
Order Information

Order Number	Operating Temperature Range	Package	Marking Information	Transport Media, Quantity
TPF142-VR	-40 to 85°C	8-Pin MSOP	TPF142	Tape and Reel, 3,000
TPF142-TR	-40 to 85°C	14-Pin TSSOP	TPF142	Tape and Reel, 3,000

Pin configuration (Top View)

Pin Name	Function
CVBS IN	SD video input for CVBS signal, LPF = 9 MHz
DIS FHD	Disable Full-HD channel. Logic high disables the FHD channel and logic low enables the FHD channel. This pin defaults to logic high if left open.
FHD IN	Full-HD video input, LPF = 72 MHz
+V _S	Positive Power Supply
GND	Ground
FHD OUT	Full-HD video output, LPF = 72 MHz
DIS CVBS	Disable SD channel. Logic high disables the SD channel and logic low enables the SD channel. This pin defaults to logic high if left open.
CVBS OUT	SD video output for CVBS signal, LPF = 9 MHz
NC	No Connection

Absolute Maximum Ratings*

	Parameters	Value	Units
Power Supply, V _{DD} to GND		6.0	V
V _{IN}	Input Voltage	V _{DD} + 0.3V to	GND - 0.3V
Ι _Ο	Output Current	65	Ι _Ο
TJ	Maximum Junction Temperature	150	TJ
T _A	Operating Temperature Range	–45 to 85	T _A
T _{STG}	Storage Temperature Range	–65 to 150	T _{STG}
TL	Lead Temperature (Soldering 10 sec)	300	TL

* **Note:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
HBM	Human Body Model ESD	MIL-STD-883H Method 3015.8	8	kV
CDM	Charged Device Model ESD	JEDEC-EIA/JESD22-C101E	2	kV

Electrical Characteristics All test condition is VDD = 3.3V, TA = $+25^{\circ}C$, RL = 150Ω to GND, unless

otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Electr	ical Specifications		•			
+V _S	Supply Voltage Range		3.0		5.5	V
		$+V_{S} = 3.3V, V_{IN} = 500mV$, no load, all channels on		14.5		mA
		$+V_S = 3.3V, V_{IN} = 500mV$, no load, SD channel on, FHD channel off		3.66		mA
		+V _S = 3.3V, V _{IN} = 500mV, no load, SD channel off, FHD channel on		11.24		mA
lq	Quiescent current (I _Q)	$+V_{S} = 3.3V$, $V_{IN} = 500$ mV, no load, all channels off		1		μA
īQ		$+V_{S} = 5V$, $V_{IN} = 500$ mV, no load, all channels on		14.89		mA
		$+V_{S} = 5V, V_{IN} = 500mV$, no load, SD channel on, FHD channel off		3.67		mA
		$+V_{S} = 5V, V_{IN} = 500mV$, no load, SD channel off, FHD channel on		11.27		mA
		+V _S = 5V, V _{IN} = 500mV, no load, all channels off		1		μA
I _{CLAMP-DOWN}	Clamp Discharge Current	V _{IN} =300mV, measure current	1.5	2.0	5.1	μA
I _{CLAMP-UP}	Clamp Charge Current	V _Y = -0.2V	-1.5	-1.7		mA
V _{CLAMP}	Input Voltage Clamp	Ι _Y = -100μΑ	-40	0	+40	mV
R _{IN}	Input Impedance	0.5V < V _Y < 1V	0.5	3		MΩ
AV	Voltage Gain	V _{IN} =0.5V,1V or 2V R _L =150Ω to GND	5.9	6.01	6.03	dB
ΔΑV	Channel Mismatch		-2		+2	%
V _{OLS}	Output Level Shift Voltage	V _{IN} = 0V, no load, input referred	53	80	124	mV
V _{OL}	Output Voltage Low Swing	V _{IN} = -0.3V, R _L =75Ω		0.05		V
V _{OH}	Output Voltage High Swing	V_{IN} = 3V, R _L =75 Ω to GND (dual load)		3.18		V
	Deven Oversky Deits stiere Detite	ΔV_{DD} = 3.3V to 3.6V		61		dB
PSRR	Power Supply Rejection Ratio	ΔV_{DD} = 5.0V to 5.5V, 50Hz		67		dB
1	Chart size it surrout	$V_{IN} = 2V$, 10 Ω , output to GND	65			mA
I _{SC}	Short-circuit current	V_{IN} =0.1V, output short to V_{DD}	65			mA
VIH	Disable Threshold	V _{DD} = 3.0V to 5.5V	1.6			V
VIL	Enable Threshold	V _{DD} = 3.0V to 5.5V			0.4	V
t _{ON}	Enable Time	V_{IN} = 500mV, V_{OUT} to 1%		1000		ns
t _{OFF}	Disable Time	V_{IN} = 500mV, V_{OUT} to 1%		1000		ns

