

[I²C]

Standard-mode (Max.100 kbps) / Fast-mode (Max.400 kbps) supported

External Bus Interface

- ■Supports SRAM, NOR& NAND Flash device
- ■Up to 8 chip selects
- ■8-/16-bit Data width
- ■Up to 25-bit Address bit
- ■Maximum area size : Up to 256 Mbytes

DMA Controller (8 channels)

DMA Controller has an independent bus for CPU, so CPU and DMA Controller can process simultaneously.

- ■8 independently configured and operated channels
- Transfer can be started by software or request from the built-in peripherals
- Transfer address area: 32bit(4Gbyte)
- Transfer mode: Block transfer/Burst transfer/Demand transfer
- Transfer data type: byte/half-word/word
- ■Transfer block count: 1 to 16
- ■Number of transfers: 1 to 65536

A/D Converter (Max. 16 channels)

[12-bit A/D Converter]

- ■Successive Approximation Register type
- ■Built-in 3unit
- ■Conversion time: 1.0 µs@5 V
- Priority conversion available (priority at 2 levels)
- Scanning conversion mode
- Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion: 4 steps)

Base Timer (Max. 8 channels)

Operation mode is selectable from the followings for each channel.

- ■16-bit PWM timer
- 16-bit PPG timer
- ■16-/32-bit reload timer
- ■16-/32-bit PWC timer

Multi-function Timer (Max. 2 units)

The Multi-function timer is composed of the following blocks.

- ■16-bit free-run timer × 3 ch/unit
- Input capture × 4 ch/unit
- Output compare × 6 ch/unit
- A/D activation compare × 3 ch/unit
- ■Waveform generator × 3 ch/unit
- ■16-bit PPG timer × 3 ch/unit

The following function can be used to achieve the motor control.

- PWM signal output function
- DC chopper waveform output function
- Dead time function
- ■Input capture function
- ■A/D convertor activate function
- DTIF (Motor emergency stop) interrupt function

Quadrature Position/Revolution Counter (QPRC) (Max. 2 units)

The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use up/down counter.

- The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.
- 16-bit position counter
- ■16-bit revolution counter
- Two 16-bit compare registers

Dual Timer (Two 32-/16bit Down Counter)

The Dual Timer consists of two programmable 32-/16-bit down counters.

Operation mode is selectable from the followings for each channel.

- ■Free-running
- ■Periodic (=Reload)
- ■One-shot

Watch Counter

The Watch counter is used for wake up from sleep mode.

■Interval timer: up to 64 s (Max.)@ Sub Clock: 32.768 kHz

Watch dog Timer (2 channels)

A watchdog timer can generate interrupts or a reset when a time-out value is reached.

This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog.

"Hardware" watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, "Hardware" watchdog is active in any low-power consumption modes except STOP mode.

External Interrupt Controller Unit

■Up to 16 external vectors

Include one non-maskable interrupt (NMI)

General Purpose I/O Port

This series can use its pins as general-purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated.

Capable of pull-up control per pin

Capable of reading pin level directly

■Built-in the port relocate function

Up to 100 high-speed general-purpose I/O Ports@120pin Package

CRC (Cyclic Redundancy Check) Accelerator

The CRC accelerator helps a verify data transmission or storage integrity.

CCITT CRC16 and IEEE-802.3 CRC32 are supported.

■CCITT CRC16 Generator Polynomial: 0x1021

■IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7

Clock and Reset

[Clocks]

Five clock sources (2 ext. osc, 2 CR osc, and Main PLL) that are dynamically selectable.

Main Clock:	4 MHz to 48 MHz
Sub Clock:	32.768 kHz
Built-in high-speed CR Clock:	4 MHz
■Built-in low-speed CR Clock:	100 kHz

Main PLL Clock

[Resets]

- Reset requests from INITX pins
- Power-on reset
- ■Software reset
- Watchdog timers reset
- ■Low-voltage detector reset
- Clock supervisor reset

Clock Super Visor (CSV)

Clocks generated by CR oscillators are used to supervise abnormality of the external clocks.

- External OSC clock failure (clock stop) is detected, reset is asserted.
- External OSC frequency anomaly is detected, interrupt or reset is asserted.

Low Voltage Detector (LVD)

This series include 2-stage monitoring of voltage on the VCC. When the voltage falls below the voltage has been set, Low Voltage Detector generates an interrupt or reset.

- LVD1: error reporting via interrupt
- ■LVD2: auto-reset operation

Low-Power Consumption Mode

Three low-power consumption modes supported.

