

ABSOLUTE MAXIMUM RATINGS

Input Voltage, V _{IN}	6.5 V
SD Input Voltage, V _{SD}	
Output Current, I _{OUT}	Short Circuit Protected
Output Voltage, V _{OUT}	-0.3 V to V _{O(nom)} + 0.3 V
Maximum Junction Temperature, T _{J(max)}	150°C
Storage Temperature, T _{STG}	$\dots \dots -65^{\circ}C$ to $125^{\circ}C$
ESD (Human Body Model)	

Power Dissipation (Package) ^a , b 5-Pin SOT-23 555 mW
5-Pill 501-23 505 lilvy
Thermal Impedance (Θ _{JA})
5-Pin SOT-23
Notes
a Device mounted with all leads soldered or welded to multi-layer (1S2P)

. Device mounted with all leads soldered or welded to multi-layer (1S2P) JEDEC board, horizontal orientation.

b. Derate 5.5 mW/°C above $T_A = 25^{\circ}C$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE

Input Voltage, V _{IN}	2 V to 6 V
Output Voltage, V _{OUT} (Adjustable Version)1	.5 V to 5 V
SD Input Voltage, V _{SD}	0 V to V _{IN}

 $\label{eq:constant} \begin{array}{l} \mbox{Operating Ambient Temperature, } T_A & \dots & -40^\circ C \mbox{ to } 85^\circ C \\ \mbox{Operating Junction Temperature, } T_J & \dots & -40^\circ C \mbox{ to } 125^\circ C \\ \end{array}$

 $\begin{array}{l} C_{IN}=1 \ \mu F, \ C_{OUT}=2.2 \ \mu F \ (ceramic, \ X5R \ or \ X7R \ type) \ , \ C_{BP}=0.1 \ \mu F \ (ceramic) \\ C_{OUT}Range=1 \ \mu F \ to \ 10 \ \mu F \ (\pm 20\% \ tolerance, \ \pm 20\% \ over \ temperature; \ ESR=0.4 \ to \ 4 \ \Omega \ at \ dc \ to \ 100 \ kHz, \ 0 \ to \ 0.4 \ \Omega \ > \ 100 \ kHz) \) \end{array}$

SPECIFICATIONS (T_A = 25°C) **Test Conditions** Limits **Unless Otherwise Specified** -40 to 85°C $V_{IN} = V_{OUT(nom)} + 1 V$, $I_{OUT} = 1 mA$ Parameter Symbol $C_{IN} = 1 \ \mu F, C_{OUT} = 2.2 \ \mu F, V_{SD} = 1.5 \ V$ Min^b Typc Max^b Unit Tempa Input Voltage Range V_{IN} Full 2 6 v **Output Voltage Range** Adjustable Version Full 1.5 5 -1.5 1.5 Room VOUT **Output Voltage Accuracy** $1 \text{ mA} \le I_{OUT} \le 150 \text{ mA}$ % V_{O(nom)} (Fixed Versions) Full -2.5 2.5 1.188 Room 1.215 1.240 v Feedback Voltage (ADJ version) V_{FB} Full 1.176 1.252 $\frac{\text{From V}_{\text{IN}} = \text{V}_{\text{OUT(nom)}} + 1 \text{ V}}{\text{to V}_{\text{OUT(nom)}} + 2 \text{ V}}$ Line Regulation Full -0.18 0.18 (Except 5-V Version) $\Delta V_{\text{OUT}} \times 100$ Line Regulation (5-V Version) From $V_{IN} = 5.5 \text{ V to } 6 \text{ V}$ Full -0.18 0.18 %/V $V_{IN} \times V_{OUT(nom)}$ V_{OUT} = 1.5 V, From V_{IN} = 2.5 V to 3.5 V Full -0.18 0.18 Line Regulation (ADJ Version) $V_{OUT} = 5 V$, From $V_{IN} = 5.5 V$ to 6 VFull -0.18 0.18 $I_{OUT} = 10 \text{ mA}$ Room 1 20 Dropout Voltaged 135 170 Room VIN - VOUT $@V_{OUT} \ge 2.5 V)$ $I_{OUT} = 150 \text{ mA}$ Full 180 220 mV 235 320 Room Dropout Voltaged VIN - VOUT I_{OUT} = 150 mA $(@\dot{V}_{OUT} < 2.5 \text{ V}, V_{IN} \ge 2 \text{ V})$ Full 380 $I_{OUT} = 0 \text{ mA}$ Room 150 Ground Pin Current Room 500 IGND μA I_{OUT} = 150 mA Full 900 Shutdown Supply Current $V_{SD} = 0 V$ Full 0.1 1 uΑ IIN(off) FB Pin Current V_{FB} = 1.2 V 100 Room 2 nΑ I_{FB} Peak Output Current $V_{OUT} \ge 0.95 \text{ x } V_{OUT(nom)}, t_{pw} = 2 \text{ ms}$ 300 Room 250 mΑ IO(peak) 300 w/o C_{BP} Room BW = 50 Hz to 100 kHz Output Noise Voltage μV (rms) e_N $I_{OUT} = 150 \text{ mA}$ $C_{BP} = 0.1 \, \mu F$ Room 100