Downloaded from Arrow.com.

TPF142 One CVBS and One Full-HD Composite Video Filter Driver

SYMBOL	PARA	METER	CONDITIONS	MIN	ТҮР	MAX	UNITS
AC Electric	al Specification	s					
-1dB	SD Channel	R ₁ =150Ω	7.6	8.2	9.1	MHz	
f₋ _{1dB}	Bandwidth	FHD Channel	K ^r =1907	53.1	63.2	72.9	IVI⊓∠
f	-3dB	SD Channel	· R∟=150Ω	7.8	9.0	10.5	MHz
f _{-3dB}	Bandwidth	FHD Channel	KT=1907	63.7	71.5	80.1	IVI⊓∠
۸ 4	Stop Band	SD Channel	f = 27MHz	38.2	57.2		dB
Att _{27MHz}	Attenuation	FHD Channel	f =148MHz	34.0	39.0		dB
dG	Differential Gai	n	Video input range 1V	-0.1	0.4	0.8	%
dP	Differential Pha	ase	Video input range 1V	-1.1	0.7	1.1	٥
TUD	Total	SD Channel	f=1MHz, V _{OUT} =1.4V _{PP}	0.03	0.1	0.2	%
THD	Harmonic Distortion	FHD Channel	f=10MHz, V _{OUT} =1.4V _{PP}		0.15		70
D/DT	Group Delay	SD Channel	f = 100kHz to 5MHz		5.4		
ו ט/ט	Variation	FHD Channel	f = 100kHz t0 60MHz		6.0		ns
X _{TALK}	Channel Crosst	alk	f = 1MHz, V _{OUT} =1.4V _{PP}	-68	-74		dB
SNR	Signal-to-Nois	SD Channel	f= 100kHz to 4.43MHz	65	69		- dB
SINK	e Ration	FHD Channel	f= 100kHz to 60MHz		64		uв
R _{OUT_AC}	输出阻抗		f = 10MHz		0.5		Ω
CLG	Chroma-Luma- Channel)	,	400kHz to 3.58MHz and 4.43MHz		0.18	0.4	dB
CLD	Chroma-Luma- Channel)	Delay (SD	400kHz to 3.58MHz and 4.43MHz		5		ns

Typical Performance Characteristics All test condition is VDD = 3.3V, TA = +25°C, RL = 150Ω to GND, unless otherwise noted.

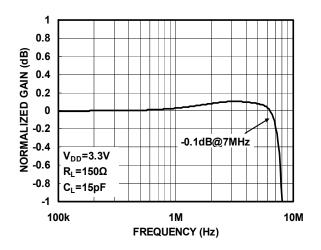


Figure1. Small-Scale Frequency Response(SD Channel)

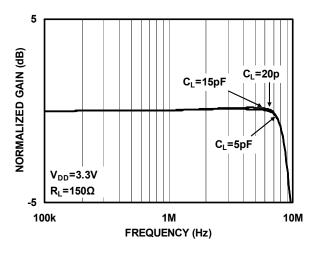


Figure3. Gain Vs. Frequency With CLOAD (SD Channel)

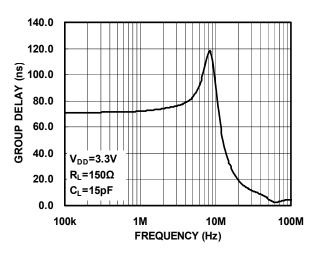


Figure5. Group Delay vs Frequency(SD Channel)

