUT = latched, V_{OUT} > V_{OL}; MUX channel = channel 0 diagnostic; Mutisense = V_{SENSEH}

2.4 Waveforms

Figure 10. Latch functionality - behavior in hard short-circuit condition (T_{AMB} << T_{TSD})



GADG1703171451PS

Figure 11. Latch functionality - behavior in hard short-circuit condition

Figure 12. Latch functionality - behavior in hard short-circuit condition (autorestart mode + latch off)

GADG2103171742PS

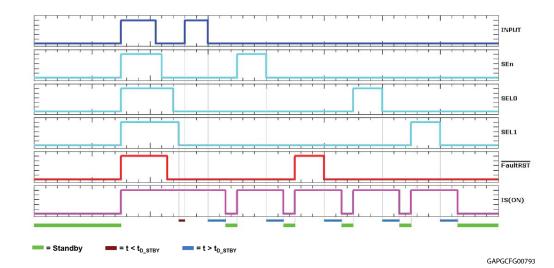
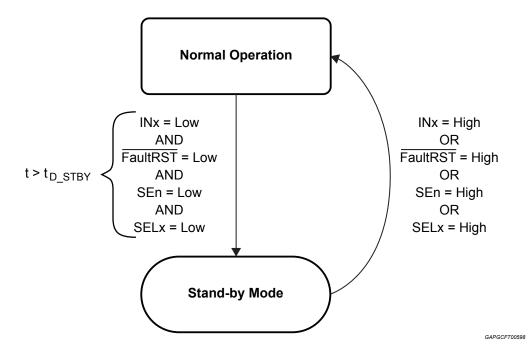
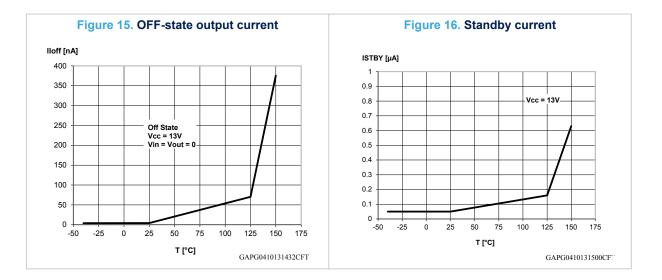
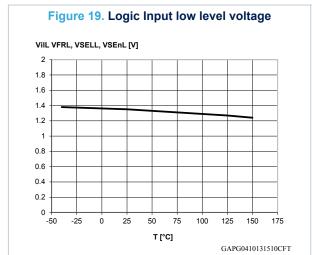
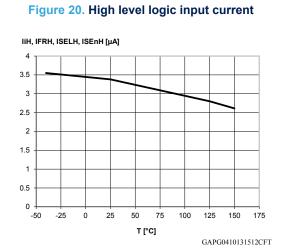
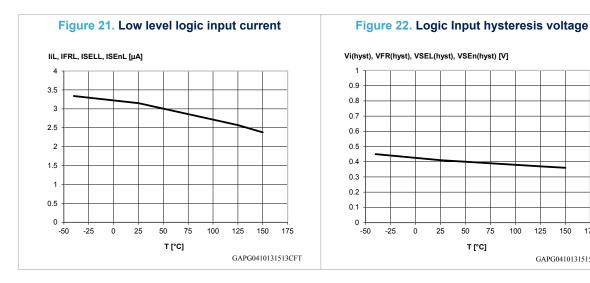