www.vishay.com 2

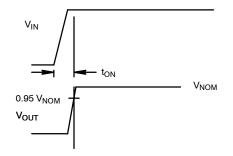
SPECIFICATIONS (T _A = 25° C)									
		Test Conditions Unless Otherwise Specified			Limits -40 to 85°C				
Parameter	VIN = VOUT(nom) + 1 V, IOUT = 1 mA Parameter Symbol CIN = 1 µF, COUT = 2.2 µF, VSD = 1.5 V		Temp ^a	Min ^b	Тур ^с	Max ^b	Unit		
			f = 1 kHz	Room		60			
Ripple Rejection	$\Delta V_{OUT} / \Delta V_{IN}$	l _{OUT} = 150 mA	f = 10 kHz	Room		40		dB	
			f = 100 kHz	Room		30			
Dynamic Line Regulation	$\Delta V_{O(line)}$			Room		10		mV	
Dynamic Load Regulation	$\Delta V_{O(load)}$	I_{OUT} : 1 mA to 150 mA, $t_{\text{R}}/t_{\text{F}}$ = 2 μs		Room		30			
у <u>т о т</u>	t _{ON}	V _{IN} = 4.3 V V _{OUT} = 3.3 V	w/o C _{BP} Cap	Room		5		μs	
V _{OUT} Turn-On-Time			C _{BP} = 0.1 μF	Room		1000			
Thermal Shutdown		•	•		•	•	• •		
Thermal Shutdown Junction Temp	t _{J(s/d)}			Room		165			
Thermal Hysteresis	t _{HYST}			Room		20		°C	
Short Circuit Current	I _{SC}	V _{OUT} = 0 V		Room		400		mA	
Shutdown Input					•	•			
	V _{IH}	High = Regulator ON (Rising)		Full	1.2		V _{IN}		
SD Input Voltage	VIL	Low = Regulator OFF (Falling)		Full			0.4	V	
	IIL	$V_{SD} = 0 V$, Regulator OFF		Room		0.01			
SD Input Current ^e	IIH	$V_{SD} = 6 V$, Regulator ON		Room		1.0		μA	
Shutdown Hysteresis	V _{HYST}	+		Full	1	100		mV	

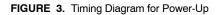
Notes a. Room = 25° C, Full = -40 to 85° C.

The algebraic convention whereby the most negative value is a minimum and the most positive a maximum. b.

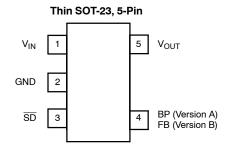
Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Typical values for dropout voltage at $V_{OUT} \ge 2$ V are measured at $V_{OUT} = 2.5$ V, while typical values for dropout voltage at $V_{OUT} < 2$ V are measured at $V_{OUT} = 1.8$ V. Dropout voltage is defined as the input to output differential voltage at which the output voltage drops 2% below the output voltage measured with a 1-V c.

d. differential, provided that V_{IN} does not not drop below 2.0 V. The device's shutdown pin includes a typical 6-M Ω internal pull-down resistor connected to ground. V_{OUT} is defined as the output voltage of the DUT at 1 mA.


e. f.