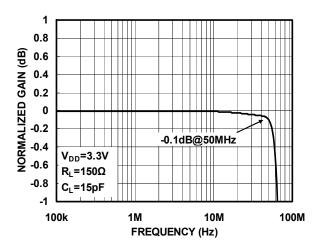


Figure2. Small-Scale Frequency Response(FHD Channel)

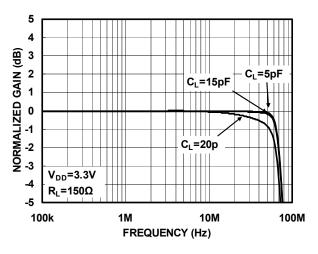


Figure4. Gain Vs. Frequency With CLOAD(FHD Channel)

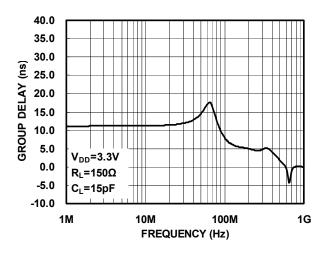


Figure6. Group Delay vs Frequency(FHD Channel)

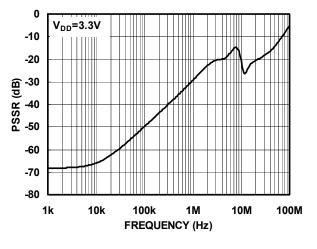


Figure7. PSRR Vs. Frequency(SD)

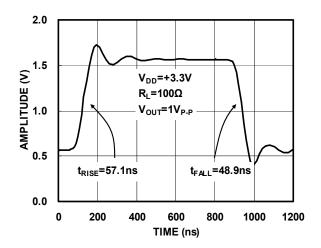


Figure9. Large-Signal Pulse Response Vs. Time(SD Channel)

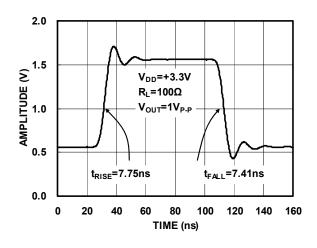


Figure11. Large-Signal Pulse Response Vs. Time(FHD Channel)

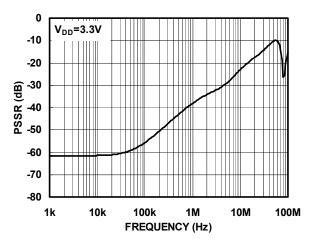


Figure8. PSRR Vs. Frequency(FHD)

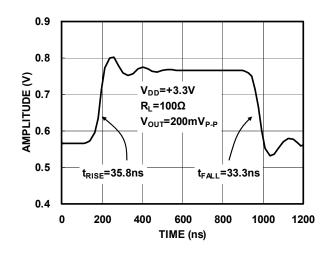


Figure 10. Small-Signal Pulse Response Vs. Time(SD Channel)

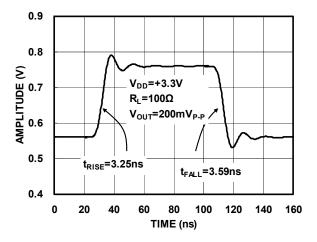


Figure11. Small-Signal Pulse Response Vs. Time(FHD Channel)

©2014 3PEAK INCORPORATED

Application Information

The TPF142 is targeted for systems that require a single standard-definition (CVBS) video output for CVBS video support along with single high-definition (HD) video outputs. Although it can be used for numerous other applications, the needs and requirements of the video signal are the most important design parameters of the TPF142. The TPF142 incorporates many features not typically found in integrated video parts while consuming very low power.

Internal Sync Clamp

The typical embedded video DAC operates from a ground referenced single supply. This becomes an issue because the lower level of the sync pulse output may be at a 0V reference level to some positive level. The problem is presenting a 0V input to most single supply driven amplifiers will saturate the output stage of the amplifier resulting in a clipped sync tip and degrading the video image. A larger positive reference may offset the input above its positive range.

The TPF142 features an internal sync clamp and offset function to level shift the entire video signal to the best level before it reaches the input of the amplifier stage. These features are also helpful to avoid saturation of the output stage of the amplifier by setting the signal closer to the best voltage range.

