
Pin Configuration

MIC5270BM5 Adjustable Voltage

MIC5270-x.xBM5 Fixed Output Voltage

Pin Description

Pin Number (Adj.)	Pin Number (Fixed)	Pin Name	Pin Function
1	1	NC	Not internally connected.
2	2	GND	Ground.
	3	NC	Not internally connected.
3		ADJ	Adjustable (Input): Adjustable feedback output connects to resistor voltage divider.
4	4	–OUT	Negative Regulator Output.
5	5	–IN	Negative Supply Input.

Absolute Maximum Ratings (Note 1)

Operating F	Ratings (Note
-------------	---------------

Input Voltage (V _{IN})	–20V to +0.3V
Power Dissipation (P _D)	. Internally Limited
Junction Temperature (T _J)	. –40°C to +125°C
Lead Temperature (soldering, 5 sec.)	260°C
Storage Temperature (T _S)	. –65°C to +150°C
ESD Rating, Note 3	

Input Voltage (V _{IN})	–16V to –3.3V
Junction Temperature (T _J)	–40°C to +125°C
Thermal Resistance (θ_{JA})	Note 4

2)

Electrical Characteristics (Note 5)

 $V_{IN} = V_{OUT} - 1.0V; C_{OUT} = 4.7\mu\text{F}, I_{OUT} = 100\mu\text{A}; T_J = 25^{\circ}\text{C}, \text{ bold } \text{values indicate } -40^{\circ}\text{C} \le T_J \le +125^{\circ}\text{C}; \text{ unless noted}.$

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OUT}	Output Voltage Accuracy	Variation from nominal V _{OUT}	-2 -3		2 3	% %
ΔV _{OUT} /ΔT	Output Voltage Temperature Coefficient	Note 6		100		ppm/°C
ΔV _{OUT} /V _{OUT}	Line Regulation	$V_{IN} = V_{OUT} - 1V \text{ to } -16V$		0.05	0.15 0.2	%/V
ΔV _{OUT} /V _{OUT}	Load Regulation	I _{OUT} = 100μA to 100mA, Note 7		1.5	1.8 2.0	% %
V _{IN} – V _{OUT}	Dropout Voltage, Note 8	I _{OUT} = 100μA		40		mV
		I _{OUT} = 50mA		360	500	mV
		I _{OUT} = 100mA		500	700 900	mV
I _{GND}	Ground Current, Note 9	I _{OUT} = 100μA		35	100	μΑ
		I _{OUT} = 50mA		0.7		mA
		I _{OUT} = 100mA		2.1	3.0	mA
PSRR	Ripple Rejection	f = 120Hz		50		dB
I _{LIMIT}	Current Limit	$V_{OUT} = 0V$		160	300	mA
$\Delta V_{OUT} / \Delta P_D$	Thermal Regulation	Note 10		0.05		%/W

Note 1. Exceeding the absolute maximum rating may damage the device.

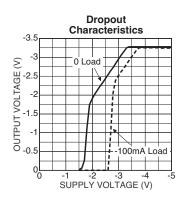
Note 2. The device is not guaranteed to function outside its operating rating.

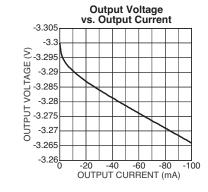
Note 3. Devices are ESD sensitive. Handling precautions recommended.

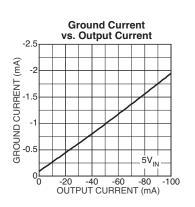
Note 4. The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(max)}$, the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{D(max)} = (\overline{J}_{(max)} - T_A) \div \theta_{JA}$, where θ_{JA} is 235°C/W. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See the "Thermal Considerations" section for details.

Note 5. Specification for packaged product only.