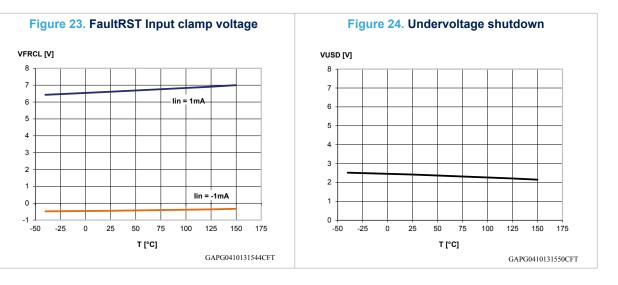


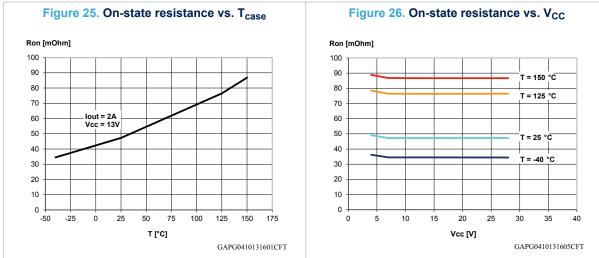
Figure 14. Standby state diagram

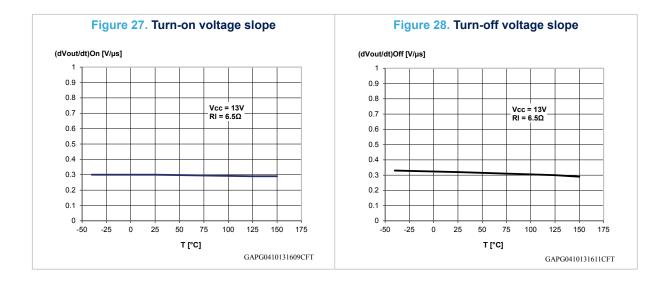

2.5 Electrical characteristics curves

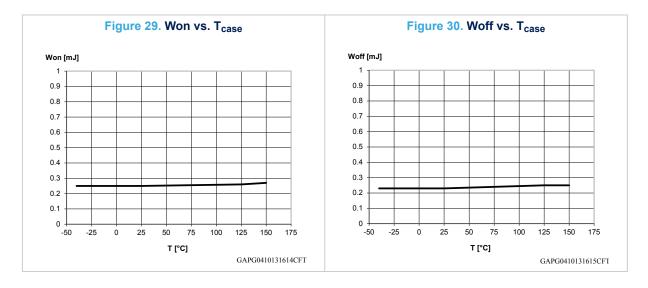


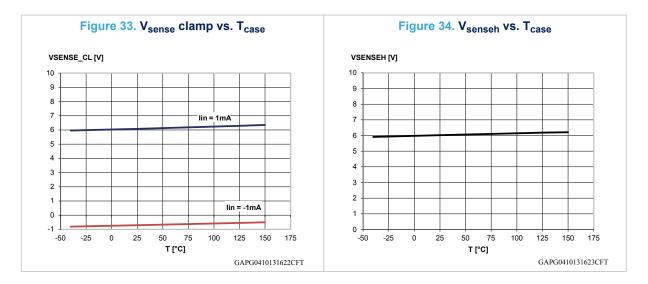



125 150 175


GAPG0410131515CFT







3 Protections

3.1 Power limitation

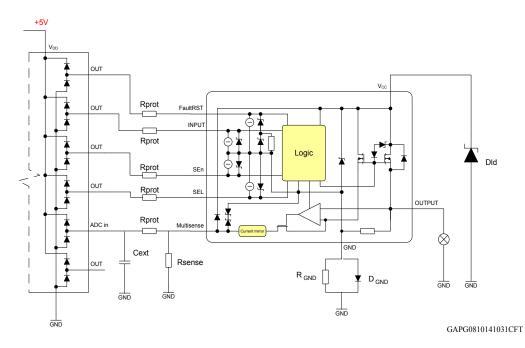
The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermomechanical fatigue.

3.2 Thermal shutdown

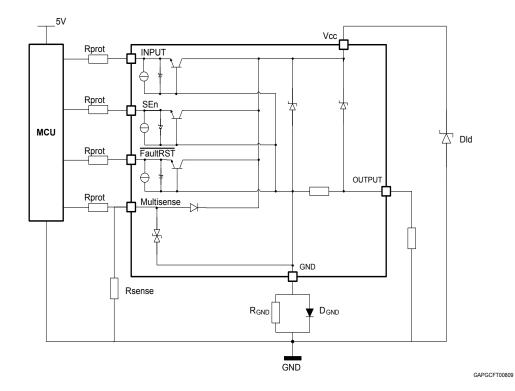
In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH}, by operating the output power MOSFET in the active region.


3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG} , allowing the inductor energy to be dissipated without damaging the device.


4 Application information

4.1 GND protection network against reverse battery

Figure 36. Simplified internal structure

4.1.1 Diode (DGND) in the ground line

A resistor (typ. R_{GND} = 4.7 k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in Table 12. ISO 7637-2 - electrical transient conduction along supply line.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through V_{CC} and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Test Pulse 2011(E)	Test pulse severity level with Status II functional performance status		Minimum number of pulses or test		cle / pulse on time	Pulse duration and pulse generator internal		
	Level	U _S ⁽¹⁾	time	min max				impedance
1	Ш	-112 V	500 pulses	0.5 s		2 ms, 10 Ω		
2a	Ш	+55 V	500 pulses	0.2 s	5 s	50 μs, 2 Ω		
3a	IV	-220 V	1h	90 ms	100 ms	0.1 μs, 50 Ω		
3b	IV	+150 V	1h	90 ms	100 ms	0.1 μs, 50 Ω		
4 (2)	IV	-7 V	1 pulse			100 ms, 0.01 Ω		
Load dump according to ISO 16750-2:2010								
Test B ⁽³⁾		40 V	5 pulse	1 min		400 ms, 2 Ω		

Table 12. ISO 7637-2 - electrical transient conduction along supply line

1. U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

2. Test pulse from ISO 7637-2:2004(E).

3. With 40 V external suppressor referred to ground (-40°C < T_i < 150 °C).

4.3 MCU I/Os protection

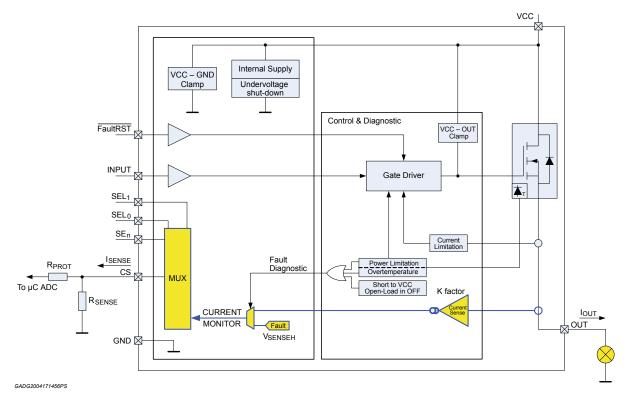
If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation

$$\begin{split} & \mathsf{V}_{\mathsf{CCpeak}}/\mathsf{I}_{\mathsf{latchup}} \leq \mathsf{R}_{\mathsf{prot}} \leq (\mathsf{V}_{\mathsf{OH}\mu\mathsf{C}} - \mathsf{V}_{\mathsf{IH}} - \mathsf{V}_{\mathsf{GND}}) \ / \ \mathsf{I}_{\mathsf{IHmax}} \\ & \mathsf{Calculation\ example:} \\ & \mathsf{For\ V}_{\mathsf{CCpeak}} = -150 \ \mathsf{V}; \ \mathsf{I}_{\mathsf{latchup}} \geq 20 \ \mathsf{mA}; \ \mathsf{V}_{\mathsf{OH}\mu\mathsf{C}} \geq 4.5 \ \mathsf{V} \\ & \mathsf{7.5\ k\Omega} \leq \mathsf{R}_{\mathsf{prot}} \leq 140 \ \mathsf{k\Omega}. \end{split}$$

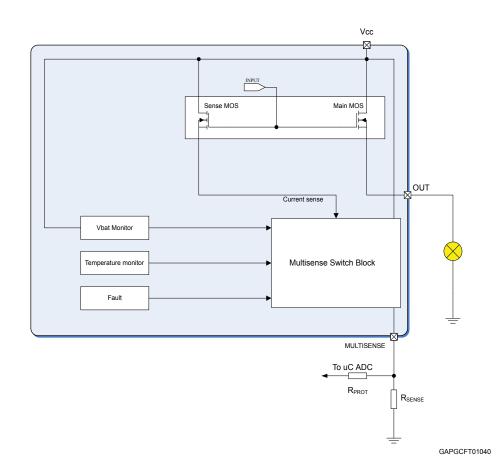
Recommended values: R_{prot} = 15 kΩ


4.4 Multisense - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (MultiSense) delivering the following signals:

- Current monitor: current mirror of channel output current
- V_{CC} monitor: voltage propotional to V_{CC}
- T_{CASE}: voltage propotional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in *MultiSense multiplexer addressing Table*.



4.4.1 Principle of Multisense signal generation

Figure 38. MultiSense block diagram

Current monitor

When current mode is selected in the MultiSense, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, I_{SENSE} , can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE} , allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

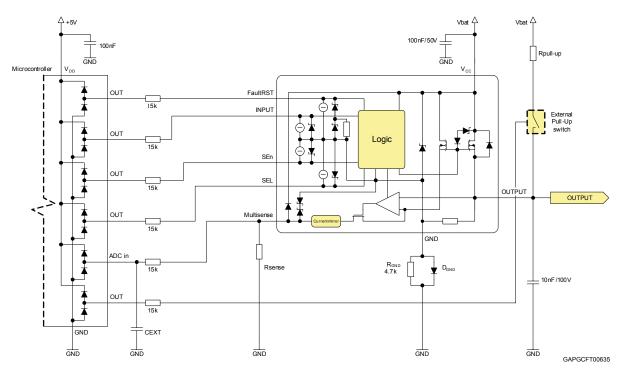
While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by MultiSense output: $I_{SENSE} = I_{OUT}/K$

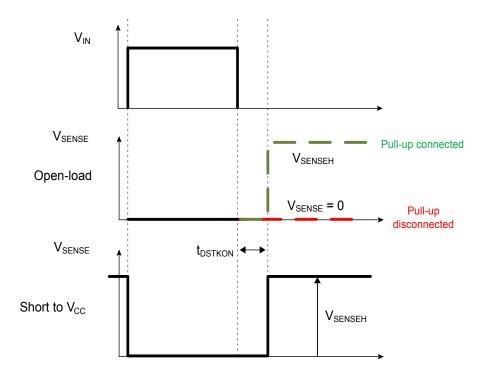
Voltage on R_{SENSE}: V_{SENSE} = R_{SENSE} · I_{SENSE} = R_{SENSE} · I_{OUT}/K

Where:

- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- I_{SENSE} is current provided from MultiSense pin in current output mode
- I_{OUT} is current flowing through output


 K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between I_{OUT} and I_{SENSE}.

Failure flag indication


In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin which is switched to a "current limited" voltage source, V_{SENSEH} .

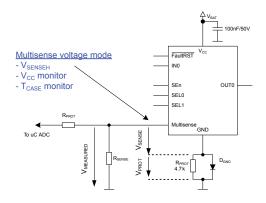
In any case, the current sourced by the MultiSense in this condition is limited to I_{SENSEH}.

The typical behavior in case of overload or hard short circuit is shown in Waveforms section.

Figure 39. Analogue HSD – open-load detection in off-state

Figure 40. Open-load / short to V_{CC} condition

Table 13. MultiSense pin levels in off-state


Condition	Output	MultiSense	SEn
	Maria Nila	Hi-Z	L
Open-load	V _{OUT} > V _{OL}	V _{SENSEH}	Н
Орепноао	V _{OUT} < V _{OL}	Hi-Z	L
	VOUT < VOL	0	Н
Short to V _{CC}	Vara NVar	Hi-Z	L
Short to V _{CC}	V _{OUT} > V _{OL}	V _{SENSEH}	Н
Neminal	V _{OUT} < V _{OL}	Hi-Z	L
Nominal	VOUT VOL	0	Н

4.4.2 TCASE and VCC monitor

In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because a voltage shift is generated between the device GND and the microcontroller input GND reference.

