Contents STU60N3LH5

## **Contents**

| 1 | Electric                   | 3                                   |    |
|---|----------------------------|-------------------------------------|----|
| 2 | Electrical characteristics |                                     | 4  |
|   | 2.1                        | Electrical characteristics (curves) | 6  |
| 3 | Test cir                   | ·cuits                              | 8  |
| 4 | Package information        |                                     | 9  |
|   | 4.1                        | IPAK package information            | 9  |
| 5 | Revisio                    | n history                           | 11 |



Downloaded from Arrow.com.

STU60N3LH5 Electrical ratings

# 1 Electrical ratings

Table 2: Absolute maximum ratings

| Symbol                         | Parameter                                                    | Value      | Unit |
|--------------------------------|--------------------------------------------------------------|------------|------|
| V <sub>DS</sub>                | Drain-source voltage                                         | 30         | V    |
| $V_{DS}$                       | Drain-source voltage @ T <sub>jmax</sub>                     | 35         | V    |
| V <sub>G</sub> s               | Gate-source voltage                                          | ±20        | V    |
| I <sub>D</sub> <sup>(1)</sup>  | Drain current (continuous) at T <sub>C</sub> = 25 °C         | 48         | Α    |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 100 °C        | 42.8       | Α    |
| I <sub>DM</sub> <sup>(2)</sup> | Drain current (pulsed)                                       | 192        | Α    |
| Ртот                           | P <sub>TOT</sub> Total dissipation at T <sub>C</sub> = 25 °C |            | W    |
|                                | Derating factor                                              | 0.4        | W/°C |
| E <sub>AS</sub> <sup>(3)</sup> | Single pulse avalanche energy                                | 160        | mJ   |
| TJ                             | T <sub>J</sub> Operating junction temperature range          |            | °C   |
| T <sub>stg</sub>               | Storage temperature range                                    | -55 to 175 |      |

#### Notes:

Table 3: Thermal data

| Symbol                | Parameter                                              | Value | Unit |  |
|-----------------------|--------------------------------------------------------|-------|------|--|
| R <sub>thj-case</sub> | R <sub>thj-case</sub> Thermal resistance junction-case |       | ۰۵۸۷ |  |
| R <sub>thj-amb</sub>  | Thermal resistance junction-ambient                    | 100   | °C/W |  |

<sup>&</sup>lt;sup>(1)</sup>Limited by wire bonding.

 $<sup>\</sup>ensuremath{^{(2)}}\mbox{Pulse}$  width limited by safe operating area.

 $<sup>^{(3)}</sup>Starting~T_j$  = 25 °C,  $I_D$  = 24 A,  $V_{DD}$  = 12 V.

Electrical characteristics STU60N3LH5

### 2 Electrical characteristics

T<sub>C</sub> = 25 °C unless otherwise specified

Table 4: On/off-state

| Symbol               | Parameter                             | Test conditions                                                                        | Min. | Тур.   | Max.   | Unit |
|----------------------|---------------------------------------|----------------------------------------------------------------------------------------|------|--------|--------|------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown voltage        | V <sub>GS</sub> = 0, I <sub>D</sub> = 250 μA                                           | 30   |        |        | V    |
|                      | Zara goto voltogo droin               | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = 30 V                                          |      |        | 1      | μΑ   |
| IDSS                 | Zero gate voltage drain<br>current    | $V_{GS} = 0 \text{ V}, V_{DS} = 30 \text{ V};$<br>$T_{C} = 125 \text{ °C} \text{ (1)}$ |      |        | 10     | μΑ   |
| Igss                 | Gate body leakage current             | V <sub>DS</sub> = 0 V,<br>V <sub>GS</sub> = ±20 V                                      |      |        | ±100   | nA   |
| V <sub>GS(th)</sub>  | Gate threshold voltage                | V <sub>DS</sub> = V <sub>GS</sub> ,<br>I <sub>D</sub> = 250 μA                         | 1    | 1.8    | 3      | V    |
| Б                    | Static drain-source on-<br>resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 24 A                                          |      | 0.0076 | 0.0084 | Ω    |
| R <sub>DS(on)</sub>  |                                       | $V_{GS} = 5 \text{ V}, I_D = 24 \text{ A}$                                             |      | 0.0092 | 0.0114 | Ω    |