- ■SLEEP
- ■TIMER
- ■STOP

Debug

- Serial Wire JTAG Debug Port (SWJ-DP)
- Embedded Trace Macrocells (ETM) provide comprehensive debug and trace facilities.

Power Supply

■VCC = 2.7 V to 5.5 V: Correspond to the wide range voltage.

Contents

1. Product Lineup	
2. Packages	7
3. Pin Assignment	8
4. List of Pin Functions	11
5. I/O Circuit Type	39
6. Handling Precautions	43
6.1 Precautions for Product Design	43
6.2 Precautions for Package Mounting	44
6.3 Precautions for Use Environment	45
7. Handling Devices	46
8. Block Diagram	48
9. Memory Size	48
10. Memory Map	49
11. Pin Status in Each CPU State	52
12. Electrical Characteristics	57
12.1 Absolute Maximum Ratings	57
12.2 Recommended Operating Conditions	59
12.3 DC Characteristics	60
12.3.1 Current rating	60
12.3.2 Pin Characteristics	62
12.4 AC Characteristics	63
12.4.1 Main Clock Input Characteristics	63
12.4.2 Sub Clock Input Characteristics	64
12.4.3 Built-in CR Oscillation Characteristics	64
12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of PLL)	65
12.4.5 Operating Conditions of Main PLL (In the case of using built-in high speed CR)	
12.4.6 Reset Input Characteristics	66
12.4.7 Power-on Reset Timing	66
12.4.8 External Bus Timing	
12.4.9 Base Timer Input Timing	
12.4.10 CSIO/UART Timing	
12.4.11 External input timing	81
12.4.12 Quadrature Position/Revolution Counter timing	
12.4.13 I ² C timing	84
12.4.14 ETM timing	85
12.4.15 JTAG timing	86
12.5 12-bit A/D Converter	87
12.6 Low-Voltage Detection Characteristics	
12.6.1 Low-Voltage Detection Reset	
12.6.2 Interrupt of Low-Voltage Detection	
12.7 Flash Memory Write/Erase Characteristics	
12.7.1 Write / Erase time	
12.7.2 Erase/write cycles and data hold time	
12.8 Return Time from Low-Power Consumption Mode	
12.8.1 Return Factor: Interrupt	
12.8.2 Return Factor: Reset	

13. Example of Characteristic	
14. Ordering Information	
15. Package Dimensions	99
16. Errata	102
16.1 Part Numbers Affected	102
16.2 Qualification Status	102
16.3 Errata Summary	102
16.4 Errata Detail	102
16.4.1 Timer and stop mode issue	
17. Major Changes	
Document History	
Sales, Solutions, and Legal Information	107

1. Product Lineup

Memory size

Product device	MB9BF102NA/RA	MB9BF104NA/RA	MB9BF105NA/RA	MB9BF106NA/RA
On-chip Flash memory	128 Kbyte	256 Kbyte	384 Kbyte	512 Kbyte
On-chip SRAM	16 Kbyte	32 Kbyte	48 Kbyte	64 Kbyte

Function

	Product device			MB9BF102NA MB9BF104NA MB9BF105NA MB9BF106NA	MB9BF102RA MB9BF104RA MB9BF105RA MB9BF106RA		
Pin count			100	120			
	0.514			Cortex-M3	·		
CPU	CPU Freq.			80 MHz			
Power	supply voltage range)		2.7 V to 5.5 V			
DMAC				8 ch			
External Bus Interface				Addr:25-bit (Max.) Data:8-/16-bit CS:5(Max.) Support: SRAM, NOR Flash	Addr:25-bit (Max.) Data:8-/16-bit CS:8(Max.) Support: SRAM, NOR & NAND Flash		
Multi-function Serial Interface (UART/CSIO/LIN/I ² C)				8 ch (Max.)			
Base Timer (PWC/ Reload timer/PWM/PPG)			8 ch (Max.)				
	A/D activation compare3ch.Input capture4ch.		ch.				
			ch.				
MF-	Free-run timer	30	ch.	2 units (Max.)			
Timer	Output compare	6	ch.				
	Waveform gene		ch.				
	PPG		ch.				
QPRC				2 ch (Max.)			
Dual Ti	mer			1 unit			
Watch	Counter			1 unit			
CRC A	ccelerator			Yes			
Watchd	log timer			1 ch(SW) + 1ch(HW)			
Externa	al Interrupts			16 pins (Max.)+ NMI × 1			
I/O port	S			80 pins (Max.)	100 pins (Max.)		
12-bit A	/D converter			16 ch (3 units)			
	lock Super Visor)			Yes			
LVD (Lo	ow Voltage Detector			2 ch			
Built-in	CR High-spe	ed		4 MHz			
	Low-spe	ed		100 kHz			
Debug	Function			SWJ-DP/ETM			

Note:

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.