Figure 41. GND voltage shift shows the link between $V_{\mbox{MEASURED}}$ and the real $V_{\mbox{SENSE}}$ signal.

Figure 41. GND voltage shift

GAPGCFT01136

V_{CC} monitor

Battery monitoring channel provides V_{SENSE} = V_{CC} / 4.

Case temperature monitor

Case temperature monitor is capable of providing information about the actual device temperature. Since a diode is used for temperature sensing, the following equation describes the link between temperature and output V_{SENSE} level:

 $V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + dV_{SENSE_TC} / dT * (T - T_0)$ where $dV_{SENSE_TC} / dT \sim$ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C)).

4.4.3 Short to VCC and OFF-state open-load detection

Short to V_{CC}

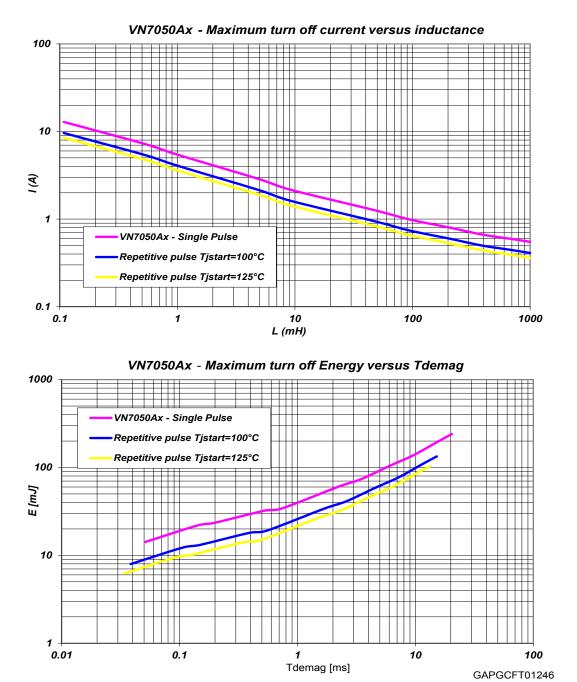
A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable that V_{PU} is switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with the following equation:


Equation

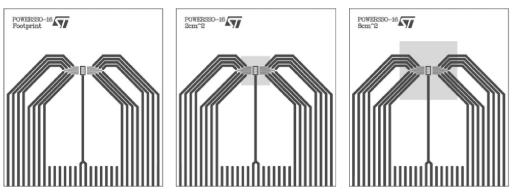
$$R_{PU} < \frac{V_{PU} - 4}{I_{L(off2)min @ 4V}}$$

5 Maximum demagnetization energy (VCC = 16 V)

Figure 43. Maximum turn off current versus inductance

Note:

Values are generated with $R_L = 0 \Omega$.


In case of repetitive pulses, T_{jstart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

6 Package and PCB thermal data

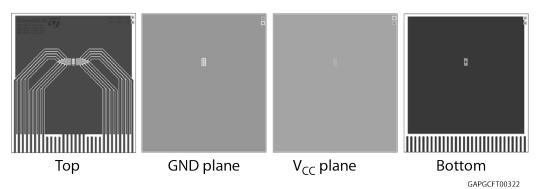

6.1 PowerSSO-16 thermal data

Figure 44. PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)

GAPGCFT00321

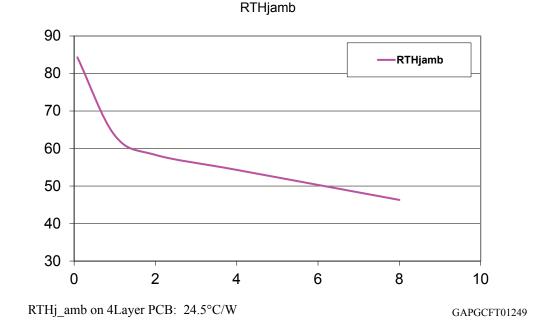

Figure 45. PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)

Table 14. PCB properties

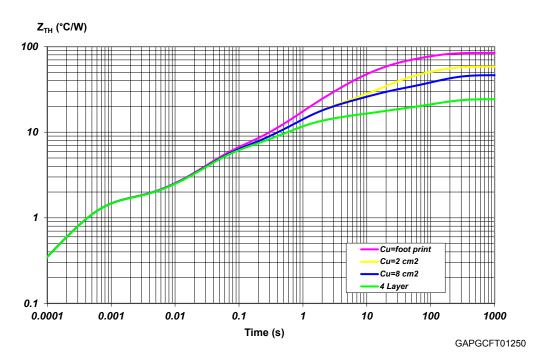
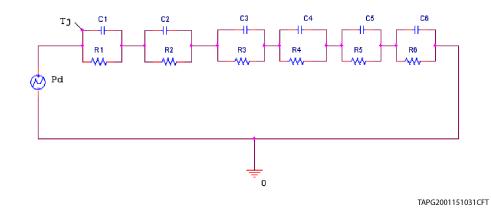

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board Material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on vias	0.025 mm
Footprint dimension (top layer)	2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)	Footprint, 2 cm ² or 8 cm ²

Figure 46. PowerSSO-16 R_{thj-amb} vs PCB copper area in open box free air condition (one channel on)


Figure 47. PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)

