Absolute maximum ratings and operating conditions

Table 1. **Absolute maximum ratings**

Symbol	Parameter	TS27M2x/Ax/Bx	Unit
V _{CC} ⁺	Supply voltage (1)	18	V
Vid	Differential input voltage (2)	±18	V
V _i	Input voltage (3)	-0.3 to 18	V
Io	Output current for V _{CC} ⁺ ≥ 15V	±30	mA
I _{in}	Input current	±5	mA
R _{thja} ⁽⁴⁾⁽⁵⁾	SO-8 DIP8 TSSOP8	125 85 120	°C/W
T _{stg}	Storage temperature range	-65 to +150	°C
T _j	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁶⁾	500	V
ESD	MM: machine model ⁽⁷⁾	100	V
	CDM: charged device model ⁽⁸⁾	1.5	kV

- 1. All values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- The magnitude of the input and the output voltages must never exceed the magnitude of the positive supply voltage.
- 4. Short-circuits can cause excessive heating and destructive dissipation.
- 5. Rth are typical values.
- Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a $1.5~\mathrm{k}\Omega$ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 7. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor $< 5 \Omega$). This is done for all couples of connected pin combinations while the other pins are floating.
- Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Operating conditions Table 2.

Symbol	Parameter	Value				
Symbol	raiailletei	TS27M2C/AC/BC	TS27M2I/AI/BI	TS27M2M/AM/BM		
V _{CC} ⁺	Supply voltage	3 to 16			V	
V _{icm}	Common mode input voltage range	0 to V _{CC} ⁺ - 1.5			V	
Toper	Operating free air temperature range	0 to +70	-40 to +125	-55 to +125	°C	

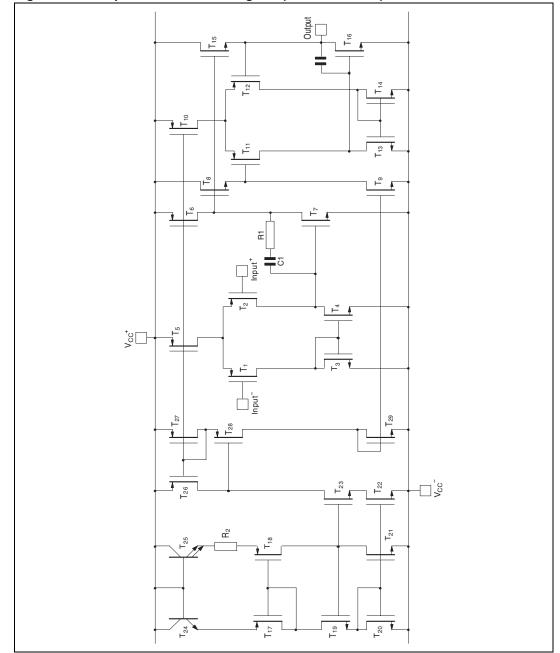


Figure 1. Simplified schematic diagram (for 1/2 TS27M2)

577

2 Electrical characteristics

Table 3. Electrical characteristics at V_{CC} + = +10 V, V_{CC} - = 0 V, T_{amb} = +25° C (unless otherwise specified)

Symbol	Parameter	т	TS27M2xC			S27M2 S27M2	Unit	
		Min.	Тур.	Max.	Min.	Тур.	Max.	
DC perfo	rmance							
V _{io}	Input offset voltage $V_O = 1.4 \text{ V, } V_{ic} = 0 \text{ V} \qquad \text{TS27M2} \\ \qquad \qquad \qquad \qquad \text{TS27M2A} \\ \qquad \qquad \qquad \qquad \text{TS27M2B} \\ T_{min} \leq T_{amb} \leq T_{max} \qquad \qquad \text{TS27M2} \\ \qquad \qquad \qquad \qquad \qquad \qquad \text{TS27M2A} \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \text{TS27M2B} \\ \qquad $		1.1 0.9 0.25	10 5 2 12 6.5 3		1.1 0.9 0.25	10 5 2 12 6.5 3.5	mV
DV _{io}	Input offset voltage drift		2			2		μV/°C
l _{io}	Input offset current ⁽¹⁾ $V_{ic} = 5 \text{ V}, V_O = 5 \text{ V}$ $T_{min} \leq T_{amb} \leq T_{max}$		1	100		1	200	рА
I _{ib}	Input bias current ⁽¹⁾ $V_{ic} = 5 \text{ V, } V_{O} = 5 \text{ V}$ $T_{min} \leq T_{amb} \leq T_{max}$		1	150		1	300	рА
V _{OH}	High level output voltage V_{id} = 100 mV, R_L = 100 lΩ $T_{min} \le T_{amb} \le T_{max}$	8.7 8.6	8.9		8.7 8.5	8.9		٧
V _{OL}	Low level output voltage V _{id} = -100 mV			50			50	mV
A _{vd}	Large signal voltage gain $\begin{aligned} &V_{iC} = 5 \text{ V, } R_L = 100 \text{ k}\Omega, V_o = 1 \text{ V to 6 V} \\ &T_{min} \leq &T_{amb} \leq &T_{max} \end{aligned}$	30 20	50		30 10	50		V/mV
CMR	Common mode rejection ratio $V_{iC} = 1 \text{ V to } 7.4 \text{ V, } V_o = 1.4 \text{ V}$	65	80		65	80		dB
SVR	Supply voltage rejection ratio $V_{CC}^+ = 5 \text{ V to } 10 \text{ V}, V_0 = 1.4 \text{ V}$	60	80		60	80		dB
I _{CC}	Supply current (per amplifier) $A_{V} = 1, \text{ no load, } V_{O} = 5 \text{ V}$ $T_{min} \leq T_{amb} \leq T_{max}$		150	200 250		150	200 300	μА
I _o	Output short circuit current $V_0 = 0 \text{ V}, V_{id} = 100 \text{ mV}$	45	60			60		mA
I _{sink}	Output sink current $V_o = V_{CC}$, $V_{id} = -100 \text{ mV}$	34	45			45		mA

