
Input Select Decoding

SEL2	SEL1	OUTA [1-4]	OUTB [1-4]	Output Source (OUT0)	PLL
0	0	3-State	3-State	PLL	ON
0	1	PLL	3-State	PLL	ON
1	0	CLKIN	CLKIN	CLKIN	OFF
1	1	PLL	PLL	PLL	ON

Pin Description

Pin	Signal	Description
1	CLKIN	Input clock reference frequency (weak pull-down)
2, 3, 14, 15	OUTA[1-4]	Clock outputs, Bank A
4, 13	VDD	3.3V supply
5, 12	GND	Ground
6, 7, 10 ,11	OUTB[1-4]	Clock outputs, Bank B
8	SEL2	Select input, bit 2 (weak pull-up)
9	SEL1	Select input, bit 1 (weak pull-up)
16	OUT0	Clock Output, internal PLL feedback

Zero-Delay and Skew Control CLKIN Input to OUTx Delay vs. Difference in Loading between OUT0 pin and OUTx pins

The relationship between loading of the OUT0 signal and other outputs determines the input-output delay. Zero delay is achieved when all outputs, including feedback, are loaded equally.

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	-65°C to +150°C
Supply Voltage to Ground Potential	
DC Input Voltage	$-0.5V$ to $V_{\rm DD}$ +0.5V
ESD Protection (Input)	2000 V min (HBM)

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Conditions ($V_{CC} = 3.3V \pm 0.3V$)

Parameter	Description	Min.	Max.	Units	
$V_{ m DD}$	Supply Voltage	3.0	3.6	V	
Т.	Commercial Operating Temperature	0	70	°C	
T_{A}	Industrial Operating Temperature	-40	85		
C	Load Capacitance, below 100 MHz		30		
C_{L}	Load Capacitance, from 100 MHz to 133 MHz	-	15	pF	
C _{IN}	Input Capacitance	-	7		

DC Electrical Characteristics for Industrial Temperature Devices

Parameters	Description	Test Conditions	Min.	Max.	Units
V_{IL}	Input LOW Voltage			0.8	V
V_{IH}	Input HIGH Voltage		2.0		V
${ m I}_{ m IL}$	Input LOW Current	$V_{IN} = 0V$		50.0	۸
$I_{ m IH}$	Input HIGH Current	$V_{IN} = V_{DD}$		125	μΑ
V_{OL}	Output LOW Voltage	$I_{OL} = 12mA$		0.4	V
$V_{ m OH}$	Output HIGH Voltage	$I_{OH} = -12mA$	2.4		V
	Bypass, PLL OFF	SEL1 = 0, $SEL2 = 1$		1.0	
I_{DD}	Supply Current	Unloaded outputs 100 MHz, Select inputs at V_{DD} or GND		62	mA
		Unloaded outputs 66 MHz, CLKIN		44	

AC Electrical Characteristics for Industrial Temperature Devices

Parameters	Name	Test Conditions	Min.	Тур.	Max.	Units
E	Outrast Francisco	30pF load	10.0		100	MII-
F_{O}	Output Frequency	10pF load	10.0		133	MHz
t- a	Duty Cycle ⁽¹⁾	Measured at $V_{DD}/2$, $F_{OUT} = 66.67 \text{ MHz}$	40.0		60.0	%
t _{DC}	Duty Cycle ⁽¹⁾	Measured at V _{DD} /2V, F _{OUT} <50MHz	45.0	50	55.0	70
$t_{\rm R}$	Rise Time ⁽¹⁾	Measured between 0.8V and 2.0V			1.5	
t_{F}	Fall Time ⁽¹⁾	Measured between 0.8V and 2.0V			1.5	ns
t _{SK(O)}	Output to Output Skew ⁽¹⁾	All outputs equally loaded			250	
t_0	Delay, CLKIN Rising Edge to OUT0 Rising Edge ⁽¹⁾	Measured at V _{DD} /2		0	±350	ps
t _{SK(D)}	Device-to-Device Skew ⁽¹⁾	Measured at V _{DD} /2 on OUT0 pins of devices		0	700	
$t_{ m SLEW}$	Output Slew Rate ⁽¹⁾	Measured between 0.8V & 2.0V on –1H device using Test Crt #2	1			V/ns
t _{JIT}	Cycle-to-Cycle Jitter ⁽¹⁾	Measured at 66.67 MHz, loaded 30pF load			250	ps
t _{LOCK}	PLL Lock Time ⁽¹⁾	Stable power supply, valid clocks presented on CLKIN pin			1.0	ms

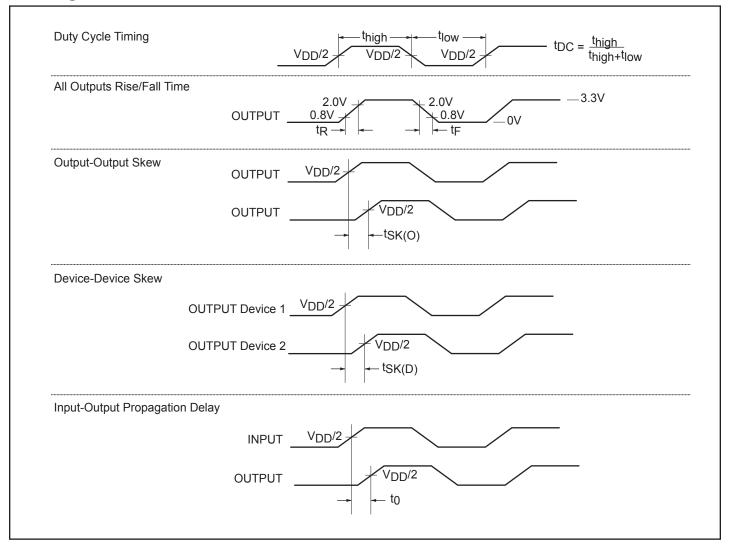
Note:

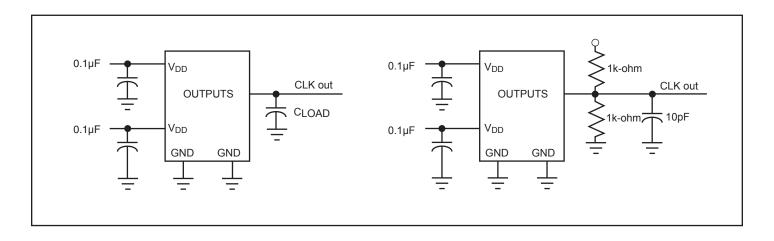
DC Electrical Characteristics for Commercial Temperature Devices

Parameters	Description	Test Conditions	Min.	Max.	Units	
V_{IL}	Input LOW Voltage	-	-	0.8	V	
V_{IH}	Input HIGH Voltage	-	2.0	-	V	
I_{IL}	Input LOW Current	$V_{IN} = 0V$	-	50	^	
I_{IH}	Input HIGH Current	$V_{IN} = V_{DD}$	-	125	μΑ	
V_{OL}	Output LOW Voltage	$I_{OL} = 12mA$	-	0.4	V	
V _{OH}	Output HIGH Voltage	$I_{OH} = -12mA$	2.4	-	V	
	Bypass, PLL off	SEL1 = 0 $SEL2 = 1$	-	1.0		
$I_{ m DD}$	Summing Comment	Unloaded outputs, 66.67 MHz, Select inputs at V _{DD} or GND	-	39	mA	
	Supply Current	Unloaded outputs 100 MHz Select Inputs @ V _{DD} or GND	-	54		

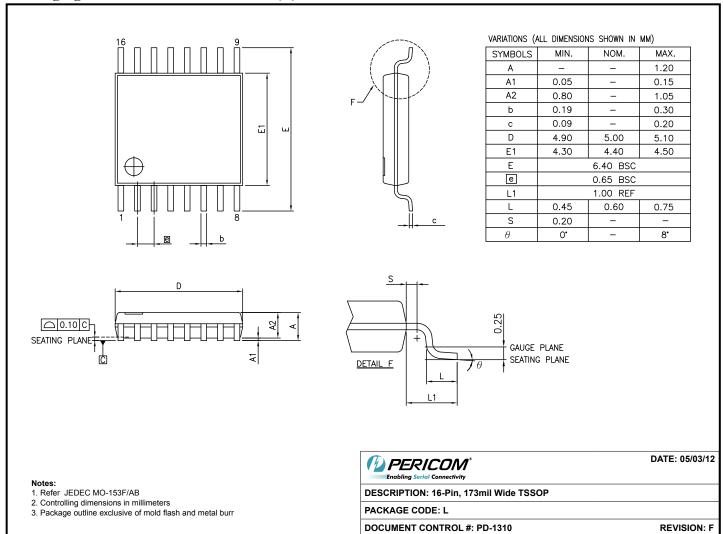
^{1.} See Switching Waveforms on page 6.

AC Electrical Characteristics for Commercial Temperature Devices

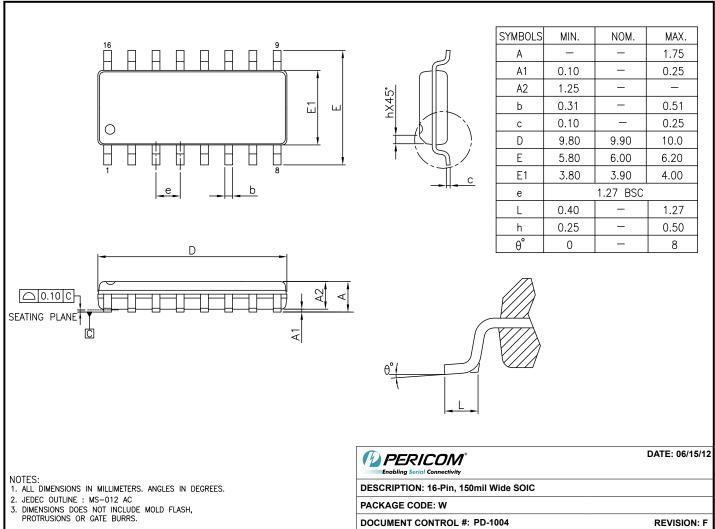

Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
Е-	Output Eraguanav	30pF load	10.0		100	MHz
F_{O}	Output Frequency	10pF load	10.0		133	MHz
4	Duty Cycle ⁽¹⁾	Measured at $V_{DD}/2$, $F_O = 66.67 \text{ MHz}$	40.0		60.0	%
t_{DC}	Duty Cycle ⁽¹⁾	Measured at $V_{DD}/2V$, $F_O < 50 \text{ MHz}$	45.0	50	55.0	70
t_{R}	Rise Time ⁽¹⁾	Macanadhatanan 0 0V and 2 0V			1.5	
t_{F}	Fall Time ⁽¹⁾	Measured between 0.8V and 2.0V			1.5	ns
t _{SK(O)}	Output to Output Skew ⁽¹⁾	All outputs equally loaded			250	
t ₀	Delay, CLKIN Rising Edge to OUT0 Rising Edge ⁽¹⁾	Measured at V _{DD} /2		0	±350	ps
t _{SK(D)}	Device-to-Device Skew ⁽¹⁾	Measured at V _{DD} /2 on OUT0 pins of devices		0	700	
t _{SLEW}	Output Slew Rate ⁽¹⁾	Measured between 0.8V & 2.0V on –1H device using Test Crt #2	1			V/ns
t _{JIT}	Cycle-to-Cycle Jitter ⁽¹⁾	Measured at 66.67 MHz, loaded 30pF load			200	ps
t _{LOCK}	PLL Lock Time ⁽¹⁾	Stable power supply, valid clocks presented on CLKIN pin			1.0	ms


Note:

^{1.} See Switching Waveforms on page 6.


Switching Waveforms

Packaging Mechanical: 16-Pin TSSOP (L)



12-0372

7

2012-0398

Ordering Information

Ordering Code	Package Code	Package Description	Operating Range
PI6C2409-1HLE	L	16-pin, 173-mil Wide (TSSOP)	Commercial
PI6C2409-1HLEX	L	16-pin, 173-mil Wide (TSSOP), Tape & Reel	Commercial
PI6C2409-1HLIE	L	16-pin, 173-mil Wide (TSSOP)	Industrial
PI6C2409-1HLIEX	L	16-pin, 173-mil Wide (TSSOP), Tape & Reel	Industrial
PI6C2409-1HWE	W	16-pin, 150-mil Wide (SOIC)	Commercial
PI6C2409-1HWEX	W	16-pin, 150-mil Wide (SOIC), Tape & Reel	Commercial
PI6C2409-1HWIE	W	16-pin, 150-mil Wide (SOIC)	Industrial
PI6C2409-1HWIEX	W	16-pin, 150-mil Wide (SOIC), Tape & Reel	Industrial

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336

www.pericom.com