Equation: pulse calculation formula

$$\label{eq:zthd} \begin{split} Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} \left(1 - \delta\right) \\ \text{where } \delta = t_P/T \end{split}$$

Figure 48. Thermal fitting model of a double-channel HSD in PowerSSO-16

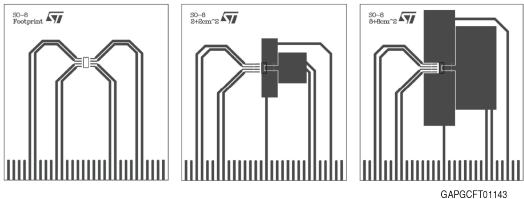
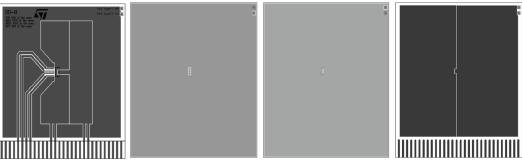

Note: The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

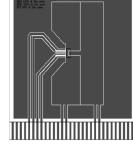
Table 15. Thermal parameters


Area/island (cm ²)	Footprint	2	8	4L
R1 (°C/W)	1.5			
R2 (°C/W)	3.8			
R3 (°C/W)	7	7	7	5
R4 (°C/W)	16	6	6	4
R5 (°C/W)	30	20	10	3
R6 (°C/W)	26	20	18	7
C1 (W.s/°C)	0.00028			
C2 (W.s/°C)	0.01			
C3 (W.s/°C)	0.1			
C4 (W.s/°C)	0.2	0.3	0.3	0.4
C5 (W.s/°C)	0.4	1	1	4
C6 (W.s/°C)	3	5	7	18

6.2 SO-8 thermal data

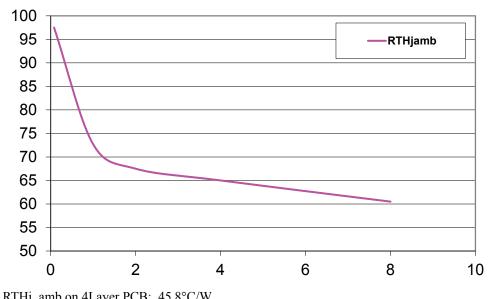
Figure 49. S0-8 on two-layers PCB (2s0p to JEDEC JESD 51-5)

Figure 50. SO-8 on four-layers PCB (2s2p to JEDEC JESD 51-7)



GAPGCFT01144

Table 16. PCB properties


Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board Material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on vias	0.025 mm
Heatsink copper area dimension (bottom layer)	Footprint, $2 + 2 \text{ cm}^2 \text{ or } 8 + 8 \text{ cm}^2$

57

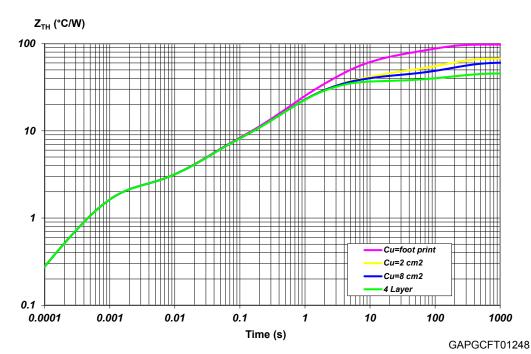


Figure 51. SO-8 Rthj-amb vs PCB copper area in open box free air condition (one channel on)

RTHjamb

RTHj_amb on 4Layer PCB: 45.8°C/W

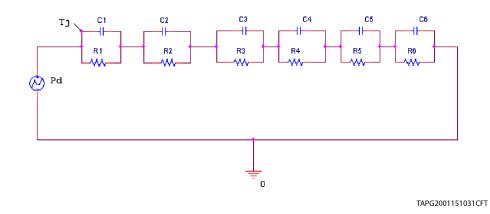

GAPGCFT01247

Figure 52. SO-8 thermal impedance junction ambient single pulse (one channel on)

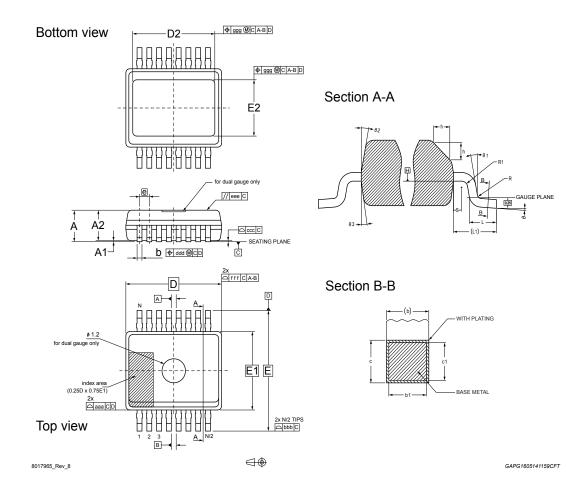
Equation: pulse calculation formula

 $Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$ where $\delta = t_P/T$

Figure 53. Thermal fitting model of a double-channel HSD in SO-8

Note: The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 17. Thermal parameters


