

February 1984 Revised May 2005

MM74HCT240 • MM74HCT244 Inverting Octal 3-STATE Buffer • Octal 3-STATE Buffer

General Description

The MM74HCT240 and MM74HCT244 3-STATE buffers utilize advanced silicon-gate CMOS technology and are general purpose high speed inverting and non-inverting buffers. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the low power consumption of CMOS. All three devices are TTL input compatible and have a fanout of 15 LS-TTL equivalent inputs.

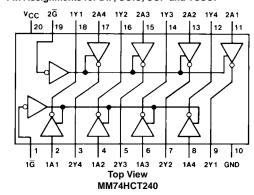
MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

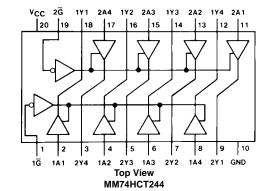
The MM74HCT240 is an inverting buffer and the MM74HCT244 is a non-inverting buffer. Each device has two active low enables (1G and 2G), and each enable independently controls 4 buffers.

All inputs are protected from damage due to static discharge by diodes to $\rm V_{CC}$ and Ground.

Features

- TTL input compatible
- Typical propagation delay: 14 ns
- 3-STATE outputs for connection to system buses
- Low quiescent current: 80 μA
- High output drive current: 6 mA (min)


Ordering Code:


Order Number	Package Number	Package Description
MM74HCT240WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HCT240SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT240MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT240N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74HCT244WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HCT244SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT244MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT244N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

Pin Assignments for DIP, SOIC, SOP and TSSOP

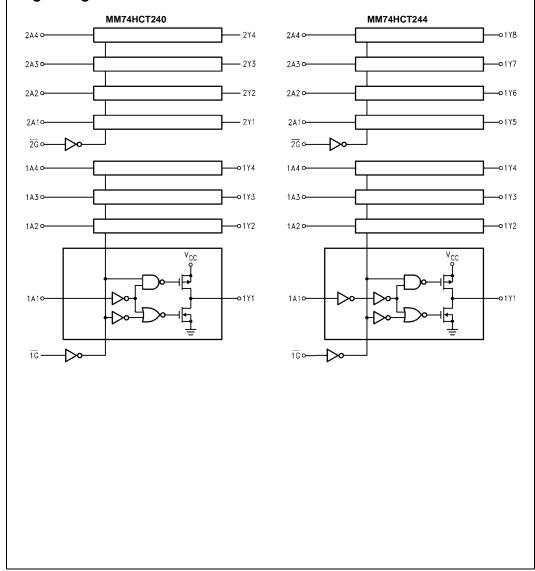
© 2005 Fairchild Semiconductor Corporation

DS005365

Truth Tables

MM74HCT240

1G	1A	1Y	2 <u>G</u>	2A	2Y
٦	L	Н	Г	L	Н
L	Н	L	L	Н	L
Н	L	Z	Н	L	Z
Н	Η	Z	Н	Η	Z


H = HIGH Level L = LOW Level

Z = High Impedance

MM74HCT244

1G	1A	1Y	2G	2A	2Y
L	L	L	L	L	L
L	Н	Н	L	Н	Н
Н	L	Z	Н	L	Z
Н	Н	Z	Н	Н	Z

Logic Diagrams

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to V_{CC} $+0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P.)	

Power Dissipation (P_D)

(Note 3) S.O. Package only Lead Temperature (T_L)

(Soldering 10 seconds) 260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
(t_r, t_f)		500	ns
Note 1: Absolute Maximum Ratings are those	values b	eyond whi	ch dam-

age to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

 $V_{CC} = 5V \pm 10\%$ (unless otherwise specified)

Symbol	Parameter	Conditions	Conditions T _A =		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	T _A = -55° to 125°C	Units
Oymboi		Conditions	Тур		Guaranteed L	imits	Onnes
V _{IH}	Minimum HIGH Level			2.0	2.0	2.0	V
	Input Voltage						
V _{IL}	Maximum LOW Level			0.8	0.8	0.8	V
	Input Voltage						
V _{OH}	Minimum HIGH Level	$V_{IN-EE} = V_{IH}$ or V_{IL}					
	Output Voltage	$ I_{OUT} = 20 \mu A$	V_{CC}	V _{CC} -0.1	V _{CC} -0.1	V _{CC} -0.1	V
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V
		$ I_{OUT} = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	4.7	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}					
	Voltage	$ I_{OUT} = 20 \mu A$	0	0.1	0.1	0.1	V
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V
		$ I_{OUT} = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.05	±0.5	±1.0	μΑ
	Current	V_{IH} or V_{IL}					
loz	Maximum 3-STATE	V _{OUT} = V _{CC} or GND		±0.25	±2.5	±10	μА
	Output Leakage	$\overline{G} = V_{IH}$					
	Current	$G = V_{IL}$					
Icc	Maximum Quiescent	V _{IN} = V _{CC} or GND		4.0	40	160	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$					
		V _{IN} = 2.4V or 0.5V (Note 4)	0.6	1.0	1.3	1.5	mA