Si9183

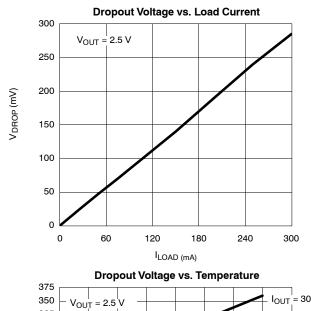
Vishay Siliconix

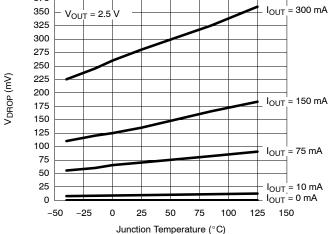


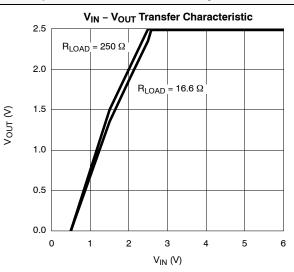
TIMING WAVEFORMS

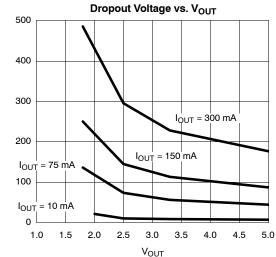
PIN CONFIGURATION

PIN DESCRIPTION					
Pin Number Name Function					
1	V _{IN}	Input supply pin. Bypass this pin with a 1-µF ceramic or tantalum capacitor to ground.			
2	GND	Ground pin. Local ground for CBP and COUT.			
3	SD	By applying less than 0.4 V to this pin, the device will be turned off. Connect this pin to V_{IN} if unused.			
4 (Version A)	BP Noise bypass pin. For low noise applications, a 0.1-μF or larger ceramic capacitor should be connected from this ground.				
4 (Version B)	FB	Connect to divided output voltage to adjust the regulation point.			
5	V _{OUT}	Output voltage. Connect C _{OUT} between this pin and ground.			

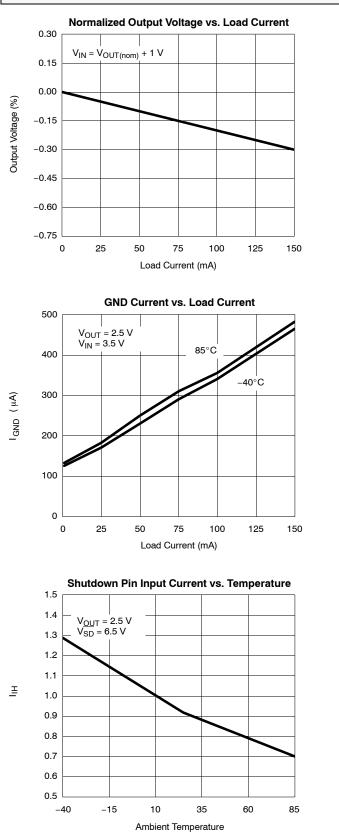

ORDERING INFORMATION					
Part Number	Lead (Pb)-Free Part Number	Marking	Voltage	Temperature Range	Package
Si9183DT-18-T1	Si9183DT-18-T1—E3	A2LL	1.8 V		
Si9183DT-25-T1	Si9183DT-25-T1—E3	A4LL	2.5 V		
Si9183DT-28-T1	Si9183DT-28-T1-E3	A5LL	2.8 V		
Si9183DT-285-T1	Si9183DT-285-T1—E3	B3LL	2.85 V	-40 to 85°C	Thin
Si9183DT-30-T1	Si9183DT-30-T1—E3	A6LL	3.0 V	-40 to 85°C	SOT23-5
Si9183DT-33-T1	Si9183DT-33-T1—E3	A7LL	3.3 V		
Si9183DT-50-T1	Si9183DT-50-T1—E3	A8LL	5.0 V		
Si9183DT-AD-T1	Si9183DT-AD-T1—E3	A9LL	Adjustable		

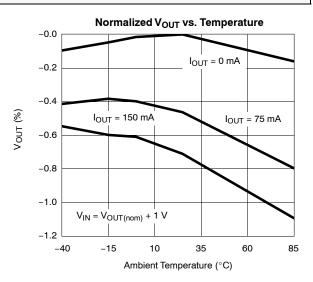

NOTE: LL = Lot Code


Eval Kit	Temperature Range	Board Type		
Si9183DB	–40 to 85°C	Surface Mount		

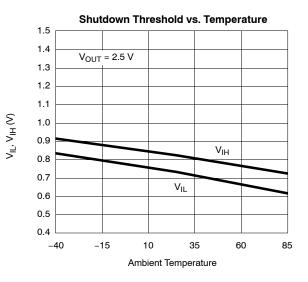

Dropout Voltage (mV)

TYPICAL CHARACTERISTICS (INTERNALLY REGULATED, 25°C UNLESS NOTED)