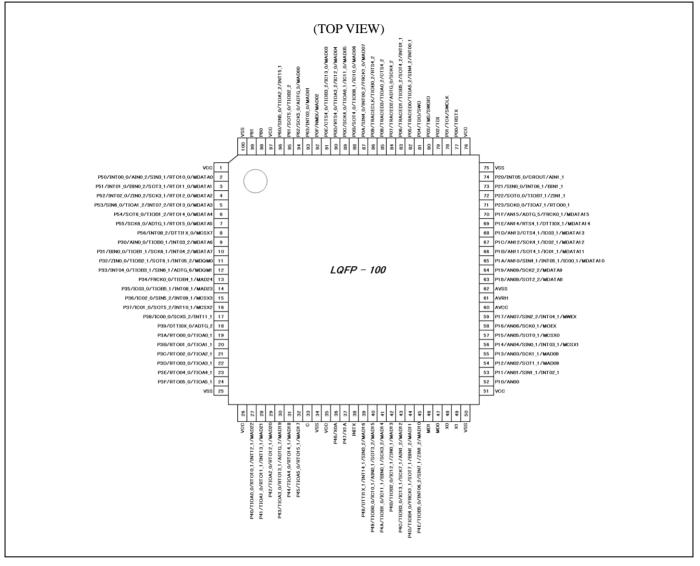
It is necessary to use the port relocate function of the General I/O port according to your function use.

See "Electrical Characteristics 12.4 AC Characteristics (12.4.3) Built-in CR Oscillation Characteristics" for accuracy of built-in CR.

2. Packages

Package	Product name	MB9BF102NA MB9BF104NA MB9BF105NA MB9BF106NA	MB9BF102RA MB9BF104RA MB9BF105RA MB9BF106RA
LQFP:	LQI100 (0.5 mm pitch)	0	-
LQFP:	LQM120 (0.5 mm pitch)	-	O
BGA:	LBC112 (0.8 mm pitch)	0	-

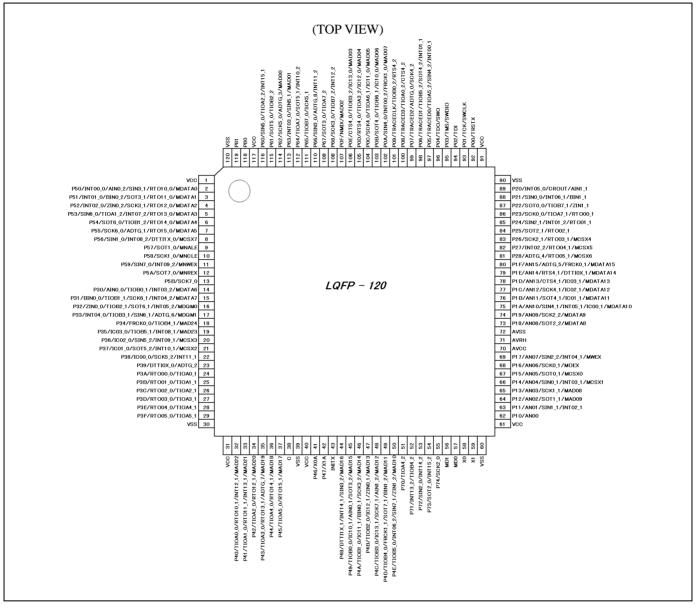
O: Supported


Note:

- Refer to "Package Dimensions" for detailed information on each package.

3. Pin Assignment

LQI100

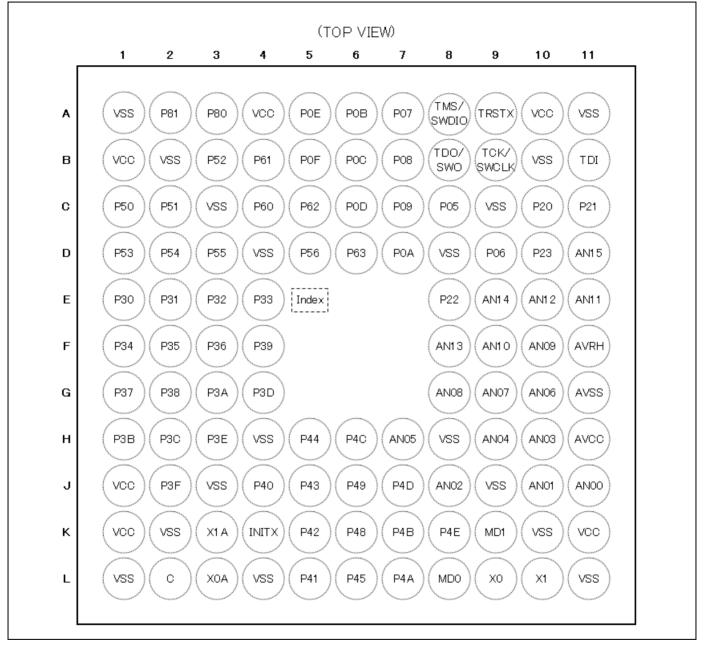


Note:

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.

MB9B100A Series

LQM120



Note:

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.

LBC112

Note:

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

4. List of Pin Functions

List of pin numbers

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

	Pin no.	-	Pin name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120		type	type
1	B1	1	VCC	-	
			P50		
			INT00_0		
			AIN0_2		
2	C1	2	SIN3_1	E	н
			RTO10_0		
			(PPG10_0)		
			MDATA0		
			P51		
			INT01_0		
			BIN0_2		
3	C2	3	SOT3_1 (SDA3_1)	E	н
			RTO11_0 (PPG10_0)		
			MDATA1		
			P52		н
			INT02_0		
			ZIN0_2		
4	D2	4	SCK3_1		
4	B3	4	(SCL3_1)		
			RTO12_0		
			(PPG12_0)		
			MDATA2		
			P53		
			SIN6_0		
			TIOA1_2		
5	D1	5	INT07_2	E	н
			RTO13_0 (PPG12_0)		
			MDATA3		
			P54		
			SOT6_0		
			(SDA6_0)		
6	D2	6	TIOB1_2	E	1
			RTO14_0 (PPG14_0)		
			MDATA4		

LQFP-100	Pin no. BGA-112	LQFP-120	Pin name	I/O circuit type	Pin state type
LQFF-100	BGA-112	LQFF-120	P55	type	type
			SCK6_0 (SCL6_0)		
7	D3	7 ADTG_1 E	E	1	
			RTO15_0 (PPG14_0)		
			MDATA5		
			P56		
			SIN1_0 (120pin only)		
8	D5	8	INT08_2	E	Н
			DTTI1X_0		
			MCSX7		
			P57		1
-	-	9	SOT1_0 (SDA1_0)	E	
			MNALE		
			P58		
-	-	10	SCK1_0 (SCL1_0)	E	1
			MNCLE		
			P59		
			SIN7_0	_	
-	-	11	INT09_2	E	Н
			MNWEX		
			P5A		
-	-	12	SOT7_0 (SDA7_0)	E	1
			MNREX		
			P5B		
-	-	13	SCK7_0 (SCL7_0)	E	I
			P30		
			AIN0_0	E	
9	E1	14	TIOB0_1		н
			INT03_2		
			MDATA6		

	Pin no.		Pin name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120		type	type
			P31		
			BIN0_0		
4.0	50		TIOB1_1		
10	E2	15	SCK6_1	E	н
			(SCL6_1)		
			INT04_2		
			MDATA7		
			P32 ZIN0_0		
11	E3	16	TIOB2_1	E	н
11	23	10	SOT6_1 (SDA6_1)	E .	11
			INT05_2		
			MDQM0		
			P33		
			INT04_0		
			TIOB3_1		н
12	E4	17	SIN6_1	E	
			ADTG_6	_	
			MDQM1		
			P34		1
			FRCK0_0		
13	F1	18	TIOB4_1	E	
			MAD24		
			P35		
			IC03_0		
14	F2	19	TIOB5_1	E	н
14	FZ	19			
			INT08_1		
			MAD23		
			P36		
4 -	50		IC02_0		
15	F3	20	SIN5_2	E	Н
			INT09_1		
			MCSX3		
			P37		
			IC01_0	E	
16	G1	21	SOT5_2 (SDA5_2)		н
			(SDA5_2) INT10_1		
			MCSX2	—	
			P38		
				—	
17	G2	22		E	н
17	92	22	SCK5_2 E (SCL5_2)		
			INT11_1	_	