Area/island (cm ²)	Footprint	2	8	4L
R1 (°C/W)	2			
R2 (°C/W)	3.5			
R3 (°C/W)	10			
R4 (°C/W)	28	17	17	17
R5 (°C/W)	24	12	9	4
R6 (°C/W)	30	23	19	9
C1 (W.s/°C)	0.00035			
C2 (W.s/°C)	0.01			
C3 (W.s/°C)	0.05			
C4 (W.s/°C)	0.1			
C5 (W.s/°C)	0.4	0.8	0.8	0.8
C6 (W.s/°C)	3	7	11	22

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

7.1 PowerSSO-16 package information

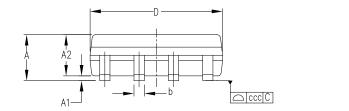
Figure 54. PowerSSO-16 package outline

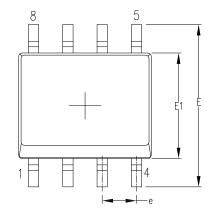
Table 18. PowerSSO-16 mechanical data

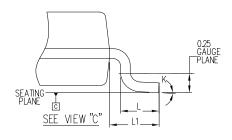
	Dimensions			
Ref.	Millimeters			
	Min.	Тур.	Max.	
Θ	0°		8°	
Θ1	0°			
Θ2	5°		15°	
Θ3	5°		15°	

	Dimensions Millimeters			
Ref.				
	Min.	Тур.	Max.	
А			1.70	
A1	0.00		0.10	
A2	1.10		1.60	
b	0.20		0.30	
b1	0.20	0.25	0.28	
С	0.19		0.25	
c1	0.19	0.20	0.23	
D		4.9 BSC	1	
D1	2.90		3.50	
е		0.50 BSC	,	
E	6.00 BSC			
E1	3.90 BSC			
E2	2.20		2.80	
h	0.25		0.50	
L	0.40	0.60	0.85	
L1		1.00 REF	,	
N		16		
R	0.07			
R1	0.07			
S	0.20			
	Tolerance of fo	orm and position	·	
ааа		0.10		
bbb		0.10		
CCC		0.08		
ddd	0.08			
eee		0.10		

0.10 0.15


fff


ggg


0016023_H

7.2 SO-8 package information

Figure 55. SO-8 package outline

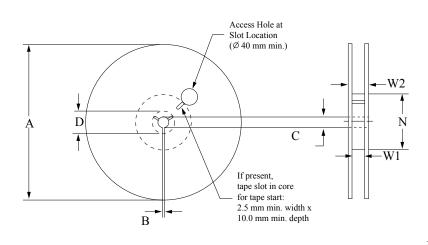
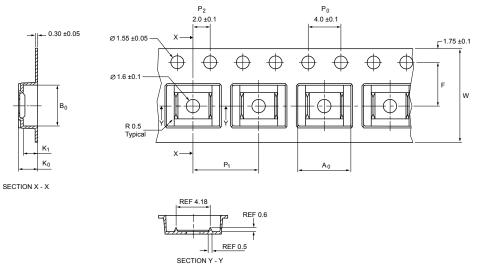

GAPG1605141113CFT

Table 19. SO-8 mechanical data

	Dimensions			
Ref.	Millimeters			
	Min.	Тур.	Max.	
A			1.75	
A1	0.10		0.25	
A2	1.25			
b	0.28		0.48	
С	0.17		0.23	
D	4.80	4.90	5.00	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е		1.27		
h	0.25		0.50	
L	0.40		1.27	
L1		1.04		
k	0°		8°	
CCC			0.10	

7.3 PowerSSO-16 packing information

Figure 56. PowerSSO-16 reel 13"



TAPG2004151655CFT

Table 20. Reel dimensions

Description	Value ⁽¹⁾
Base quantity	2500
Bulk quantity	2500
A (max)	330
B (min)	1.5
C (+0.5, -0.2)	13
D (min)	20.2
Ν	100
W1 (+2 /-0)	12.4
W2 (max)	18.4

1. All dimensions are in mm.

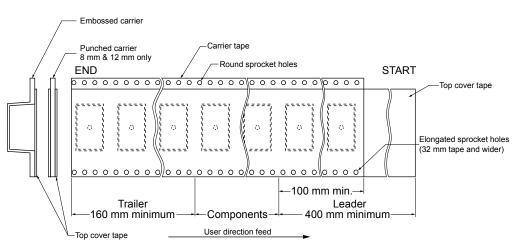
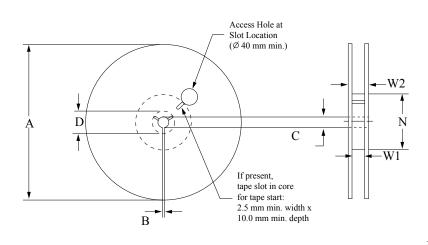

GAPG2204151242CFT

Table 21. PowerSSO-16 carrier tape dimensions

Description	Value ⁽¹⁾
A ₀	6.50 ± 0.1
B ₀	5.25 ± 0.1
K ₀	2.10 ± 0.1
К1	1.80 ± 0.1
F	5.50 ± 0.1
P ₁	8.00 ± 0.1
W	12.00 ± 0.3

