- 2. Surface–mounted on FR4 board using the minimum recommended pad size. 3. This is the absolute maximum ratings. Parts are 100% tested at T_J = 25°C, V_{GS} = 20 V, I_L = 29 A, E_{AS} = 42 mJ. ### THERMAL RESISTANCE MAXIMUM RATINGS | Parameter | Symbol | Value | Unit | | | |---|-----------------|-------|--------|--|--| | Junction-to-Case (Drain) | $R_{ heta JC}$ | 3.8 | | | | | Junction-to-Ambient - Steady State (Note 4) | $R_{\theta JA}$ | 48.6 | °C /// | | | | Junction-to-Ambient - Steady State (Note 5) | $R_{ heta JA}$ | 161.7 | °C/W | | | | Junction-to-Ambient - (t ≤ 10 s) (Note 4) | $R_{\theta JA}$ | 19 | | | | - Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu. Surface-mounted on FR4 board using the minimum recommended pad size. # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |--|-------------------------------------|--|------------------------|-----|-------|------|-------| | OFF CHARACTERISTICS | | | | | | | | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | V _{GS} = 0 V, I _D = 250 μA | | 30 | | | V | | Drain-to-Source Breakdown Voltage (transient) | V _{(BR)DSSt} | $V_{GS} = 0$ V, $I_{D(aval)} = 12.6$ A, $T_{case} = 25$ °C, $t_{transient} = 100$ ns | | 34 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} / | | | | 12 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | $V_{GS} = 0 \text{ V}, \qquad T_{J} = 25^{\circ}\text{C}$ $V_{DS} = 24 \text{ V}$ | | | | 1.0 | | | | | V _{DS} = 24 V | T _J = 125°C | | | 10 | μΑ | | Gate-to-Source Leakage Current | I _{GSS} | V _{DS} = 0 V, V _{GS} = ±20 V | | | | ±100 | nA | | ON CHARACTERISTICS (Note 6) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_D =$ | = 250 μA | 1.3 | | 2.2 | V | | Negative Threshold Temperature Coefficient | V _{GS(TH)} /T _J | | | | 5.1 | | mV/°C | | Drain-to-Source On Resistance | R _{DS(on)} | V _{GS} = 10 V | I _D = 30 A | | 2.7 | 3.4 | 0 | | | | V _{GS} = 4.5 V | I _D = 30 A | | 4.0 | 5.0 | mΩ | | Forward Transconductance | 9 _{FS} | V _{DS} = 1.5 V, I _D = 15 A | | | 68 | | S | | Gate Resistance | R_{G} | T _A = 25°C | | 0.3 | 1.0 | 2.0 | Ω | | CHARGES AND CAPACITANCES | | | | | | | | | Input Capacitance | C _{ISS} | V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V | | | 1972 | | | | Output Capacitance | C _{OSS} | | | | 1215 | | pF | | Reverse Transfer Capacitance | C _{RSS} | | | | 59 | | | | Capacitance Ratio | C _{RSS} /C _{ISS} | V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz | | | 0.030 | | | | Total Gate Charge | Q _{G(TOT)} | | | | 14 | | | | Threshold Gate Charge | Q _{G(TH)} | V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 30 A | | | 3.3 | | | | Gate-to-Source Charge | Q_{GS} | | | | 6.0 | | nC | | Gate-to-Drain Charge | Q_{GD} | | | | 5.0 | | | | Gate Plateau Voltage | V_{GP} | | | | 3.1 | | V | | Total Gate Charge | Q _{G(TOT)} | V _{GS} = 10 V, V _{DS} = 15 V; I _D = 30 A | | | 30 | | nC | | SWITCHING CHARACTERISTICS (Note 7) | | | | | | | | | Turn-On Delay Time | t _{d(ON)} | V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω | | | 11 | | | | Rise Time | t _r | | | | 32 | | ns | | Turn-Off Delay Time | t _{d(OFF)} | | | | 21 | | | | Fall Time | t _f | | | | 7.0 | _ | | # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |------------------------------|---------------------|--|------------------------|-----|------|-----|------| | SWITCHING CHARACTERISTICS (N | ote 7) | | | | | | • | | Turn-On Delay Time | t _{d(ON)} | V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω | | | 8.0 | | - ns | | Rise Time | t _r | | | | 26 | | | | Turn-Off Delay Time | t _{d(OFF)} | | | | 26 | | | | Fall Time | t _f | | | | 5.0 | | | | DRAIN-SOURCE DIODE CHARACT | ERISTICS | | | | | | | | Forward Diode Voltage | V _{SD} | V _{GS} = 0 V, | $T_J = 25^{\circ}C$ | | 0.77 | 1.1 | V | | | | I _S = 10 A | T _J = 125°C | | 0.62 | |] | | Reverse Recovery Time | t _{RR} | $V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 30 \text{ A}$ | | | 40.2 | | | | Charge Time | t _a | | | | 20.3 | | ns | | Discharge Time | t _b | | | | 19.9 | | | | Reverse Recovery Charge | Q _{RR} | | | | 30.2 | | nC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 6. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 7. Switching characteristics are independent of operating junction temperatures. #### **TYPICAL CHARACTERISTICS** 140 130 120 110 100 $V_{DS} = 5 V$ ID, DRAIN CURRENT (A) 90 80 70 60 50 T_J = 125°C 40 30 T_J = 25°C 20 10 T_J = -55°C 0 0.5 1.5 2.0 3.0 3.5 V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. V_{GS} Figure 4. On-Resistance vs. Drain Current and **Gate Voltage** Figure 5. On-Resistance Variation with **Temperature** Figure 6. Drain-to-Source Leakage Current vs. Voltage #### **TYPICAL CHARACTERISTICS** V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge Figure 9. Resistive Switching Time Variation vs. Gate Resistance Figure 10. Diode Forward Voltage vs. Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature # **TYPICAL CHARACTERISTICS** Figure 13. Thermal Response Figure 14. G_{FS} vs. I_D Figure 15. Avalanche Characteristics 0.10 0.10 С SIDE VIEW DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N **DATE 25 JUN 2018** #### NOTES: - DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETER. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS | | MILLIMETERS | | | | | |-----|-------------|-------|------|--|--| | DIM | MIN | NOM | MAX | | | | Α | 0.90 | 1.00 | 1.10 | | | | A1 | 0.00 | | 0.05 | | | | b | 0.33 | 0.41 | 0.51 | | | | С | 0.23 | 0.28 | 0.33 | | | | D | 5.00 | 5.15 | 5.30 | | | | D1 | 4.70 | 4.90 | 5.10 | | | | D2 | 3.80 | 4.00 | 4.20 | | | | E | 6.00 | 6.15 | 6.30 | | | | E1 | 5.70 | 5.90 | 6.10 | | | | E2 | 3.45 | 3.65 | 3.85 | | | | е | 1.27 BSC | | | | | | G | 0.51 | 0.575 | 0.71 | | | | K | 1.20 | 1.35 | 1.50 | | | | L | 0.51 | 0.575 | 0.71 | | | | L1 | 0.125 REF | | | | | | M | 3.00 | 3.40 | 3.80 | | | | A | n o | | 12 ° | | | #### **GENERIC MARKING DIAGRAM*** XXXXXX = Specific Device Code = Assembly Location Α Υ = Year W = Work Week ZZ = Lot Traceability *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking. **DETAIL A** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON14036D | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--------------------------|--|-------------|--| | DESCRIPTION: | DFN5 5x6, 1.27P (SO-8FL) | | PAGE 1 OF 1 | | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and seven earnathy, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify # PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative 0