	Pin no.		Pin name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120		type	type
40	-		P39		
18	F4	23	DTTIOX_0	E	1
			ADTG_2		
			P3A		
19	G3	24	RTO00_0 (PPG00_0)	G	I
			TIOA0_1		
-	B2	-	VSS	-	-
			P3B		
20	H1	25	RTO01_0 (PPG00_0)	G	I
			TIOA1_1		
			P3C		
21	H2	26	RTO02_0 (PPG02_0)	G	I
			TIOA2_1		
			P3D	G	1
22	G4	27	RTO03_0 (PPG02_0)		
			TIOA3_1		
			P3E		1
23	НЗ	28	RTO04_0 (PPG04_0)	G	
			TIOA4_1		
			P3F		
24	J2	29	RTO05_0 (PPG04_0)	G	1
			TIOA5_1		
25	L1	30	VSS	-	- 1
26	J1	31	VCC	-	
			P40		
			TIOA0_0		
27	J4	32	RTO10_1 (PPG10_1)	G	н
			INT12_1		
			MAD22		
			P41		
			TIOA1_0	G	
28	L5	5 33	RTO11_1 (PPG10_1)		н
			INT13_1		
			MAD21		

	Pin no.		Pin name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120		type	type
			P42		
00			TIOA2_0		I
29	K5	34	RTO12_1 (PPG12_1)	G	
			MAD20		
			P43		
			TIOA3_0		
30	J5	35	RTO13_1 (PPG12_1)	G	I
			ADTG_7		
			MAD19		
-	K2	-	VSS	-	·
-	J3	-	VSS	-	
-	H4	-	VSS	-	
			P44		
			TIOA4_0		
31	H5	36	RTO14_1 (PPG14_1)	G	1
			MAD18		
			P45		
			TIOA5_0		1
32	L6	37	RTO15_1 (PPG14_1)	G	
			MAD17		
33	L2	38	С	-	
34	L4	39	VSS	-	
35	K1	40	VCC	-	
36	L3	41	P46	D	М
30	LS	41	X0A	D	IVI
37	КЗ	42	P47	D	N
			X1A		
38	K4	43	INITX	В	С
			P48		
			DTTI1X_1		
39	K6	44	INT14_1	E	н
			SIN3_2		
			MAD16		
			P49		
			TIOB0_0	E	
			IC10_1		
40	J6	45	AIN0_1		1
-			SOT3_2		
			(SDA3_2)		
			MAD15		

LQFP-100	Pin no. BGA-112	LQFP-120	Pin name	I/O circuit type	Pin state type
2411 100			P4A		
			TIOB1_0		
			IC11_1		
41	L7	46	BIN0_1	E	1
			SCK3_2		
			(SCL3_2)		
			MAD14		
			P4B		
			TIOB2_0		
42	K7	47	IC12_1	E	1
			ZIN0_1		
			MAD13		
			P4C		
			TIOB3_0		I
			IC13_1		
43	H6	48	SCK7_1	E	
			(SCL7_1)		
			AIN1_2 MAD12		
		P4D			
			TIOB4_0		
			FRCK1_1		ı
44	J7	49		E	
44	57	45	SOT7_1 (SDA7_1)		
			BIN1_2		
			MAD11		
			P4E		
			TIOB5_0		
			INT06_2		
45	К8	50		E	н
			SIN7_1		
			ZIN1_2		
			MAD10		
-	-	51	P70	— E	1
			TIOA4_2		
			P71		
-	-	52	INT13_2	E	Н
			TIOB4_2		
			P72		
-	-	53	SIN2_0	E	н
			INT14_2		

LQFP-100	Pin no. BGA-112	LQFP-120	Pin name	I/O circuit type	Pin state type	
	BGA-112		P73	type	- iype	
			SOT2_0			
-	-	54	(SDA2_0)	E	н	
			INT15_2			
			P74			
-	-	55	SCK2_0	E	1	
			(SCL2_0)			
46	K9	56	MD1	С	D	
47	L8	57	MD0	С	D	
48	L9	58	X0	А	A	
49	L10	59	X1	А	В	
50	L11	60	VSS	-		
51	K11	61	VCC	-		
			P10			
52	J11	62	AN00	— F	к	
			P11			
	J10			AN01		
53		63	SIN1_1	— F	L	
			INT02_1			
-	K10	-	VSS	-		
-	J9	-	VSS	-		
-	19	-		-		
			P12 AN02			
54	J8	64	SOT1_1	F	к	
04	18	18 64	(SDA1_1)			
			MAD09			
			P13			
			AN03			
55	H10	65	SCK1_1	F	к	
			(SCL1_1)			
			MAD08			
			P14			
50	ЦО	66	AN04 SIN0_1			
56	H9	66		F	L	
			INT03_1 MCSX1			
			P15			
			AN05			
57	H7	67	SOT0_1	F	к	
			(SDA0_1)			
			MCSX0			