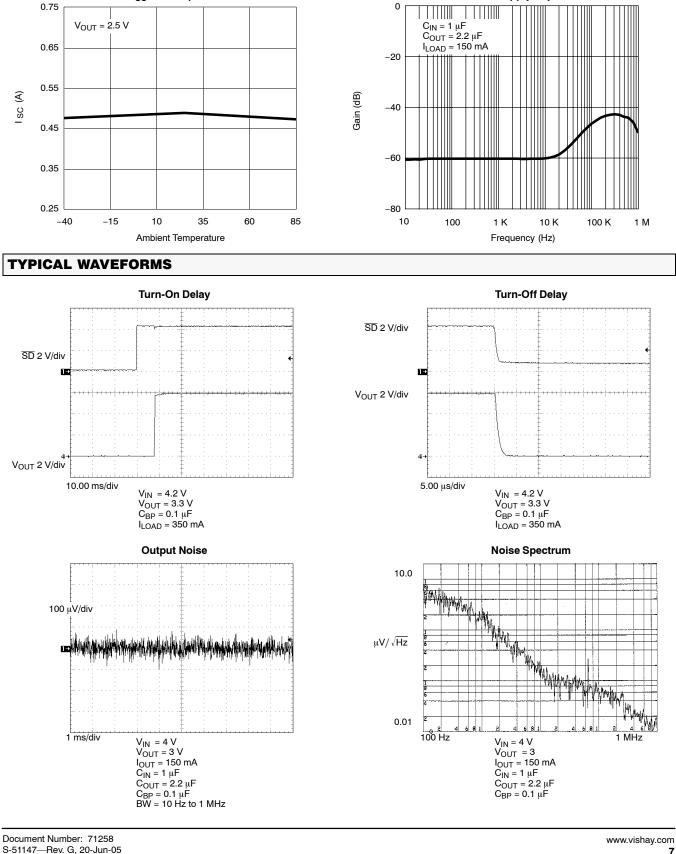



Document Number: 71258 S-51147—Rev. G, 20-Jun-05

Si9183

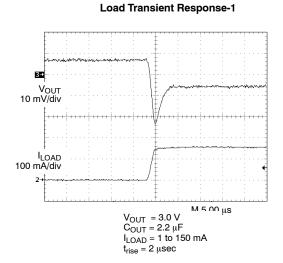


TYPICAL CHARACTERISTICS (INTERNALLY REGULATED, 25°C UNLESS NOTED)

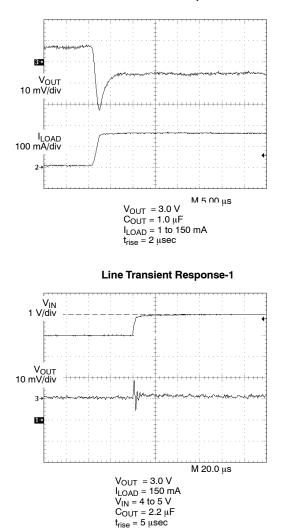


No Load GND Pin Current vs. Input Voltage 300 250 200 I_{GND} (μA) 85°C 150 -40°C 100 50 0 2 3 5 6 4 Input Voltage (V)

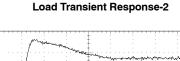
Power Supply Rejection

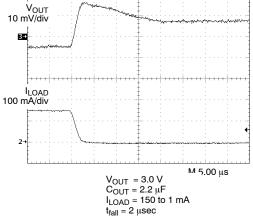


TYPICAL CHARACTERISTICS (INTERNALLY REGULATED, 25°C UNLESS NOTED)

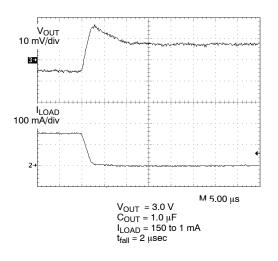

I_{SC} vs. Temperature

TYPICAL WAVEFORMS

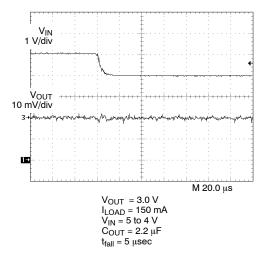




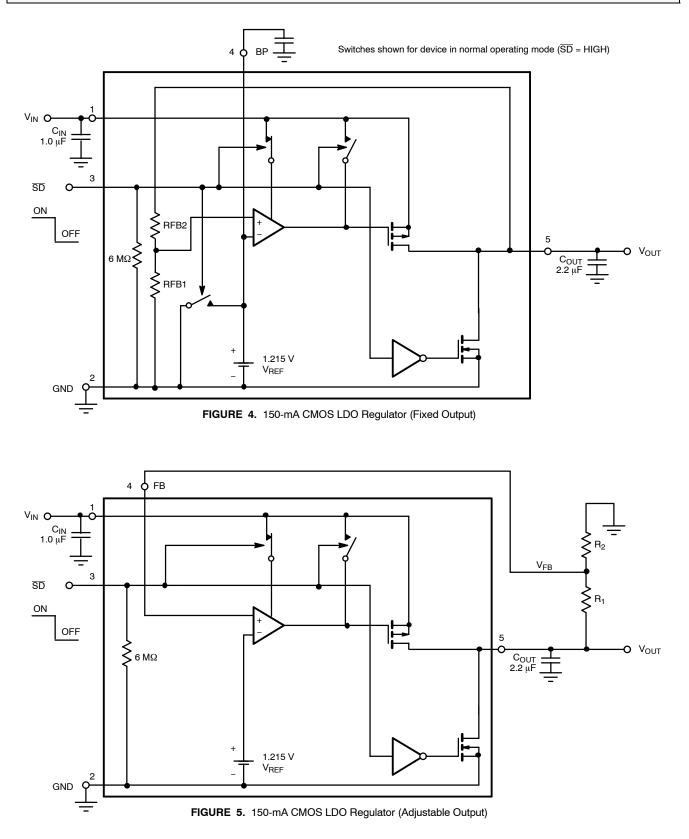
Load Transient Response-3



www.vishay.com **8**



Load Transient Response-4



Line Transient Response-2

BLOCK DIAGRAMS

Document Number: 71258 S-51147—Rev. G, 20-Jun-05

DETAILED DESCRIPTION

The Si9183 is a low drop out, low quiescent current, linear regulator family with very fast transient response. It is primarily designed for battery powered applications where battery run time is at a premium. The low quiescent current allows extended standby time while low drop out voltage enables the system to fully utilize battery power before recharge. The Si9183 is a very fast regulator with bandwidth exceeding 50 kHz while maintaining low quiescent current at light load conditions. With this bandwidth, the Si9183 is one of the fastest LDO available today. The Si9183 is stable with one of any output capacitor types from 1 μ F to 10.0 μ F. However, X5R or X7R ceramic capacitors are recommended for best output noise and transient performance.

VIN

 V_{IN} is the input supply pin. The bypass capacitor for this pin is not critical as long as the input supply has low enough source impedance. For practical circuits, a $1.0\text{-}\mu\text{F}$ or larger ceramic capacitor is recommended. When the source impedance is not low enough and/or the source is several inches from the Si9183, then a larger input bypass capacitor is needed. It is required that the equivalent impedance (source impedance, wire, and trace impedance in parallel with input bypass capacitor impedance) must be smaller than the input impedance of the Si9183 for stable operation. When the source impedance, wire, is recommended that an input bypass capacitor be used of a value that is equal to or greater than the output capacitor.

VOUT

 V_{OUT} is the output voltage of the regulator. Connect a bypass capacitor from V_{OUT} to ground. The output capacitor can be any value from 1.0 μF to 10.0 μF . A ceramic capacitor with X5R or X7R dielectric type is recommended for best output noise, line transient, and load transient performance.

GND

Ground is the common ground connection for V_{IN} and V_{OUT} . It is also the local ground connection for C_{BP} ADJ, and \overline{SD} .

ADJ

For the adjustable output version, use a resistor divider R1 and R2, connect R1 from V_{OUT} to ADJ and R2 from ADJ to ground. R2 should be in the 25-k Ω to 150-k Ω range for low power consumption, while maintaining adequate noise immunity.

The formula below calculates the value of R1, given the desired output voltage and the R2 value,

$$R1 = \frac{(V_{OUT} - V_{ADJ})R2}{V_{ADJ}}$$

$$V_{ADJ} \text{ is nominally 1.215 V.}$$
(1)

SHUTDOWN (SD)

 \overline{SD} controls the turning on and off of the Si9183. V_{OUT} is guaranteed to be on when the \overline{SD} pin voltage equals or is greater than 1.2 V. V_{OUT} is guaranteed to be off when the \overline{SD} pin voltage equals or is less than 0.4 V. During shutdown mode, the Si9183 will draw less than 1- μ A current from the source. To automatically turn on V_{OUT} whenever the input is applied, tie the \overline{SD} pin to V_{IN} .

CBP

For low noise application, connect a high frequency ceramic capacitor from C_{BP} to ground. A 0.01- μF or a 0.1- μF X5R or X7R is recommended.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71258.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.