Table 3. Electrical characteristics at V_{CC} + = +10 V, V_{CC} - = 0 V, T_{amb} = +25° C (unless otherwise specified) (continued)

Symbol Parameter		TS27M2xC			TS27M2xI TS27M2xM			Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
AC perfor	mance							
GBP	Gain bandwidth product $A_{V}=40~\text{dB, R}_{L}=100~\text{k}\Omega,~~C_{L}=100~\text{pF,}$ $f_{in}=100~\text{kHz}$	0.5	1		0.5	1		MHz
SR	Slew rate at unity gain $R_L = 100 \text{ k}\Omega \text{ C}_L = 100 \text{ pF, V}_i = 3 \text{ to 7 V}$		0.6		0.3	0.6		V/μs
φm	Phase margin at unity gain $A_v = 40 \text{ dB}, R_L = 100 \text{ k}\Omega, C_L = 100 \text{ pF}$		45			45		Degrees
K _{OV}	Overshoot factor		30			30		%
e _n	Equivalent input noise voltage $f = 1 \text{ kHz}, R_s = 100 \Omega$		38			38		<u>nV</u> √Hz
V _{o1} /V _{o2}	Channel separation		120			120		dB

^{1.} Maximum values including unavoidable inaccuracies of industrial tests.

3 Typical characteristics

Figure 2. Supply current (each amplifier) versus supply voltage

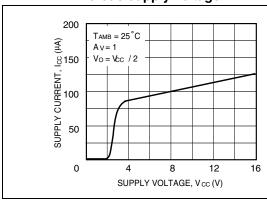


Figure 3. Input bias current versus free air temperature

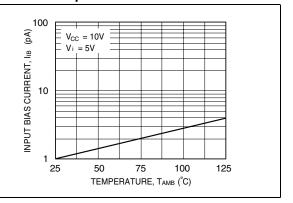


Figure 4. High level output voltage versus high level output current

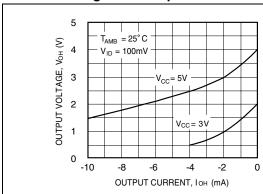


Figure 5. High level output voltage versus high level output current

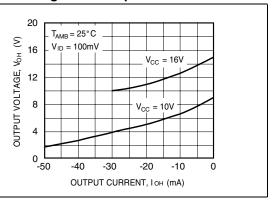
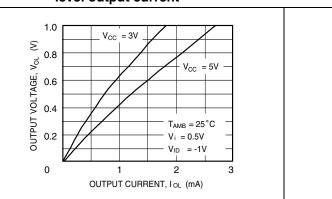



Figure 6. Low level output voltage versus low Figure 7. level output current

Low level output voltage versus low level output current

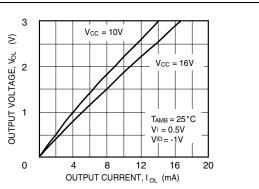
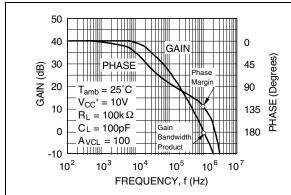



Figure 8. Open-loop frequency response and Figure 9. Gain bandwidth product versus phase shift supply voltage

T_{amb} = 25°C R_L = 100kΩ C_L = 100pF A_V = 1 SUPPLY VOLTAGE, V_{CC} (V)

Figure 10. Phase margin versus supply voltage

Figure 11. Phase margin versus capacitive load

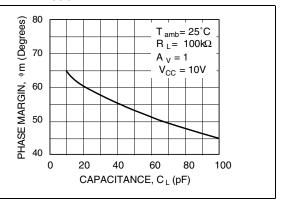


Figure 12. Slew rate versus supply voltage

8

SUPPLY VOLTAGE, V_{CC} (V)