LQFP-100	Pin no. BGA-112	LQFP-120	Pin name	I/O circuit type	Pin state type
LQFF-100	BGA-112		P16	type	type
			AN06		
58	G10	68	SCK0_1	 F	к
			(SCL0_1)		
			MOEX		
			P17		
			AN07		
59	G9	69	SIN2_2	F	L
			INT04_1		
			MWEX		
60	H11	70	AVCC	-	
61	F11	71	AVRH	-	
62	G11	72	AVSS	-	
02			P18		
			AN08		
63	G8	73	SOT2_2	 F	к
		-	(SDA2_2)		
			MDATA8		
			P19		
	F10		AN09	F	
64		74	SCK2_2		к
			(SCL2_2)		
			MDATA9		
			P1A		
			AN10		
65	F9	75	SIN4_1	— F	L
00		10	INT05_1		
			IC00_1		
			MDATA10		
-	H8	-	VSS	-	1
			P1B		
			AN11		
66	E11	76	SOT4_1 (SDA4_1)	F	к
			IC01_1		
			MDATA11		
			P1C		
			AN12		
67	F 40	77	SCK4_1	\dashv_{-}	
67	E10	77	(SCL4_1)	F	К
			IC02_1		
			MDATA12		

	Pin no.		Pin name	I/O circuit	Pin state		
LQFP-100	BGA-112	LQFP-120		type	type		
			P1D				
			AN13				
68	F8	78	CTS4_1	F	к		
			IC03_1				
			MDATA13				
			P1E				
			AN14				
69	E9	79	RTS4_1	F	К		
			DTTI0X_1				
			MDATA14				
			P1F				
			AN15				
70	D11	80	ADTG_5	F	к		
			FRCK0_1				
			MDATA15				
			P28				
			ADTG_4		1		
-	-	81	 RTO05_1	E			
			(PPG04_1)				
			MCSX6				
			P27				
			INT02_2		н		
-	-	- 82	RTO04_1	E			
			(PPG04_1)				
			MCSX5				
					P26		
			SCK2_1				
-	-	83	(SCL2_1)	— E	1		
			RTO03_1				
			(PPG02_1)				
			MCSX4				
			P25 SOT2_1				
_	-	84	(SDA2_1)	E	1		
			RTO02_1				
			(PPG02_1)				
-	B10	-	VSS	-			
-	C9	-	VSS	-			
			P24				
			SIN2_1				
-	-	85	 INT01_2	E	н		
			RTO01_1 (PPG00_1)				
			(PPG00_1)				

LQFP-100	Pin no. BGA-112	LQFP-120	Pin name	I/O circuit type	Pin state type					
	Box H2		P23	-76-						
			SCK0_0							
	D40		(SCL0_0)							
71	D10	86	TIOA7_1	E						
			RTO00_1							
			(PPG00_1)							
			P22							
			SOT0_0							
72	E8	87	(SDA0_0)	E	1					
			TIOB7_1							
			ZIN1_1							
			P21							
70			SIN0_0							
73	C11	88	INT06_1	E	Н					
			BIN1_1							
	C10			P20		1				
			INT05_0							
74		89	CROUT	—— E	Н					
			AIN1_1							
75	A11	90	VSS	-						
76	A10	91	VCC	-						
						4.0		P00		
77	A9	92	TRSTX	E	E					
			P01							
78	В9	93	ТСК	E	E					
			SWCLK							
79	B11	94	P02	— Е	E					
79	ЫТ	94	TDI	E	E					
			P03							
80	A8	95	TMS	E	E					
			SWDIO							
			P04							
81	B8	96	TDO	E	E					
			SWO							
			P05							
			TRACED0							
82	C8	97	TIOA5_2	E	F					
			SIN4_2							
			INT00_1							
-	D8	-	VSS	-						

LQFP-100	Pin no. BGA-112	LQFP-120	Pin name	I/O circuit type	Pin state type	
			P06			
			TRACED1			
00	Da		TIOB5_2			
83	D9	98	SOT4_2 (SDA4_2)	E	F	
			INT01_1			
			P07			
			TRACED2			
84	A7	99	ADTG_0	E	G	
			SCK4_2 (SCL4_2)			
			P08			
			TRACED3			
85	B7	100	TIOA0_2	E	G	
			CTS4_2			
			P09			
	C7		TRACECLK			
86		101	TIOB0_2	E	G	
			RTS4_2			
	D7			P0A		+
		D7 102	SIN4_0	E		
87			INT00_2		н	
			FRCK1_0			
			MAD07			
			P0B			
			SOT4_0 (SDA4_0)			
88	A6	103	TIOB6_1	E	I	
			IC10_0			
			MAD06			
			P0C			
			SCK4_0 (SCL4_0)			
89	B6	104	TIOA6_1	E	1	
			IC11_0			
			MAD05			
			P0D			
			RTS4_0			
90	C6	105	TIOA3_2	E	1	
			IC12_0			
			MAD04			