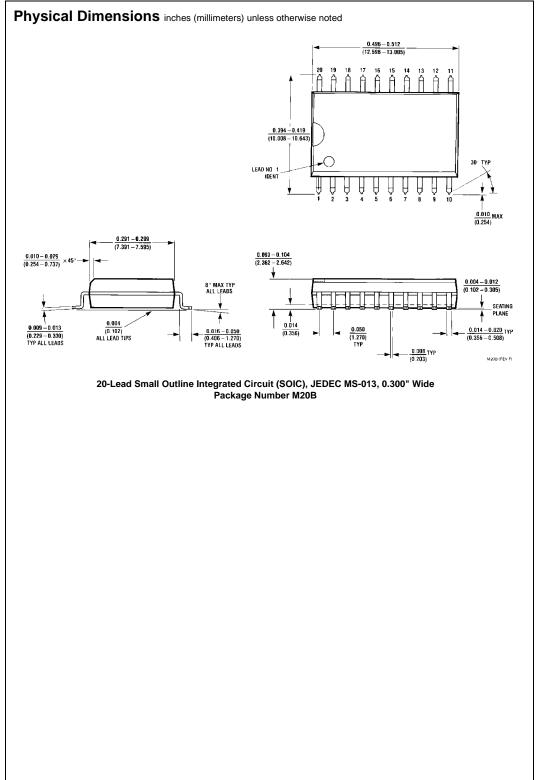
600 mW

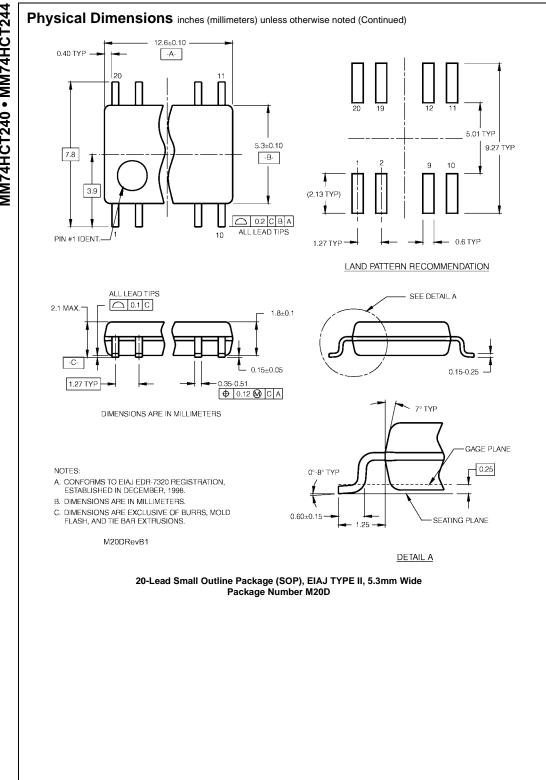
500 mW

Note 4: Measured per input. All other inputs at V_{CC} or GND.

AC Electrical Characteristics

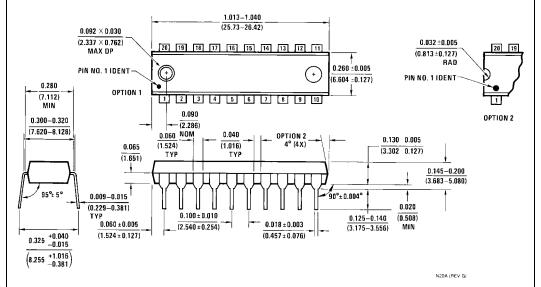
MM74HCT240, MM74HCT244 V_{CC} = 5.0V, t_{r} = t_{f} = 6 ns, T_{A} = 25°C (unless otherwise specified)


Symbol	Parameter	Conditions	Тур	Guaranteed Limits	Units
t _{PHL} , t _{PLH}	Maximum Output	C _L = 45 pF	14	18	ns
	Propagation Delay				
t _{PZL} , t _{PZH}	Maximum Output	C _L = 45 pF	20	30	ns
	Enable Time	$R_L = 1 k\Omega$			
t _{PLZ} , t _{PHZ}	Maximum Output	C _L = 5 pF	16	25	ns
	Disable Time	$R_1 = 1 k\Omega$			


AC Electrical Characteristics

MM74HCT240, MM74HCT244 V $_{CC}$ = 5.0V \pm 10%, t_{r} = t_{f} = 6 ns (unless otherwise specified)

Symbol	Parameter	Conditions	T _A = 25°C		T _A = -40 to 85°C	T _A = -55° to 125°C	Units	
Cymbol	rurumotor	Conditions	Тур	Typ Guaranteed Limits			_ Oilito	
t_{PHL}, t_{PLH}	Maximum Output	C _L = 50 pF	14	20	25	30	ns	
	Propagation Delay	C _L = 150 pF	20	28	35	42	ns	
t_{PZH}, t_{PZL}	Maximum Output	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	21	30	38	45	ns	
	Enable Time	C _L = 150 pF	26	42	53	63	ns	
t_{PHZ} , t_{PLZ}	Maximum Output	$R_L = 1 k\Omega$	16	25	32	38	ns	
	Disable Time	C _L = 50 pF						
t_{THL}, t_{TLH}	Maximum Output	C _L = 50 pF	6	12	15	18	ns	
	Rise and Fall Time							
C _{IN}	Maximum Input		10	15	15	15	pF	
	Capacitance							
C _{OUT}	Maximum Output		15	20	20	20	pF	
	Capacitance							
C _{PD}	Power Dissipation	(per buffer)						
	Capacitance (Note 5)	$\overline{G} = V_{CC}, G = GND$	5				pF	
		$\overline{G} = GND, G = V_{CC}$	90				pF	


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC} 2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} f + I_{CC}$.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) -0.20 7.72 64 4.4±0.1 -B-0.65 PIN #1 IDENT. LAND PATTERN RECOMMENDATION O.1 C ALL LEAD TIPS SEE DETAIL A -0.90^{+0.15} 0.09-0.20 0.65 0.19-0.30 | \$\dag{0.10\dag{A} R\$ 0\$ R0.09mir GAGE PLANE DIMENSIONS ARE IN MILLIMETERS NOTES: A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93. 0.6±0.1 R0.09min -1.00 B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND THE BAR EXTRUSIONS. DETAIL A D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. MTC20REVD1 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com