#### Notes:

Table 5: Dynamic

| Symbol          | Parameter                    | Test conditions                                             | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------|-------------------------------------------------------------|------|------|------|------|
| Ciss            | Input capacitance            |                                                             | -    | 1350 | 1620 | pF   |
| Coss            | Output capacitance           | V <sub>DS</sub> = 25 V, f = 1 MHz,<br>V <sub>GS</sub> = 0 V |      | 265  | 318  | pF   |
| Crss            | Reverse transfer capacitance | V 60 = V V                                                  | -    | 32   | 38   | pF   |
| $Q_g$           | Total gate charge            | $V_{DD} = 15 \text{ V}, I_D = 48 \text{ A},$                | -    | 8.8  | 12.3 | nC   |
| $Q_{gs}$        | Gate-source charge           | V <sub>GS</sub> = 5 V,<br>(see <i>Figure 14: "Test</i>      | -    | 4.7  | 6.6  | nC   |
| Q <sub>gd</sub> | Gate-drain charge            | circuit for gate charge<br>behavior")                       | -    | 2.2  | 3.1  | nC   |
| R <sub>G</sub>  | Intrinsic gate resistance    | f = 1 MHz, I <sub>D</sub> =0 A                              | -    | 1.1  | 1.3  | Ω    |

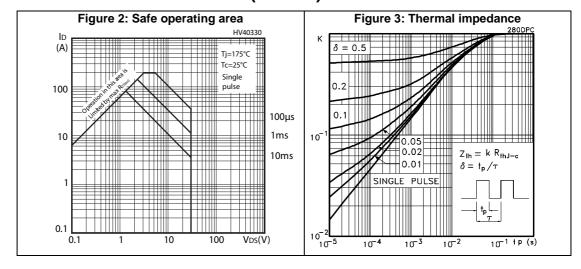
**Table 6: Switching times** 

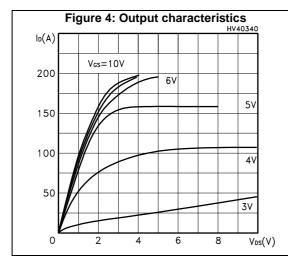
| Symbol              | Parameter           | Test conditions                                                                          | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|------------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | $V_{DD}$ = 10 V, $I_{D}$ = 24 A,                                                         | -    | 6    | -    | ns   |
| tr                  | Rise time           | R <sub>G</sub> = 4.7 $\Omega$ , V <sub>GS</sub> = 10 V<br>(see <i>Figure 13: "Test</i> " | -    | 33   | -    | ns   |
| t <sub>d(off)</sub> | Turn-off delay time | circuit for resistive load                                                               | -    | 19   | -    | ns   |
| t <sub>f</sub>      | Fall time           | switching times" and Figure 18: "Switching time waveform")                               | -    | 4.2  | -    | ns   |

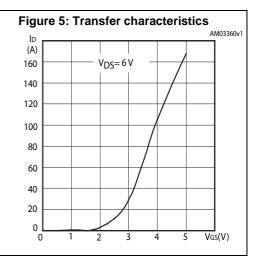
 $<sup>\</sup>ensuremath{^{(1)}}\mbox{Defined}$  by design, not subject to production test.

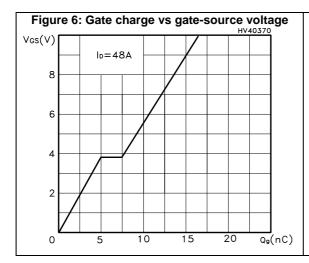
Table 7: Source-drain diode

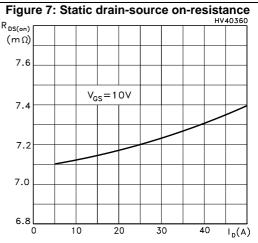
| Symbol                          | Parameter                     | Test conditions                                              | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|--------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                              | -    |      | 48   | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                              | -    |      | 192  | Α    |
| V <sub>SD</sub> <sup>(2)</sup>  | Forward on voltage            | I <sub>SD</sub> = 24 A, V <sub>GS</sub> = 0 V                | -    |      | 1.1  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 48 A, di/dt = 100 A/µs,                    | -    | 25   |      | ns   |
| Qrr                             | Reverse recovery charge       | V <sub>DD</sub> = 20 V,<br>(see Figure 15: "Test circuit for | ı    | 18.5 |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | inductive load switching and diode recovery times")          | -    | 1.5  |      | Α    |