12

16

4

0

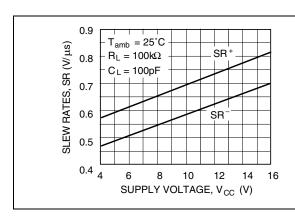
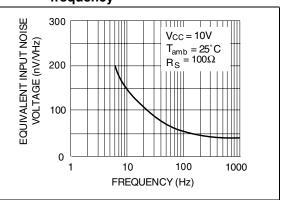



Figure 13. Input voltage noise versus frequency

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Ay/

4.1 DIP8 package information

Figure 14. DIP8 package mechanical drawing

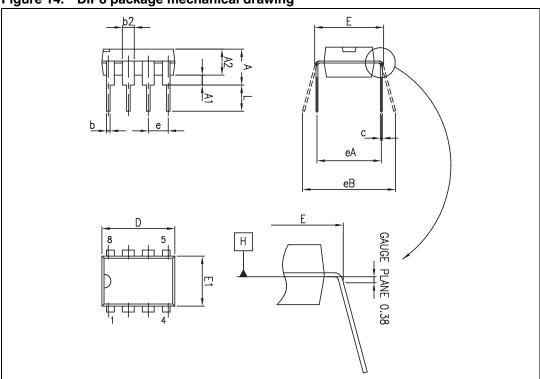


Table 4. DIP8 package mechanical data

			Dimer	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
С	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
Е	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
е		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

577

Doc ID 2306 Rev 2

4.2 SO-8 package information

Figure 15. SO-8 package mechanical drawing

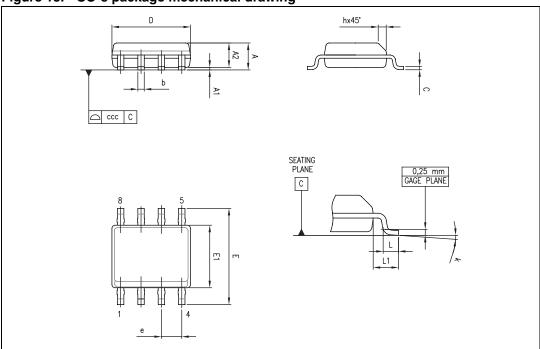


Table 5. SO-8 package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	1°		8°	1°		8°
ccc			0.10			0.004

4.3 TSSOP8 package information

Figure 16. TSSOP8 package mechanical drawing

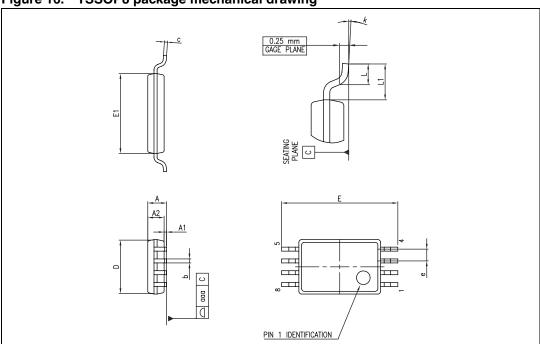


Table 6. TSSOP8 package mechanical data

			Dimer	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.0256	
k	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1			0.039	
aaa			0.10			0.004

5 Ordering information

Table 7. Order codes

Part number	Temperature range	Package	Packing	Marking
TS27M2CD TS27M2CDT		SO-8	Tube Tape & reel	27M2C
TS27M2CN		DIP8	Tube	TS27M2CN
TS27M2CPT		TSSOP8	Tube Tape & reel	27M2C
TS27M2ACD TS27M2ACDT	0° C to +70° C	SO-8	Tube Tape & reel	27M2AC
TS27M2ACN		DIP8	Tube	S27M2ACN
TS27M2ACPT		TSSOP8	Tape & reel	2M2AC
TS27M2BCD TS27M2BCDT		SO-8	Tube Tape & reel	27M2BC
TS27M2BCN		DIP8	Tube	S27M2BCN
TS27M2BCPT		TSSOP8	Tape & reel	2M2BC
TS27M2ID TS27M2IDT		SO-8	Tube Tape & reel	27M2I
TS27M2IN		DIP8	Tube	TS27M2IN
TS27M2IPT		TSSOP8	Tape & reel	27M2I
TS27M2AID TS27M2AIDT	100 0	SO-8	Tube Tape & reel	27M2AI
TS27M2AIN	-40° C to +125° C	DIP8	Tube	S27M2AIN
TS27M2AIPT		TSSOP8	Tape & reel	2M2AI
TS27M2BID TS27M2BIDT		SO-8	Tube Tape & reel	27M2BI
TS27M2BIN		DIP8	Tube	S27M2BIN
TS27M2BIPT		TSSOP8	Tape & reel	2M2BI

6 Revision history

Table 8. Document revision history

Date	Revision	Changes
01-Nov-2001	1	Initial release.
18-Aug-2009	2	Updated document format. Added ESD and Rthja information in <i>Table 1: Absolute maximum ratings</i> . Removed block diagram. Added minimum values for Io, GBP and SR parameters in <i>Table 3</i> . Added order codes in <i>Table 7</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