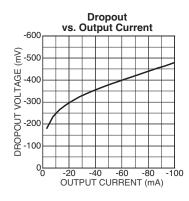
Note 6. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

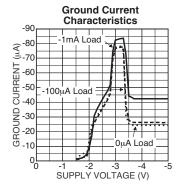

Note 7. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 100μA to 100mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.


Note 8. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.


Note 9. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

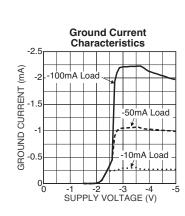
Note 10. Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 100mA load pulse at $V_{IN} = -16V$ for t = 10ms.


Typical Characteristics



Ground Current vs. Temperature -30 ImA Load (MA) GROUND CURRENT -20 ÓΑ Load -40 -20 0 0 20 40 60 80 100 120 TEMPERATURE (°C)

-3.5


2.5

-2

1.5

-0.5

GROUND CURRENT (MA)

Output Voltage vs. Temperature

0 20 40 60 80 100 120 TEMPERATURE (°C)

-3.4 -3.38

€-3.36

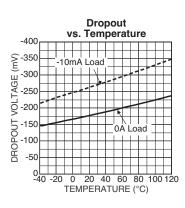
-3.34

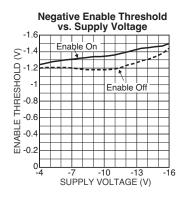
-3.32

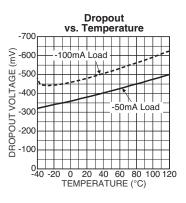
-3.3

-3.28

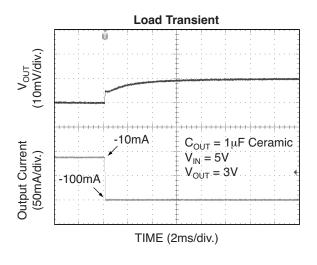
-3.26

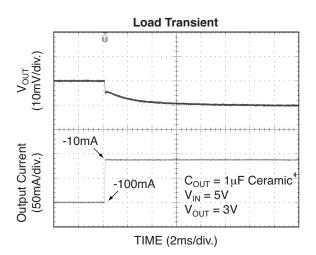

-3.24

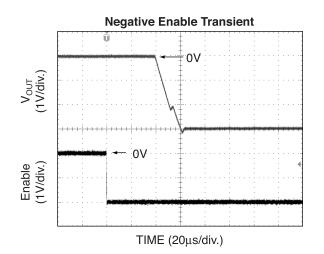

-3.22 -3.2L -40

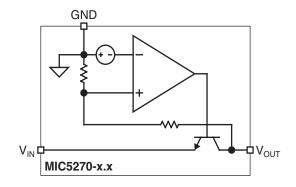

-20

OUTPUT VOLTAGE


Ground Current vs. Temperature 100mA Load 50A Load 0∟ -40 20 40 60 80 100 120 -20 0 TEMPERATURE (°C)






Functional Characteristics

Functional Diagram

Applications Information

The MIC5270 is a general-purpose negative regulator that can be used in any system that requires a clean negative voltage from a negative output. This includes post regulating of DC-DC converters (transformer based or charge pump based voltage converters). These negative voltages typically require a negative low-dropout voltage regulator to provide a clean output from typically noisy lines.

Input Capacitor

A 1μ F input capacitor should be placed from IN to GND if there is more than 2 inches of wire or trace between the input and the AC filter capacitor, or if a battery is used as the input.

Output Capacitor

The MIC5270 requires an output capacitor for stable operation. A minimum of 1μ F of output capacitance is required. The output capacitor can be increased without limitation to improve transient response. The output does not require ESR to maintain stability, therefore a ceramic capacitor can be used. High-ESR capacitors may cause instability. Capacitors with an ESR of 3Ω or greater at 100kHz may cause a high frequency oscillation.

Low-ESR tantalums are recommended due to the tight capacitance tolerance over temperature.