The simplified block diagram of the TPF142 in Page-1. The AC coupled video sync signal is pulled negative by a current source at the input of the comparator amplifier. When the sync tip goes below the comparator threshold the output comparator is driven negative, The PMOS device turns on clamping sync tip to near ground level. The network triggers on the sync tip of video signal.

Droop Voltage and DC Restoration

Selection of the input AC-coupling capacitance is based on the system requirements. A typical sync tip width of a 64 μ s NTSC line is 4 μ s during which clamp circuit restores its DC level. In the remaining 60 μ s period, the voltage droops because of a small constant 2.0 μ A sinking current. If the AC-coupling capacitance is 0.1μ F, the maximum droop voltage is about 1mV which is restored by the clamp circuit. The maximum pull-up current of the clamp circuit is 1.7mA. For a 4µs sync tip width and 0.1μ F capacitor, the maximum restoration voltage is about 80mV.

The line droop voltage will increase if a smaller AC-coupling capacitance is used. For the same reason, if larger capacitance is used the line droop voltage will decrease. Table 1 is droop voltage and maximum restoration voltage of the clamp for typical capacitance.

CAP VALUE (nF)	DROOP IN 60µs (mV)	CHARGE IN 4µs (mV)
100	1.2	68
1,000	0.12	6.8

Table 1. Maximum restoration voltage and droop voltage of Y and CVBS signals for different capacitance

Low Pass Filter--Sallen Key

The Sallen Key is a classic low pass configuration. This provides a very stable low pass function, and in the case of the TPF142, two six-pole roll-off at around 9MHz and 72MHz. The six-pole function is accomplished with an RC low pass network placed in series with and before the Sallen Key.

Output Couple

TPF142 output could support both "AC Couple" and "DC Couple", if use "AC Couple", this capacitor is typically between 220- μ F and 1000- μ F, although 470- μ F is common. This value of this capacitor must be this large to minimize the line tilt (droop) and/or field tilt associated with ac-coupling as described previously in this document.

The TPF142 internal sync clamp makes it possible to DC couple the output to a video load, eliminating the need for any AC coupling capacitors, thereby saving board space and additional expense for capacitors. This makes the TPF142 extremely attractive for portable video applications. Additionally, this solution completely eliminates the issue of field tilt in the lower frequency. The trade off is greater demand of supply current. Typical load current for AC coupled is around

1mA, compared to typical 6.6mA used when DC coupling.

Output Drive Capability and Power Dissipation

With the high output drive capability of the TPF142, it is possible to exceed the +125°C absolute maximum junction temperature under certain load current conditions. Therefore, it is important to calculate the maximum junction temperature for an application to determine if load conditions or package types need to be modified to assure operation of the amplifier in a safe operating area. The maximum power dissipation allowed in a package is determined according to Equation:

$$PD_{MAX} = \frac{T_{JMAX} - T_{AMAX}}{\theta_{II}}$$

Where: T_{JMAX} = Maximum junction temperature T_{AMAX} = Maximum ambient temperature Θ_{JA} = Thermal resistance of the package

The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the load, or: for sourcing:

$$PD_{MAX} = V_{\rm s} \times I_{SMAX} + (V_{\rm s} - V_{OUT}) \times \frac{V_{OUT}}{R_{\rm L}}$$

By setting the two PDMAX equations equal to each other, we can solve the output current and RLOAD to avoid the device overheat.

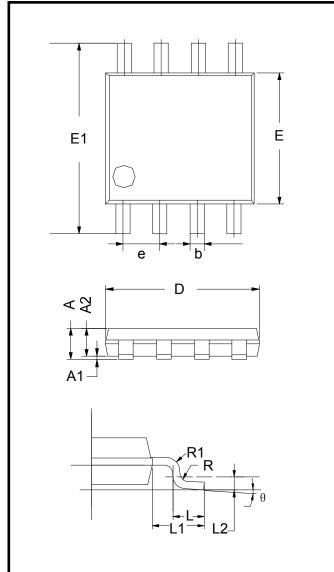
Power Supply Bypassing Printed Circuit Board Layout

As with any modern operational amplifier, a good printed circuit board layout is necessary for optimum performance. Lead lengths should be as short as possible. The power supply pin must be well bypassed to reduce the risk of oscillation. For normal single supply operation, a single 4.7μ F tantalum capacitor in parallel with a 0.1μ F ceramic capacitor from VS+ to GND will suffice.