1. All dimensions are in mm.

Figure 58. PowerSSO-16 schematic drawing of leader and trailer tape

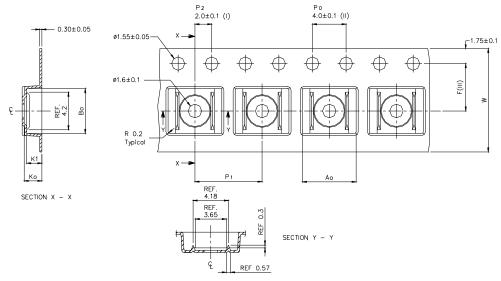


GAPG2004151511CFT

7.4 SO-8 packing information

57

Figure 59. Reel for SO-8



TAPG2004151655CFT

Table 22. Reel dimensions

Description	Value ⁽¹⁾
Base quantity	2500
Bulk quantity	2500
A (max)	330
B (min)	1.5
C (+0.5, -0.2)	13
D (min)	20.2
Ν	100
W1 (+2/ -0)	12.4
W2 (max)	18.4

1. All dimensions are in mm.

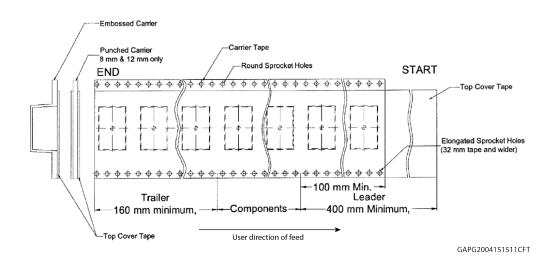
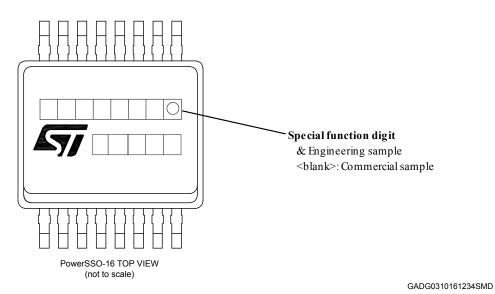

GAPG2105151447CFT

Table 23. SO-8 carrier tape dimensions

Description	Value ⁽¹⁾
A ₀	6.50 ± 0.1
B ₀	5.30 ± 0.1
K ₀	2.20 ± 0.1
К1	1.90 ± 0.1
F	5.50 ± 0.1
P ₁	8.00 ± 0.1
W	12.00 ± 0.3

1. All dimensions are in mm.



7.5 PowerSSO-16 marking information

57/

Figure 62. PowerSSO-16 marking information

Parts marked as '&' are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.6 SO-8 marking information

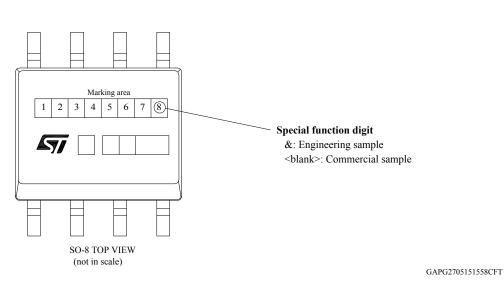


Figure 63. SO-8 marking information

Note:

Engineering Samples: these samples can be clearly identified by a dedicated special symbol in the marking of each unit. These samples are intended to be used for electrical compatibility evaluation only; usage for any other purpose may be agreed only upon written authorization by ST. ST is not liable for any customer usage in production and/or in reliability qualification trials.

Commercial Samples: fully qualified parts from ST standard production with no usage restrictions

8 Order codes

Table 24. Device summary

Paskago	Order codes
Package	Tape and reel
PowerSSO-16	VN7050AJTR
SO-8	VN7050ASTR

Revision history

Table 25. Document revision history

Date	Revision	Changes
27-May-2015	1	Initial release.
21-Jul-2015	2	Updated cover image. Updated <i>Table 4: "Thermal data"</i> Updated following sections: • Section 6.1: "PowerSSO-16 thermal data" • Section 6.2: "SO-8 thermal data"
02-Oct-2016	3	Updated the following: Features list on the cover page Figure 61: "PowerSSO-16 marking information"
03-Jul-2018	4	Minor text change in Section 4.4.2 $T_{\mbox{CASE}}$ and $V_{\mbox{CC}}$ monitor.

Contents

1	Bloc	Block diagram and pin description3				
2	Elec	trical s	pecification	5		
	2.1	Absolu	ute maximum ratings	5		
	2.2	Therm	nal data	6		
	2.3	Main e	electrical characteristics	6		
	2.4	Wavef	forms	16		
	2.5	Electri	ical characteristics curves			
3	Prot	ections	§	23		
	3.1	Power	r limitation	23		
	3.2	Therm	nal shutdown	23		
	3.3	Currer	nt limitation	23		
	3.4	Negat	ive voltage clamp	23		
4	Арр	Application information				
	4.1	GND p	protection network against reverse battery	24		
		4.1.1	Diode (DGND) in the ground line			
	4.2	Immur	nity against transient electrical disturbances	25		
	4.3	MCU	MCU I/Os protection			
	4.4	Multis	ense - analog current sense			
		4.4.1	Principle of Multisense signal generation			
		4.4.2	TCASE and VCC monitor			
		4.4.3	Short to VCC and OFF-state open-load detection			
5	Мах	imum d	lemagnetization energy (VCC = 16 V)			
6	Pac	kage an	nd PCB thermal data	32		
	6.1	Power	rSSO-16 thermal data			
	6.2	SO-8 thermal data				
7	Pac	kage in	formation			
	7.1	Power	rSSO-16 package information			
	7.2	SO-8	package information			
	7.3	Power	rSSO-16 packing information			