Ceramic chip capacitors have a much greater dependence on temperature, depending upon the dielectric. The X7R is recommended for ceramic capacitors because the dielectric will change capacitance value by approximately 15% over temperature. The Z5U dielectric can change capacitance value by as much 50% over temperature, and the Y5V dielectric can change capacitance value by as much as 60% over temperature. To use a ceramic chip capacitor with the Y5V dielectric, the value must be much higher than a tantalum to ensure the same minimum capacitor value over temperature.

No-Load Stability

The MIC5270 does not require a load for stability.

Thermal Considerations

Absolute values will be used for thermal calculations to clarify what is meant by power dissipation and voltage drops across the part.

Proper thermal design for the MIC5270-5.0BM5 can be accomplished with some basic design criteria and some simple equations. The following information must be known to implement your regulator design:

 V_{IN} = input voltage

V_{OUT} = output voltage

I_{OUT} = output current

 T_A = ambient operating temperature

I_{GND} = ground current

Maximum power dissipation can be determined by knowing the ambient temperature, T_A , the maximum junction temperature, 125°C, and the thermal resistance, junction to ambient. The thermal resistance for this part, assuming a

minimum footprint board layout, is 235°C/W. The maximum power dissipation at an ambient temperature of 25°C can be determined with the following equation:

$$P_{D(max)} = \frac{T_{J(max)} - T_{A}}{\theta_{JA}}$$
$$P_{D(max)} = \frac{125^{\circ}C - 25^{\circ}C}{235^{\circ}C/W}$$

 $P_{D(max)} = 425 mW$

The actual power dissipation of the regulator circuit can be determined using one simple equation.

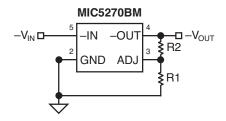
$$P_{D} = \left(V_{IN} - V_{OUT}\right)I_{OUT} + V_{IN} \cdot I_{GND}$$

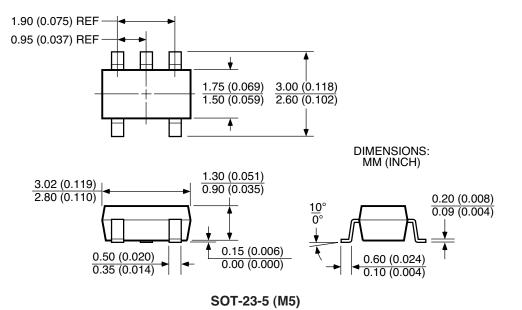
Substituting $P_{D(max)}$, determined above, for P_D and solving for the operating conditions that are critical to the application will give the maximum operating conditions for the regulator circuit. The maximum power dissipation number cannot be exceeded for proper operation of the device. The maximum input voltage can be determined using the output voltage of 5.0V and an output current of 100mA. Ground current, of 1mA for 100mA of output current, can be taken from the "Electrical Characteristics" section of the data sheet.

$$425\text{mW} = (V_{\text{IN}} - 5.0\text{V})100\text{mA} + V_{\text{IN}} \times 1\text{mA}$$
$$425\text{mW} = (100\text{mA} \times V_{\text{IN}} + 1\text{mA} \times V_{\text{IN}}) - 500\text{mW}$$
$$925\text{mW} = 101\text{mA} \times V_{\text{IN}}$$
$$V_{\text{IN}} = 9.16\text{Vmax}$$

Therefore, a -5.0V application at 100mA of output current can accept a maximum input voltage of -9.16V in a SOT-23-5 package. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to Regulator Thermals section of Micrel's "Designing with Low-Dropout Voltage Regulators" handbook.

Adjustable Regulator Application




Figure 1. Adjustable Voltage Application

The MIC5270BM5 can be adjusted from 1.20V to 14V by using two external resistors (Figure 1). The resistors set the output voltage based on the following equation:

$$|V_{OUT}| = V_{REF} \left(1 + \frac{R2}{R1}\right)$$

Where $V_{RFF} = 1.20V$

Package Information

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.