	Pin no.		Pin name	I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120	Fin name	type	type
			P0E		
			CTS4_0		
91	A5	106	TIOB3_2	E	1
			IC13_0		
			MAD03		
-	D4	-	VSS	-	
-	C3	-	VSS	-	
			P0F		
92	B5	107	NMIX	E	J
			MAD02		
			P68		
			SCK3_0		
-	-	108	(SCL3_0)	E	Н
			TIOB7_2		
			INT12_2		
			P67		
_	-	109	SOT3_0	E	1
		100	(SDA3_0)		
			TIOA7_2		
			P66		
_	-	110	SIN3_0	— E	н
		110	ADTG_8		
			INT11_2		
			P65		
_	-	111	TIOB7_0	E	1
-			SCK5_1		I
			(SCL5_1)		
			P64		
			TIOA7_0		
-	- 112	112	SOT5_1	E	Н
				(SDA5_1)	
	_		INT10_2		
			P63		
93	D6	113	INT03_0	— Е	н
			MAD01		
-	-		SIN5_1		
			P62		
94	0-		SCK5_0		
	C5	114	(SCL5_0)	E	1
			ADTG_3		
			MAD00		
			P61		
95	B4	115	SOT5_0	E	1
			(SDA5_0)		
			TIOB2_2		

	Pin no.			I/O circuit	Pin state
LQFP-100	BGA-112	LQFP-120	Pin name	type	type
			P60		
~~~		116	SIN5_0	E	L
96	C4	110	TIOA2_2		н
			INT15_1		
97	A4	117	VCC	-	
98	A3	118	P80	Н	0
99	A2	119	P81	Н	0
100	A1	120	VSS	-	





#### List of pin functions

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

Madula	Din nome	Function	Pin No.			
Module	Pin name	Function	LQFP-100	BGA-112	LQFP-120	
ADC	ADTG_0		84	A7	99	
	ADTG_1		7	D3	7	
	ADTG_2		18	F4	23	
	ADTG_3		94	C5	114	
	ADTG_4	A/D converter external trigger input pin.	-	-	81	
	ADTG_5		70	D11	80	
	ADTG_6		12	E4	17	
	ADTG_7		30	J5	35	
	ADTG_8		-	-	110	
	AN00		52	J11	62	
	AN01		53	J10	63	
	AN02		54	J8	64	
	AN03		55	H10	65	
	AN04	7	56	H9	66	
	AN05		57	H7	67	
	AN06		58	G10	68	
	AN07	A/D converter analog input pin.	59	G9	69	
	AN08	ANxx describes ADC ch.xx.	63	G8	73	
	AN09		64	F10	74	
	AN10		65	F9	75	
	AN11		66	E11	76	
	AN12		67	E10	77	
	AN13		68	F8	78	
	AN14		69	E9	79	
	AN15		70	D11	80	
Base Timer	TIOA0_0		27	J4	32	
0	TIOA0_1	Base timer ch.0 TIOA pin.	19	G3	24	
	TIOA0_2		85	H10         H9         H7         G10         G9         G8         F10         F9         E11         E10         F8         E9         D11         J4	100	
	TIOB0_0		40	J6	45	
	TIOB0_1	Base timer ch.0 TIOB pin.	9	E1	14	
	TIOB0_2		86	A7         D3         F4         C5         -         D11         E4         J5         -         J11         J10         J8         H10         H9         H7         G10         G9         G8         F10         F9         E11         E10         F8         E9         D11         J4         G3         B7         J6         E1         C7         L5         H1         D1         L7	101	
Base Timer	TIOA1_0		28	L5	33	
1	TIOA1_1	Base timer ch.1 TIOA pin.	20	H1	25	
	TIOA1_2		5	D1	5	
	TIOB1_0		41	L7	46	
	TIOB1_1	Base timer ch.1 TIOB pin.	10	E2	15	
	TIOB1_2		6	D2	6	
Base Timer	TIOA2_0		29	K5	34	
2	TIOA2_1	Base timer ch.2 TIOA pin.	21	H2	26	
	TIOA2_2		96	C4	116	
	TIOB2_0		42	K7	47	
	TIOB2_1	Base timer ch.2 TIOB pin.	11	E3	16	