VIDEO FILTER DRIVER SELECTION GUIDE

P/N	Product Description	Channel	-3dB Bandwidth	Package
TPF110	Low power, enable function and	1-SD	9MHz	SC70-5
/TPF110L	SAG correction, 1 channel 6 th order 9MHz			SOT23-6
TPF113	Low power 3 channel, 6th-order 9MHz SD video filter	3-SD	9MHz	SO-8
TPF114	Low power 4 channel, 6th-order	4-SD	9MHz	MSOP-10
	9MHz SD video filter			TSSOP-14
TPF116	Low power 4 channel, 6th-order 9MHz SD video filter for CVBS, SVIDEO	6-SD	9MHz	TSSOP-14
TPF123	3 channel 6th-order 13.5MHz, 960H/720H-CVBS video filter or Y'Pb'Pr 480P/576P video filter	3-ED	13.5MHz	SO-8
TPF133	Low power 3 channel, 6th-order 36MHz HD video filter	3-HD	36MHz	SO-8
TPF134	Low power 3 channel, 6th-order	1-SD&	9MHz	MSOP-10

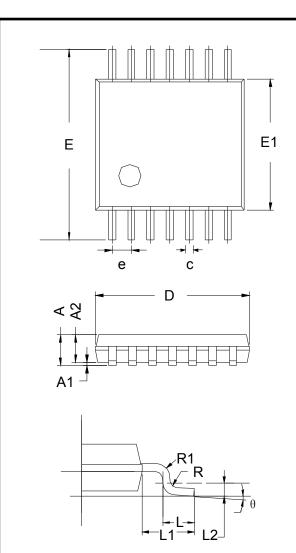
	36MHz HD video filter and 1 channel	3-SD	36MHz	TSSOP-14
	SD video filter			
TPF136	Low power 3 channel, 6th-order	3-SD&	9MHz	TSSOP-20
	36MHz HD video filter and 3 channel	3-HD	36MHz	
	SD video filter			
TPF143	Low power 3 channel, 6th-order	3-FHD	72MHz	SO-8
	72MHz Full HD video filter			
TPF144	Low power 3 channel, 6th-order	1-SD&	9MHz	MSOP-10
	72MHz Full HD video filter and 1	3-FHD	72MHz	TSSOP-14
	channel SD video filter			
TPF146	Low power 3 channel, 6th-order	3-SD&	9MHz	TSSOP-20
	72MHz Full HD video filter and3	3-FHD	72MHz	
	channel SD video filter			
TPF153	Low power 3 channel, 6th-order	3-CH	220MHz	SO-8
	220MHz Full HD video filter			


Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest revision.

Revision	Change
Rev1.0	Initial Release
	Delete VIH Max Value data, Add VIH Min Value data 1.6V on page 4
Rev1.1	Delete VIL Min Value data, Add VIL Max Value data 0.4V on page 4
	Change page header Date from @2013 to @2014

Package Outline Dimensions


10 Lead MSOP Package——Main Body 3.00 mm [MSOP_N]

	Dimensions		Dimensions	In		
Symbol	In Millimeters		mbol In Millimeters		Inches	
	Min	Мах	Min	Мах		
А	0.800	1.200	0.031	0.047		
A1	0.000	0.200	0.000	0.008		
A2	0.760	0.970	0.030	0.038		
b	0.30 TYP		0.012 TYP			
С	0.15 TYP		0.006 TYP			
D	2.900	3.100	0.114	0.122		
е	0.65 TYP		0.026			
E	2.900	3.100	0.114	0.122		
E1	4.700	5.100	0.185	0.201		
L1	0.410	0.650	0.016	0.026		
θ	0°	6°	0°	6°		

Package Outline Dimensions

14 Lead TSSOP Package——Main Body 4.40 mm [TSSOP_N]

Symbol	Dimensions In Millimeters				
,	MIN	MIN TYP			
А	-	-	1.20		
A1	0.05	-	0.15		
A2	0.90	1.00	1.05		
b	0.20	-	0.28		
С	0.10	-	0.19		
D	4.86	4.96	5.06		
Е	6.20	6.40	6.60		
E1	4.30	4.40	4.50		
е		0.65 BSC			
L	0.45	0.60	0.75		
L1		1.00 REF			
L2		0.25 BSC			
R	0.09	-	-		
θ	0°	-	8°		

IMPORTANT NOTICE

"PRELIMINARY" PRODUCT INFORMATION DESCRIBES PRODUCTS THAT ARE IN PRODUCTION, BUT FOR WHICH FULL CHARACTERIZATION DATA IS NOT YET AVAILABLE.