### Notes:





<sup>&</sup>lt;sup>(1)</sup>Pulse width limited by safe operating area


 $<sup>^{(2)}\</sup>text{Pulsed:}$  pulse duration = 300  $\mu\text{s,}$  duty cycle 1.5%


## 2.2 Electrical characteristics (curves)











6/12

STU60N3LH5 Electrical characteristics

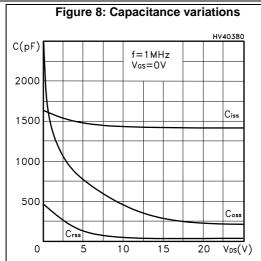



Figure 9: Normalized gate threshold voltage vs temperature

VGS(th)
(norm)

1.2

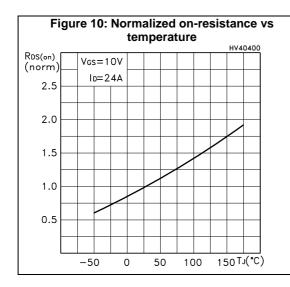
1.0

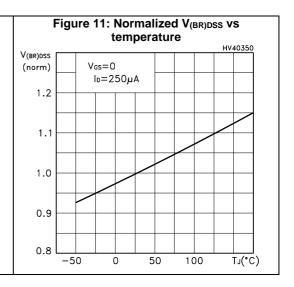
0.8

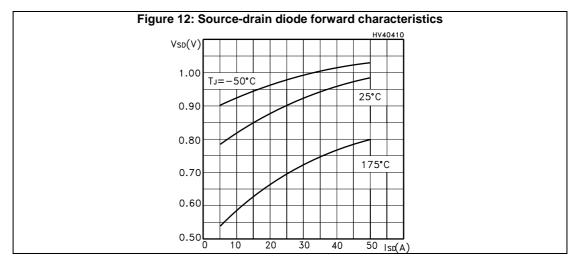
0.6

0.4

0.2


-50


0


50

100

150 TJ (°C)



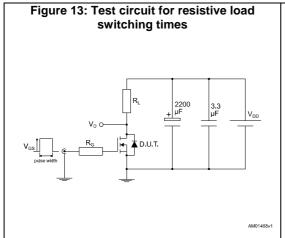


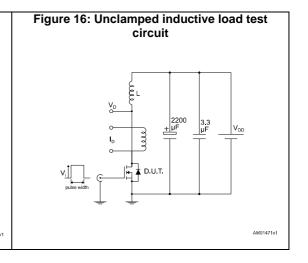


57/

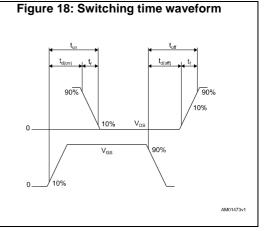
Test circuits STU60N3LH5

### 3 Test circuits





Figure 14: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.


2200 D.U.T.

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times







577

8/12 DocID025133 Rev 1

STU60N3LH5 Package information

## 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

### 4.1 IPAK package information

Figure 19: IPAK (TO-251) type A package outline *L2* D b2 (3x) Н **b** (3x) A 1 B5 0068771\_IK\_typeA\_rev14 e 1

**\7**/

DocID025133 Rev 1

Table 8: IPAK (TO-251) type A package mechanical data

| Dim  |      | mm    |      |
|------|------|-------|------|
| Dim. | Min. | Тур.  | Max. |
| A    | 2.20 |       | 2.40 |
| A1   | 0.90 |       | 1.10 |
| b    | 0.64 |       | 0.90 |
| b2   |      |       | 0.95 |
| b4   | 5.20 |       | 5.40 |
| B5   |      | 0.30  |      |
| С    | 0.45 |       | 0.60 |
| c2   | 0.48 |       | 0.60 |
| D    | 6.00 |       | 6.20 |
| Е    | 6.40 |       | 6.60 |
| е    |      | 2.28  |      |
| e1   | 4.40 |       | 4.60 |
| Н    |      | 16.10 |      |
| L    | 9.00 |       | 9.40 |
| L1   | 0.80 |       | 1.20 |
| L2   |      | 0.80  | 1.00 |
| V1   |      | 10°   |      |

STU60N3LH5 Revision history

# 5 Revision history

**Table 9: Document revision history** 

| Date        | Revision | Changes          |
|-------------|----------|------------------|
| 09-Jun-2016 | 1        | Initial release. |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