Rev	ision h	nistory	.47
8 Order codes		r codes	.46
	7.6	SO-8 marking information	. 45
	7.5	PowerSSO-16 marking information.	. 44
	7.4	SO-8 packing information.	. 42

List of figures

Figure 1.	Block diagram	. 3
Figure 2.	Configuration diagram (top view).	. 4
Figure 3.	Current and voltage conventions.	. 5
Figure 4.	I _{OUT} /I _{SENSE} versus I _{OUT}	12
Figure 5.	Current sense accuracy versus I _{OUT}	13
Figure 6.	Switching time and Pulse skew	13
Figure 7.	MultiSense timings (current sense mode).	14
Figure 8.	Multisense timings (chip temperature and V _{CC} sense mode) (VN7050AJ only)	14
Figure 9.	T _{DSTKON}	15
Figure 10.	Latch functionality - behavior in hard short-circuit condition (T _{AMB} << T _{TSD})	16
Figure 11.	Latch functionality - behavior in hard short-circuit condition.	
Figure 12.	Latch functionality - behavior in hard short-circuit condition (autorestart mode + latch off)	
Figure 13.	Standby mode activation	18
Figure 14.	Standby state diagram.	18
Figure 15.	OFF-state output current	19
Figure 16.	Standby current	19
Figure 17.	I _{GND(ON)} vs. Tcase	19
Figure 18.	Logic Input high level voltage	19
Figure 19.	Logic Input low level voltage.	20
Figure 20.	High level logic input current.	20
Figure 21.	Low level logic input current	20
Figure 22.	Logic Input hysteresis voltage.	20
Figure 23.	FaultRST Input clamp voltage.	20
Figure 24.	Undervoltage shutdown	20
Figure 25.	On-state resistance vs. T _{case}	21
Figure 26.	On-state resistance vs. $V_{\mbox{CC}}$	21
Figure 27.	Turn-on voltage slope	21
Figure 28.	Turn-off voltage slope	21
Figure 29.	Won vs. T _{case}	21
Figure 30.	Woff vs. T _{case}	21
Figure 31.	I _{LIMH} vs. T _{case}	22
Figure 32.	OFF-state open-load voltage detection threshold	22
Figure 33.	V _{sense} clamp vs. T _{case}	22
Figure 34.	V _{senseh} vs. T _{case}	22
Figure 35.	Application diagram.	
Figure 36.	Simplified internal structure	
Figure 37.	MultiSense and diagnostic – block diagram	
Figure 38.	MultiSense block diagram	27
Figure 39.	Analogue HSD – open-load detection in off-state	28
Figure 40.	Open-load / short to V _{CC} condition	29
Figure 41.	GND voltage shift	30
Figure 43.	Maximum turn off current versus inductance	31
Figure 44.	PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)	
Figure 45.	PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)	
Figure 46.	$PowerSSO-16 \; R_{thj-amb} \; vs \; PCB \; copper \; area \; in \; open \; box \; free \; air \; condition \; (one \; channel \; on). \; \ldots \; $	33
Figure 47.	PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)	
Figure 48.	Thermal fitting model of a double-channel HSD in PowerSSO-16	34
Figure 49.	S0-8 on two-layers PCB (2s0p to JEDEC JESD 51-5)	
Figure 50.	SO-8 on four-layers PCB (2s2p to JEDEC JESD 51-7)	
Figure 51.	SO-8 R _{thj-amb} vs PCB copper area in open box free air condition (one channel on)	36

Figure 52.	SO-8 thermal impedance junction ambient single pulse (one channel on)	36
Figure 53.	Thermal fitting model of a double-channel HSD in SO-8	37
Figure 54.	PowerSSO-16 package outline	38
Figure 55.	SO-8 package outline	40
Figure 56.	PowerSSO-16 reel 13"	41
Figure 57.	PowerSSO-16 carrier tape	42
Figure 58.	PowerSSO-16 schematic drawing of leader and trailer tape	42
Figure 59.	Reel for SO-8	
Figure 60.	SO-8 carrier tape	44
Figure 61.	SO-8 schematic drawing of leader and trailer tape.	44
Figure 62.	PowerSSO-16 marking information	45
Figure 63.	SO-8 marking information	45

List of tables

Table 1.	Pin functions	3
Table 2.	Suggested connections for unused and not connected pins.	4
Table 3.	Absolute maximum ratings	5
Table 4.	Thermal data	6
Table 5.	Power section	6
Table 6.	Switching	7
Table 7.	Logic inputs.	8
Table 8.	Protections	9
Table 9.	MultiSense	9
Table 10.	Truth table	5
Table 11.	MultiSense multiplexer addressing	5
Table 12.	ISO 7637-2 - electrical transient conduction along supply line	5
Table 13.	MultiSense pin levels in off-state	9
Table 14.	PCB properties	2
Table 15.	Thermal parameters	4
Table 16.	PCB properties	5
Table 17.	Thermal parameters	7
Table 18.	PowerSSO-16 mechanical data	8
Table 19.	SO-8 mechanical data	0
Table 20.	Reel dimensions	1
Table 21.	PowerSSO-16 carrier tape dimensions	2
Table 22.	Reel dimensions	3
Table 23.	SO-8 carrier tape dimensions	4
Table 24.	Device summary	6
Table 25.	Document revision history	7

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved