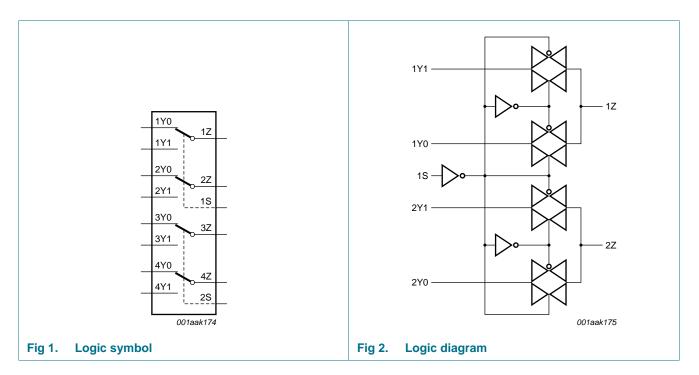
Dual low-ohmic double-pole double-throw analog switch

3. Applications

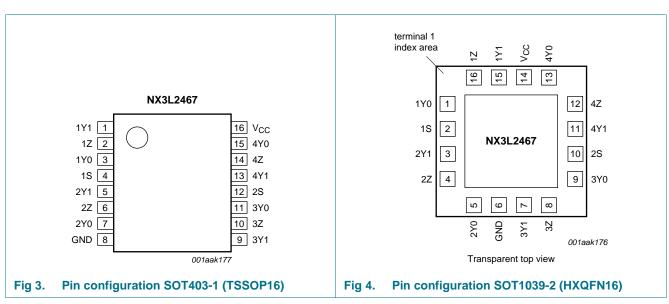
- Cell phone
- PDA
- Portable media player

4. Ordering information

Table 1.Ordering information


Type number	Package								
	Temperature range	Name	Description	Version					
NX3L2467PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1					
NX3L2467HR	–40 °C to +125 °C	HXQFN16	plastic thermal enhanced extremely thin quad flat package; no leads; 16 terminals; body $3 \times 3 \times 0.5$ mm	SOT1039-2					
NX3L2467GU	–40 °C to +125 °C	XQFN16	plastic, extremely thin quad flat package; no leads; 16 terminals; body $1.80 \times 2.60 \times 0.50$ mm	SOT1161-1					

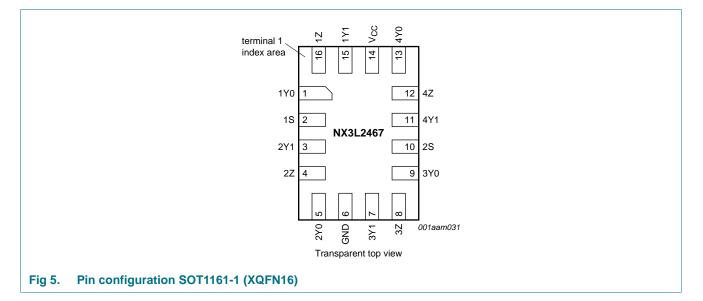
5. Marking


Table 2. Marking codes	
Type number	Marking code
NX3L2467PW	X3L2467
NX3L2467HR	D67
NX3L2467GU	D67

Dual low-ohmic double-pole double-throw analog switch

6. Functional diagram

7. Pinning information



7.1 Pinning

NX3L2467

NX3L2467

Dual low-ohmic double-pole double-throw analog switch

7.2 Pin description

Symbol	Pin		Description
	SOT1039-2 and SOT1161-1	SOT403-1	
1Y0, 2Y0, 3Y0, 4Y0	1, 5, 9, 13	3, 7, 11, 15	independent input or output
1S, 2S	2, 10	4, 12	select input
1Y1, 2Y1, 3Y1, 4Y1	15, 3, 7, 11	1, 5, 9, 13	independent input or output
1Z, 2Z, 3Z, 4Z	16, 4, 8, 12	2, 6, 10, 14	common output or input
GND	6	8	ground (0 V)
V _{CC}	14	16	supply voltage

8. Functional description

Table 4.Function table

Input nS	Channel on
L	nY0
Н	nY1

[1] H = HIGH voltage level; L = LOW voltage level.

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
VI	input voltage	select input nS	<u>[1]</u> –0.5	+4.6	V
V _{SW}	switch voltage		<u>[2]</u> –0.5	V _{CC} + 0	.5 V

NX3L2467

. .

Dual low-ohmic double-pole double-throw analog switch

Table 5. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Max	Unit
input clamping current	$V_{I} < -0.5 V$	-50	-	mA
switch clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC}$ + 0.5 V	-	±50	mA
switch current	V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V; source or sink current	-	±350	mA
	V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V; pulsed at 1 ms duration, < 10 % duty cycle; peak current	-	±500	mA
storage temperature		-65	+150	°C
total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$			
	TSSOP16	<u>[3]</u> _	500	mW
	HXQFN16	<u>[4]</u> _	250	mW
	XQFN16	<u>[5]</u> _	250	mW
	input clamping current switch clamping current switch current storage temperature	$\label{eq:switch clamping current} \begin{array}{l} V_{I} < -0.5 \ V \\ \mbox{switch clamping current} & V_{I} < -0.5 \ V \ or \ V_{I} > V_{CC} + 0.5 \ V \\ \mbox{switch current} & V_{SW} > -0.5 \ V \ or \ V_{SW} < V_{CC} + 0.5 \ V; \\ \mbox{source or sink current} & V_{SW} > -0.5 \ V \ or \ V_{SW} < V_{CC} + 0.5 \ V; \\ \mbox{pulsed at 1 ms duration, < 10 \% duty cycle; } \\ \mbox{peak current} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{tabular}{ c c c c } \hline $V_1 < -0.5 V & -50 \\ \hline $witch clamping current$ & $V_1 < -0.5 V or $V_1 > V_{CC} + 0.5 V & $-$ \\ \hline $witch current$ & $V_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $source or sink current$ & $V_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline $v_{SW} > -0.5 V or $V_{SW} < V_{CC} + 0.5 V; & $-$ \\ \hline v	input clamping current $V_1 < -0.5$ V -50 -50 switch clamping current $V_1 < -0.5$ V or $V_1 > V_{CC} + 0.5$ V $ \pm 50$ switch current $V_{SW} > -0.5$ V or $V_{SW} < V_{CC} + 0.5$ V; source or sink current $ \pm 350$ $V_{SW} > -0.5$ V or $V_{SW} < V_{CC} + 0.5$ V; pulsed at 1 ms duration, < 10 % duty cycle; peak current $ \pm 500$ storage temperature -65 $+150$ total power dissipation $T_{amb} = -40$ °C to $+125$ °C -65 $+150$ HXQFN16 $[3]$ - 500 $4]$ - 250

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed but may not exceed 4.6 V.

[3] For TSSOP16 package: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K above.

[4] For HXQFN16 package: above 135 °C the value of Ptot derates linearly with 16.9 mW/K.

[5] For XQFN16 package: above 133 °C the value of Ptot derates linearly with 14.5 mW/K.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.4	4.3	V
VI	input voltage	select input nS	0	4.3	V
V _{SW}	switch voltage		<u>[1]</u> 0	V _{CC}	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 1.4 V to 4.3 V	[2] _	200	ns/V

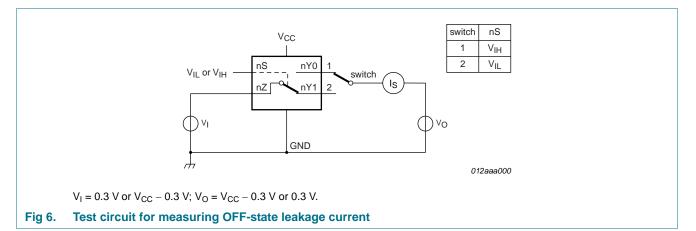
[1] To avoid sinking GND current from terminal nZ when switch current flows in terminal nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no GND current will flow from terminal nYn. In this case, there is no limit for the voltage drop across the switch.

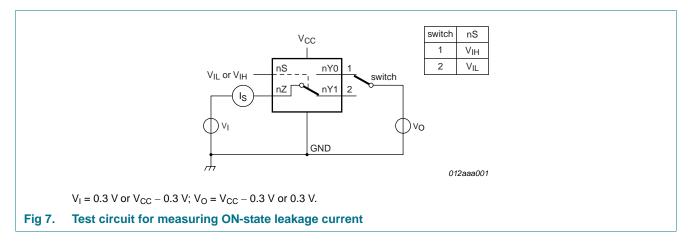
[2] Applies to control signal levels.

Dual low-ohmic double-pole double-throw analog switch

11. Static characteristics

Table 7. Static characteristics


At recommended operating conditions; voltages are referenced to GND (ground 0 V).


Symbol	Parameter	Conditions	Ta	_{mb} = 25	°C	T _{amb} = ·	–40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max (85 °C)	Max (125 °C)	
VIH	HIGH-level	$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	0.9	-	-	0.9	-	-	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	0.9	-	-	0.9	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.1	-	-	1.1	-	-	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	1.3	-	-	1.3	-	-	V
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	1.4	-	-	1.4	-	-	V
V _{IL}	LOW-level	$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	-	0.3	-	0.3	0.3	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	0.4	-	0.4	0.3	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.4	-	0.4	0.4	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.5	-	0.5	0.5	V
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	-	0.6	-	0.6	0.6	V
I	input leakage current	select input nS; V _I = GND to 4.3 V; V _{CC} = 1.4 V to 4.3 V	-	-	-	-	±0.5	±1	μΑ
I _{S(OFF)} OFF-state leakage current	nY0 and nY1 port; see <mark>Figure 6</mark>								
	current	V_{CC} = 1.4 V to 3.6 V	-	-	±5	-	±50	±500	nA
		$V_{CC} = 3.6 V \text{ to } 4.3 V$	-	-	±10	-	±50	±500	nA
I _{S(ON)}	ON-state leakage current	nZ port; V _{CC} = 1.4 V to 3.6 V; see Figure 7							
		$V_{CC} = 1.4 \text{ V to } 3.6 \text{ V}$	-	-	±5	-	±50	±500	nA
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	-	±10	-	±50	±500	nA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{SW} = GND$ or V_{CC}							
		$V_{CC} = 3.6 V$	-	-	100	-	500	5000	nA
		$V_{CC} = 4.3 V$	-	-	150	-	800	6000	nA
∆l _{CC}	additional	$V_{SW} = GND \text{ or } V_{CC}$							
	supply current	$V_1 = 2.6 \text{ V}; V_{CC} = 4.3 \text{ V}$	-	2.0	4.0	-	7	7	μΑ
		$V_{I} = 2.6 V; V_{CC} = 3.6 V$	-	0.35	0.7	-	1	1	μΑ
		$V_{I} = 1.8 V; V_{CC} = 4.3 V$	-	7.0	10.0	-	15	15	μΑ
		$V_{I} = 1.8 V; V_{CC} = 3.6 V$	-	2.5	4.0	-	5	5	μΑ
		$V_{I} = 1.8 \text{ V}; V_{CC} = 2.5 \text{ V}$	-	50	200	-	300	500	nA
Cı	input capacitance		-	1.0	-	-	-	-	pF
$C_{S(OFF)}$	OFF-state capacitance		-	35	-	-	-	-	pF
C _{S(ON)}	ON-state capacitance		-	130	-	-	-	-	pF

NX3L2467

Dual low-ohmic double-pole double-throw analog switch

11.1 Test circuits

11.2 ON resistance

Table 8. ON resistance^[1]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 9 to Figure 15.

Symbol	Parameter	Conditions	T _{amb} =	–40 °C to	o +85 ℃	T _{amb} = -40 °	Unit	
			Min	Typ[2]	Max	Min	Max	
R _{ON(peak)} ON resis (peak)		$V_I = GND$ to V_{CC} ; $I_{SW} = 100$ mA; see Figure 8						
		V _{CC} = 1.4 V	-	1.7	3.7	-	4.1	Ω
		V _{CC} = 1.65 V	-	1.0	1.6	-	1.7	Ω
		V _{CC} = 2.3 V	-	0.6	0.8	-	0.9	Ω
		V _{CC} = 2.7 V	-	0.5	0.75	-	0.9	Ω
		$V_{CC} = 4.3 V$	-	0.5	0.75	-	0.9	Ω

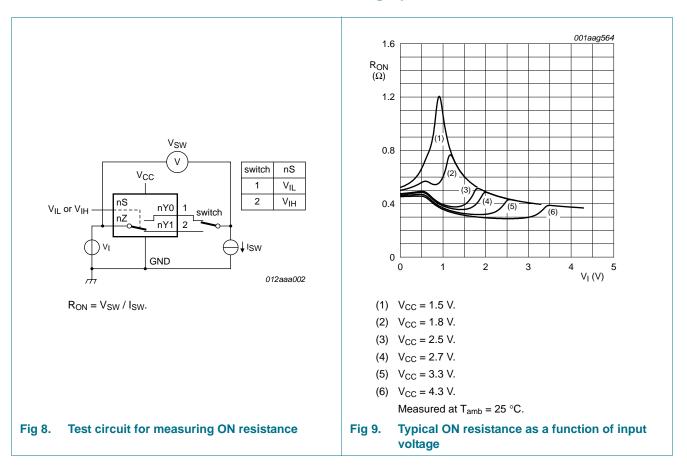
NX3L2467

Dual low-ohmic double-pole double-throw analog switch

Symbol	Parameter	Conditions	Т	amb =	–40 °C to	o +85 °C	T _{amb} = -40 °	C to +125 °C	Unit
				Min	Typ ^[2]	Max	Min	Max	1
ΔR _{ON} ON resistance mismatch between channels	mismatch	$V_I = GND$ to V_{CC} ; $I_{SW} = 100 \text{ mA}$	<u>[3]</u>				'		
	$V_{CC} = 1.4 \text{ V}; V_{SW} = 0.4 \text{ V}$		-	0.18	0.3	-	0.3	Ω	
	Charmeis	V_{CC} = 1.65 V; V_{SW} = 0.5 V		-	0.18	0.2	-	0.3	Ω
		$V_{CC} = 2.3 \text{ V}; V_{SW} = 0.7 \text{ V}$		-	0.07	0.1	-	0.13	Ω
		$V_{CC} = 2.7 \text{ V}; V_{SW} = 0.8 \text{ V}$		-	0.07	0.1	-	0.13	Ω
		$V_{CC} = 4.3 \text{ V}; V_{SW} = 0.8 \text{ V}$		-	0.07	0.1	-	0.13	Ω
R _{ON(flat)}	ON resistance (flatness)	$V_I = GND$ to V_{CC} ; $I_{SW} = 100 \text{ mA}$	[4]						
		$V_{CC} = 1.4 V$		-	1.0	3.3	-	3.6	Ω
		V _{CC} = 1.65 V		-	0.5	1.2	-	1.3	Ω
		$V_{CC} = 2.3 V$		-	0.15	0.3	-	0.35	Ω
		$V_{CC} = 2.7 V$		-	0.13	0.3	-	0.35	Ω
		$V_{CC} = 4.3 V$		-	0.2	0.4	-	0.45	Ω

Table 8. ON resistance^[1]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 9 to Figure 15.

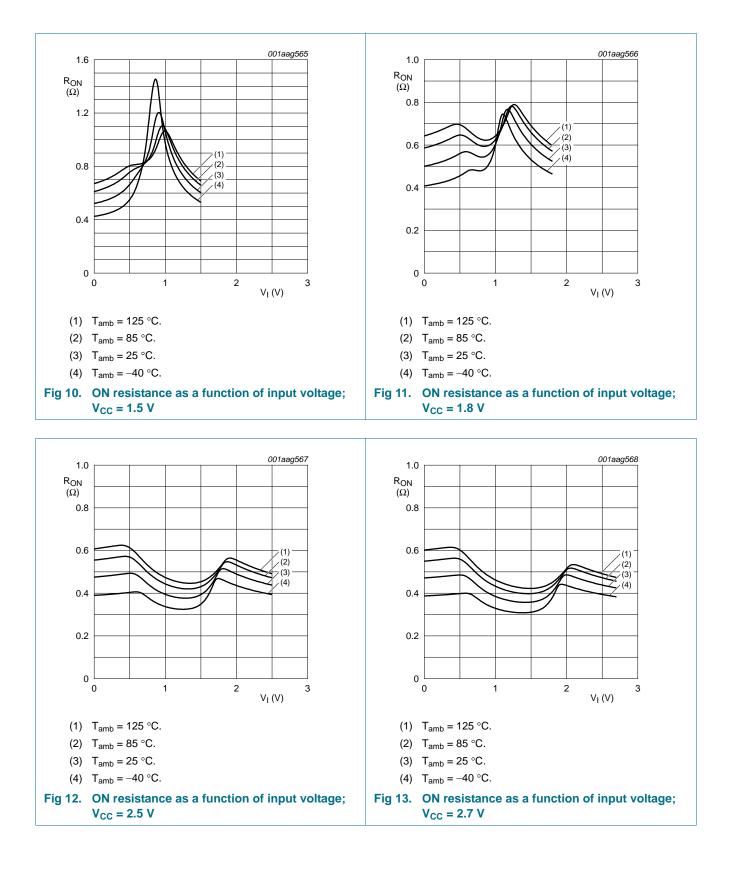

[1] For NX3L2467PW (TSSOP16 package), all ON resistance values are up to 0.05 Ω higher.

[2] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

[3] Measured at identical V_{CC}, temperature and input voltage.

[4] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.

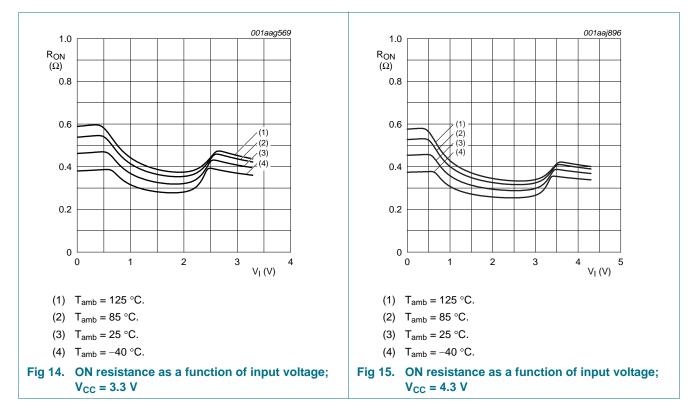
Dual low-ohmic double-pole double-throw analog switch



11.3 ON resistance test circuit and graphs

NX3L2467

NX3L2467


Dual low-ohmic double-pole double-throw analog switch

NX3L2467

NX3L2467

Dual low-ohmic double-pole double-throw analog switch

12. Dynamic characteristics

Table 9. Dynamic characteristics

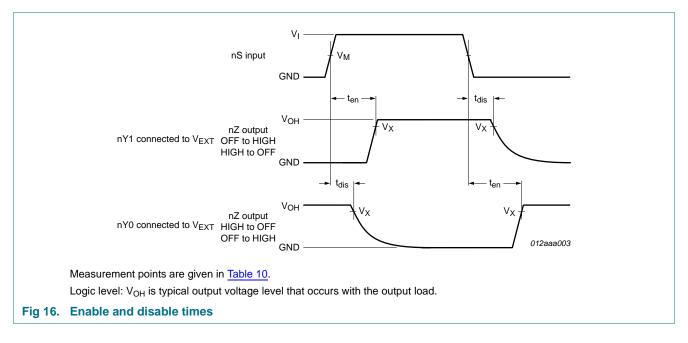
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 18.

Symbol	Parameter	Conditions	Ta	_{mb} = 25	°C	T _{amb} = -40 °C to +125 °C			Unit
			Min	Тур <u>^[1]</u>	Max	Min	Max (85 °C)	Max (125 °C)	
t _{en} enable time	nS to nZ or nYn; see <u>Figure 16</u>								
	V_{CC} = 1.4 V to 1.6 V	-	41	90	-	120	120	ns	
	V _{CC} = 1.65 V to 1.95 V	-	30	70	-	80	90	ns	
		V_{CC} = 2.3 V to 2.7 V	-	20	45	-	50	55	ns
		V_{CC} = 2.7 V to 3.6 V	-	19	40	-	45	50	ns
		V_{CC} = 3.6 V to 4.3 V	-	19	40	-	45	50	ns
t _{dis}	disable time	nS to nZ or nYn; see <u>Figure 16</u>							
		V_{CC} = 1.4 V to 1.6 V	-	24	70	-	80	90	ns
		V_{CC} = 1.65 V to 1.95 V	-	15	55	-	60	65	ns
		V_{CC} = 2.3 V to 2.7 V	-	9	25	-	30	35	ns
		V_{CC} = 2.7 V to 3.6 V	-	8	20	-	25	30	ns
		V_{CC} = 3.6 V to 4.3 V	-	8	20	-	25	30	ns

NX3L2467

Dual low-ohmic double-pole double-throw analog switch

Symbol	Parameter	Conditions		T _{amb} = 25 °C			T _{amb} =40 °C to +125 °C			Unit
				Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
t _{b-m} break-before-make	see Figure 17	[2]								
	time	V_{CC} = 1.4 V to 1.6 V		-	20	-	9	-	-	ns
		V_{CC} = 1.65 V to 1.95 V		-	17	-	7	-	-	ns
		V_{CC} = 2.3 V to 2.7 V		-	13	-	4	-	-	ns
		V_{CC} = 2.7 V to 3.6 V		-	11	-	3	-	-	ns
		V_{CC} = 3.6 V to 4.3 V		-	11	-	2	-	-	ns

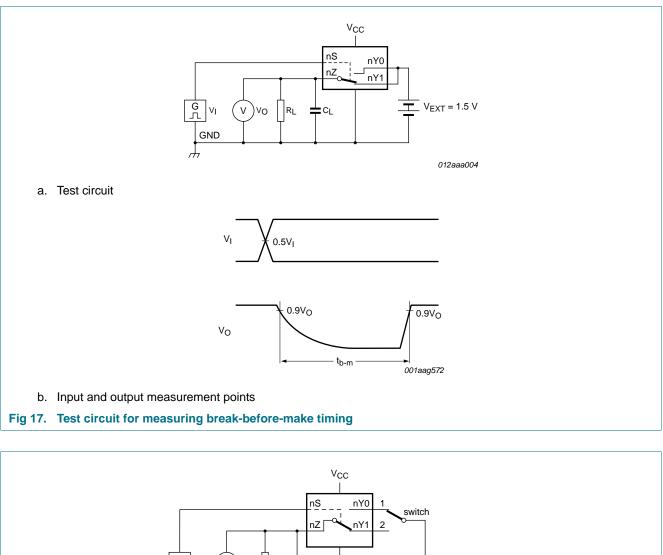

Table 9. Dynamic characteristics ...continued

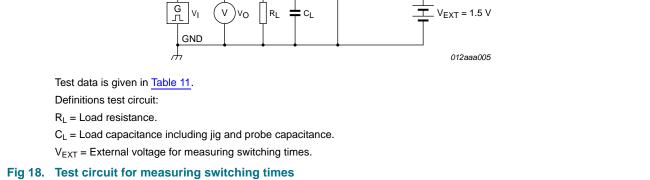
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 18.

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.5 V, 1.8 V, 2.5 V, 3.3 V and 4.3 V respectively.

[2] Break-before-make guaranteed by design.

12.1 Waveform and test circuits




Table 10. Measurement points

Supply voltage	Input	Output
V _{cc}	V _M	V _X
1.4 V to 4.3 V	0.5V _{CC}	0.9V _{OH}

NX3L2467

Dual low-ohmic double-pole double-throw analog switch

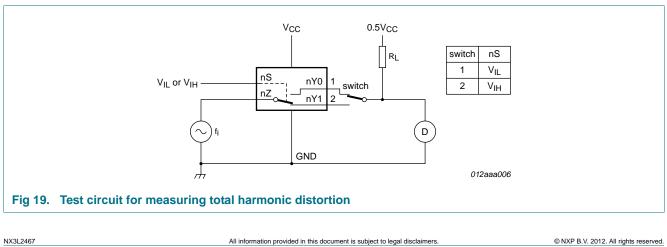
Table 11. Test data

Supply voltage	Input		Load	
V _{cc}	VI	t _r , t _f	CL	RL
1.4 V to 4.3 V	V _{CC}	\leq 2.5 ns	35 pF	50 Ω

NX3L2467	All information provided in this document is subject to legal disclaimers.	© NXP B.V. 2012. All rights reserved.
Product data sheet	Rev. 5 — 2 July 2012	13 of 24

Dual low-ohmic double-pole double-throw analog switch

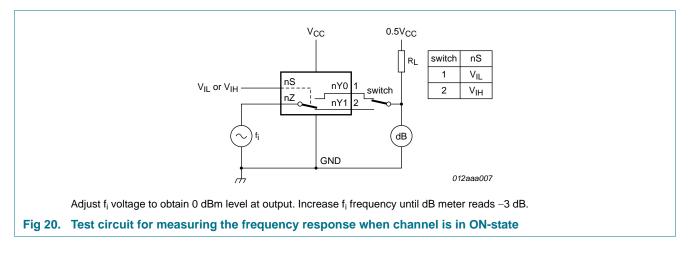
12.2 Additional dynamic characteristics

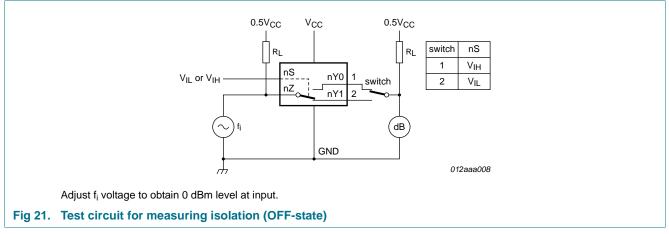

Table 12. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); $V_I = GND$ or V_{CC} (unless otherwise specified); $t_r = t_f \le 2.5$ ns; $T_{amb} = 25$ °C.

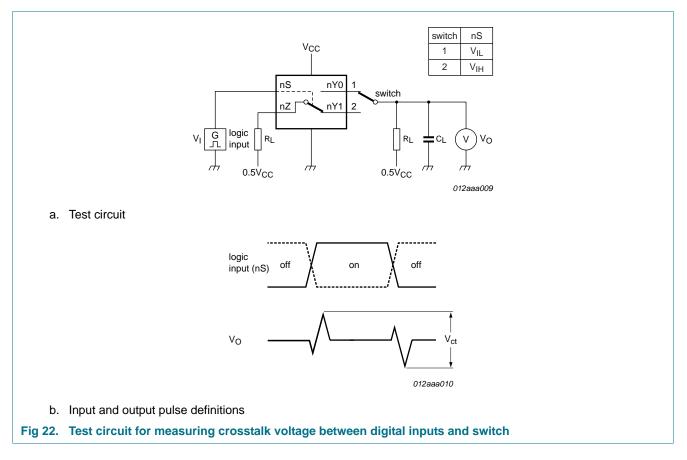
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic distortion	$f_i = 20 \text{ Hz to } 20 \text{ kHz}; \text{ R}_L = 32 \Omega; \text{ see } \frac{\text{Figure } 19}{1000 \text{ sec } 19}$	<u>[1]</u>			
		$V_{CC} = 1.4 \text{ V}; \text{ V}_{I} = 1 \text{ V} (p-p)$	-	0.15	-	%
		V _{CC} = 1.65 V; V _I = 1.2 V (p-p)	-	0.10	-	%
		V _{CC} = 2.3 V; V _I = 1.5 V (p-p)	-	0.02	-	%
		V _{CC} = 2.7 V; V ₁ = 2 V (p-p)	-	0.02	-	%
		V _{CC} = 4.3 V; V _I = 2 V (p-p)	-	0.02	-	%
f _(-3dB)	-3 dB frequency	$R_L = 50 \Omega$; see Figure 20	[1]			
	response	$V_{CC} = 1.4 \text{ V to } 4.3 \text{ V}$	-	60	-	MHz
α_{iso}	isolation (OFF-state)	$f_i = 100 \text{ kHz}; \text{ R}_L = 50 \Omega; \text{ see } \frac{\text{Figure 21}}{100 \text{ kHz}}$	[1]			
		$V_{CC} = 1.4 \text{ V to } 4.3 \text{ V}$	-	-90	-	dB
V _{ct}	crosstalk voltage	between digital inputs and switch; $f_i = 1 \text{ MHz}$; $C_L = 50 \text{ pF}$; $R_L = 50 \Omega$; see Figure 22				
		V _{CC} = 1.4 V to 3.6 V	-	0.2	-	V
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	0.3	-	V
Xtalk cr	crosstalk	between switches; $f_i = 100 \text{ kHz}$; $R_L = 50 \Omega$; see <u>Figure 23</u>	[1]			
		$V_{CC} = 1.4 \text{ V to } 4.3 \text{ V}$	-	-90	-	dB
Q _{inj}	charge injection	$f_i = 1 \text{ MHz}; C_L = 0.1 \text{ nF}; R_L = 1 \text{ M}\Omega; V_{gen} = 0 \text{ V}; R_{gen} = 0 \Omega; \text{ see } \frac{\text{Figure } 24}{2}$				
		$V_{CC} = 1.5 V$	-	3	-	рС
		V _{CC} = 1.8 V	-	4	-	рС
		$V_{CC} = 2.5 V$	-	6	-	рС
		$V_{CC} = 3.3 V$	-	9	-	рС
		$V_{CC} = 4.3 V$	-	15	-	рС

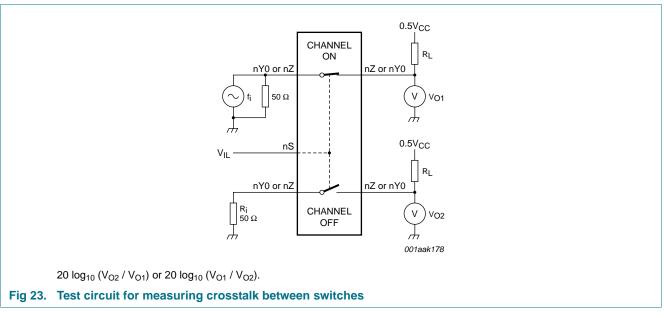
[1] f_i is biased at 0.5V_{CC}.

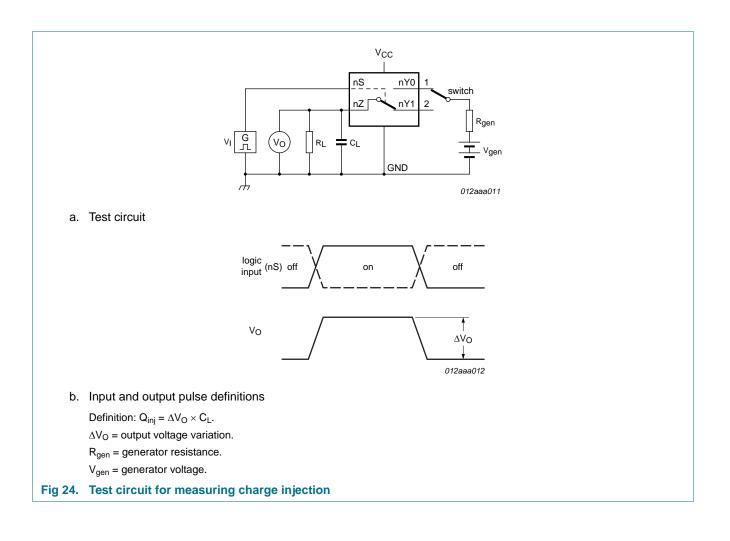

12.3 Test circuits



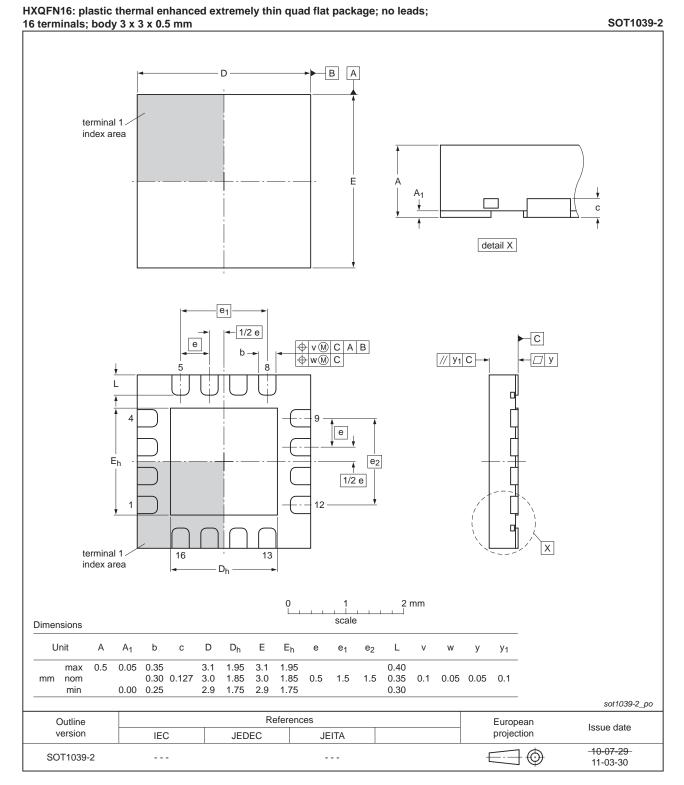
NX3L2467 Product data sheet


NX3L2467


Dual low-ohmic double-pole double-throw analog switch


Dual low-ohmic double-pole double-throw analog switch

NX3L2467


NX3L2467 Dual low-ohmic double-pole double-throw analog switch

NX3L2467

Dual low-ohmic double-pole double-throw analog switch

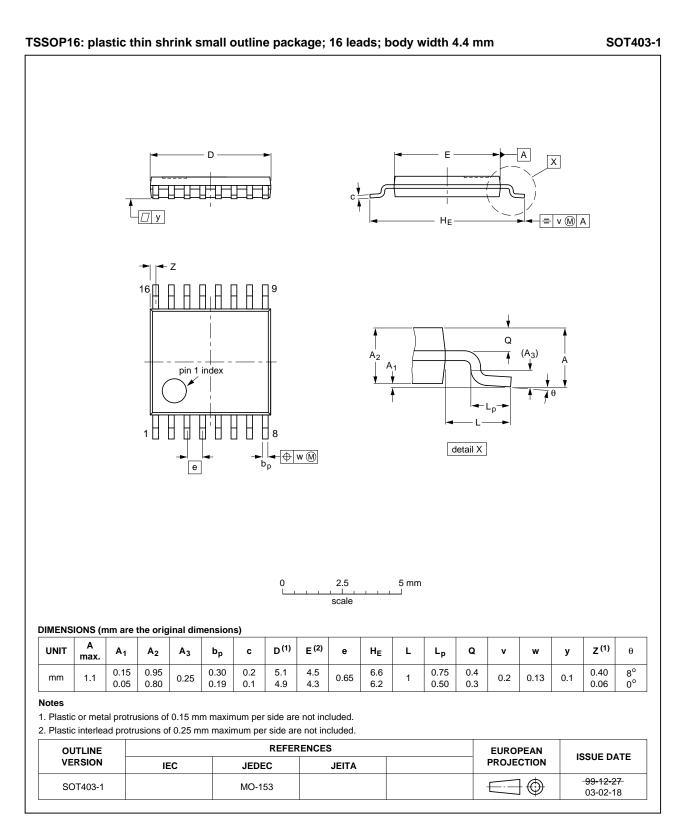
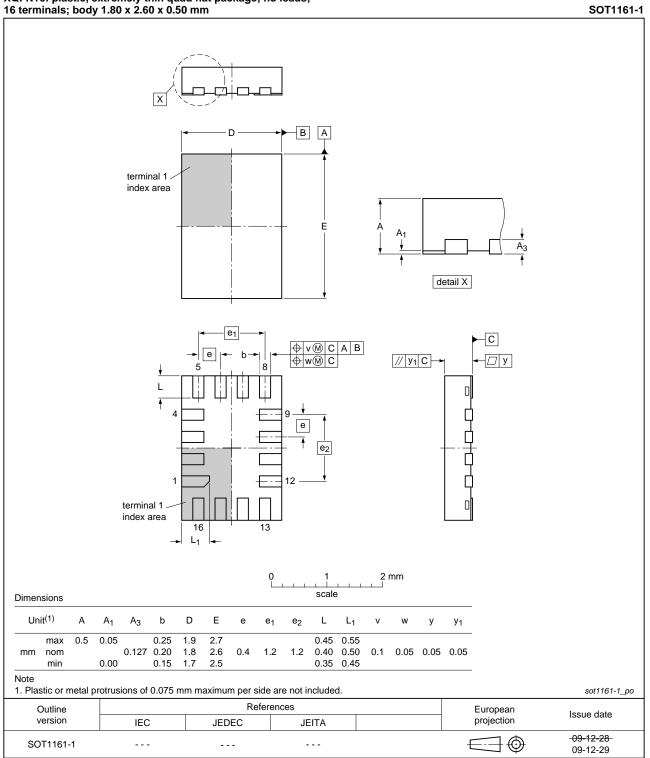

13. Package outline

Fig 25. Package outline SOT1039-2 (HXQFN16)

NX3L2467 Product data sheet

Dual low-ohmic double-pole double-throw analog switch

Fig 26. Package outline SOT403-1 (TSSOP16)


All information provided in this document is subject to legal disclaimers.

Product data sheet

19 of 24

NX3L2467

Dual low-ohmic double-pole double-throw analog switch

XQFN16: plastic, extremely thin quad flat package; no leads; 16 terminals; body 1.80 x 2.60 x 0.50 mm

Fig 27. Package outline SOT1161-1 (XQFN16)

NX3L2467 **Product data sheet** Dual low-ohmic double-pole double-throw analog switch

14. Abbreviations

Table 13. Abbreviations				
Acronym	Description			
CDM	Charged Device Model			
CMOS	Complementary Metal-Oxide Semiconductor			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
MM	Machine Model			
PDA	Personal Digital Assistant			

15. Revision history

Table 14. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
NX3L2467 v.5	20120702	Product data sheet	-	NX3L2467 v.4	
Modifications:	 For type nur 	mber NX3L2467HR the sot	code has changed to SO	OT1039-2.	
NX3L2467 v.4	20111108	Product data sheet	-	NX3L2467 v.3	
Modifications:	 Legal pages 	s updated.			
NX3L2467 v.3	20101229	Product data sheet	-	NX3L2467 v.2	
NX3L2467 v.2	20100519	Product data sheet	-	NX3L2467 v.1	
NX3L2467 v.1	20090623	Product data sheet	-	-	

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

NX3L2467

Product data sheet

Dual low-ohmic double-pole double-throw analog switch

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NX3L2467

Dual low-ohmic double-pole double-throw analog switch

18. Contents

1	General description	1
2	Features and benefits	1
3	Applications	2
4	Ordering information	2
5	Marking	2
6	Functional diagram	3
7	Pinning information	3
7.1	Pinning	3
7.2		4
8	Functional description	4
9	Limiting values	4
10	Recommended operating conditions	5
11	Static characteristics	6
11.1	Test circuits	7
11.2		7
11.3	ON resistance test circuit and graphs	9
12	Dynamic characteristics 17	1
12.1	Waveform and test circuits 12	_
12.2	Additional dynamic characteristics 14	
12.3	Test circuits	-
13	Package outline 18	
14	Abbreviations 2'	-
15	Revision history 2'	
16	Legal information 22	
16.1	Data sheet status 22	
16.2	Definitions	
16.3	Disclaimers	
16.4	Trademarks	
17	Contact information 23	-
18	Contents 24	4

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 2 July 2012 Document identifier: NX3L2467