3PEAKIC MICROELECTRONICS CO. LTD BELIEVES THAT THE INFORMATION CONTAINED IN THIS DOCUMENT IS ACCURATE AND RELIABLE. HOWEVER, THE INFORMATION IS SUBJECT TO CHANGE WITHOUT NOTICE AND IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND (EXPRESS OR IMPLIED). CUSTOMERS ARE ADVISED TO OBTAIN THE LATEST VERSION OF RELEVANT INFORMATION TO VERIFY, BEFORE PLACING ORDERS, THAT INFORMATION BEING RELIED ON IS CURRENT AND COMPLETE. ALL PRODUCTS ARE SOLD SUBJECT TO THE TERMS AND CONDITIONS OF SALE SUPPLIED AT THE TIME OF ORDER ACKNOWLEDGMENT, INCLUDING THOSE PERTAINING TO WARRANTY, INDEMNIFICATION, AND LIMITATION OF LIABILITY. NO RESPONSIBILITY IS ASSUMED BY 3PEAKIC MICROELECTRONICS CO. LTD FOR THE USE OF THIS INFORMATION, INCLUDING USE OF THIS INFORMATION AS THE BASIS FOR MANUFACTURE OR SALE OF ANY ITEMS, OR FOR INFRINGEMENT OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES. THIS DOCUMENT IS THE PROPERTY OF 3PEAKIC MICROELECTRONICS CO. LTD AND BY FURNISHING THIS INFORMATION, 3PEAKIC MICROELECTRONICS CO. LTD GRANTS NO LICENSE, EXPRESS OR IMPLIED UNDER ANY PATENTS, MASK WORK RIGHTS, COPYRIGHTS, TRADEMARKS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS. 3PEAKIC MICROELECTRONICS CO. LTD OWNS THE COPYRIGHTS ASSOCIATED WITH THE INFORMATION CONTAINED HEREIN AND GIVES CONSENT FOR COPIES TO BE MADE OF THE INFORMATION ONLY FOR USE WITHIN YOUR ORGANIZATION WITH RESPECT TO 3PEAKIC MICROELECTRONICS CO. LTD INTEGRATED CIRCUITS OR OTHER PRODUCTS OF 3PEAKIC MICROELECTRONICS CO. LTD. THIS CONSENT DOES NOT EXTEND TO OTHER COPYING SUCH AS COPYING FOR GENERAL DISTRIBUTION, ADVERTISING OR PROMOTIONAL PURPOSES, OR FOR CREATING ANY WORK FOR RESALE.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). 3PEAKIC MICROELECTRONICS CO. LTD PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF 3PEAKIC MICROELECTRONICS CO. LTD PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND INCLUSION DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY DISCLAIMS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF 3PEAKIC MICROELECTRONICS CO. LTD PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY 3PEAKIC MICROELECTRONICS CO. LTD, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

THE LOGO DESIGNS OF 3PEAKIC MICROELECTRONICS CO. LTD ARE TRADEMARKS OF DESIGNS. ALL OTHER BRAND AND PRODUCT NAMES IN THIS DOCUMENT MAY BE TRADEMARKS OR SERVICE MARKS OF THEIR RESPECTIVE OWNERS.

Contact information: USA: 635 W. Alma School Road, Suite102 Chandler, USA. AZ 85234 Shanghai-China: Room 401-407 No.1278 Keyuan Road, Zhangjiang High-tech Park, Pudong New District, Shanghai, China Zip Code: 201203 Suzhou-China: Suite 304, Building B2, Creative Industrial Park, No.328 Xinghu Street, Industrial Park, Suzhou, Jiangsu Province, China Zip Code: 215123