	TIOB2_2		95	B4	115	





Module	Pin name	Function		Pin No.	
		Function	LQFP-100	BGA-112	LQFP-120
Base Timer	TIOA3_0		30	J5	35
3	TIOA3_1	Base timer ch.3 TIOA pin.	22	G4	27
	TIOA3_2		90	C6	105
	TIOB3_0		43	H6	48
	TIOB3_1	Base timer ch.3 TIOB pin.	12	E4	17
	TIOB3_2		91	A5	106
Base Timer	TIOA4_0		31	H5	36
4	TIOA4_1	Base timer ch.4 TIOA pin.	23	H3	28
	TIOA4_2		-	-	51
	TIOB4_0		44	J7	49
	TIOB4_1	Base timer ch.4 TIOB pin.	13	F1	18
	TIOB4_2		-	-	52
Base Timer	TIOA5_0		32	L6	37
5	TIOA5_1	Base timer ch.5 TIOA pin.	24	J2	29
	TIOA5_2		82	C8	97
	TIOB5_0		45	K8	50
	TIOB5_1	Base timer ch.5 TIOB pin.	14	F2	19
	TIOB5_2		83	D9	98
Base Timer	TIOA6_1	Base timer ch.6 TIOA pin.	89	B6	104
6	TIOB6_1	Base timer ch.6 TIOB pin.	88	A6	103
Base Timer	TIOA7_0		-	-	112
7	TIOA7_1	Base timer ch.7 TIOA pin.	71	D10	86
	TIOA7_2	1	-	-	109
	TIOB7_0		-	-	111
	TIOB7_1	Base timer ch.7 TIOB pin.	72	E8	87
	TIOB7_2	1	-	-	108



Module	Pin name	name Function		Pin No.			
			LQFP-100	BGA-112	LQFP-120		
Debugger	SWCLK	Serial wire debug interface clock input.	78	B9	93		
	SWDIO	Serial wire debug interface data input / output.	80	A8	95		
	SWO	Serial wire viewer output.	81	B8	96		
	ТСК	JTAG test clock input.	78	B9	93		
	TDI	JTAG test data input.	79	B11	94		
	TDO	JTAG debug data output.	81	B8	96		
	TMS	JTAG test mode state input/output.	80	A8	95		
	TRACECLK	Trace CLK output of ETM.	86	C7	101		
	TRACED0		82	C8	97		
	TRACED1	Trace data output of ETM.	83	D9	98		
	TRACED2		84	A7	99		
	TRACED3		85	B7	100		
	TRSTX	JTAG test reset Input.	77	A9	92		
External	MAD00		94	C5	114		
Bus	MAD01		93	D6	113		
	MAD02		92	B5	107		
	MAD03		91	A5	106		
	MAD04		90	C6	105		
	MAD05		89	B6	104		
	MAD06		88	A6	103		
	MAD07		87	D7	102		
	MAD08		55	H10	65		
	MAD09		54	J8	64		
	MAD10		45	K8	50		
	MAD11		44	J7	49		
	MAD12	External bus interface address bus.	43	H6	48		
	MAD13		42	K7	47		
	MAD14		41	L7	46		
	MAD15		40	J6	45		
	MAD16		39	K6	44		
	MAD17		32	L6	37		
	MAD18		31	H5	36		
	MAD19		30	J5	35		
	MAD20		29	K5	34		
	MAD21		28	L5	33		
	MAD22	1	27	J4	32		
	MAD23		14	F2	19		
	MAD24		13	F1	18		
	MCSX0		57	H7	67		
	MCSX1		56	H9	66		
	MCSX2		16	G1	21		
	MCSX2 MCSX3		15	F3	20		
	MCSX4	<ul> <li>External bus interface chip select output pin.</li> </ul>	-	-	83		
	MCSX4 MCSX5		-	-	82		
	MCSX6		-	-	81		
	MCSX6 MCSX7				-		
	IVICOVI		8	D5	8		



Module	Pin name	Function		Pin No.	
wodule	Pin name	Function	LQFP-100	BGA-112	LQFP-120
External MD	MDATA0		2	C1	2
Bus	MDATA1		3	C2	3
	MDATA2		4	B3	4
	MDATA3		5	D1	5
	MDATA4		6	D2	6
	MDATA5		7	D3	7
	MDATA6		9	E1	14
	MDATA7		10	E2	15
	MDATA8	External bus interface data bus.	63	G8	73
	MDATA9		64	F10	74
	MDATA10		65	F9	75
	MDATA11		66	E11	76
	MDATA12		67	E10	77
	MDATA13		68	F8	78
	MDATA14		69	E9	79
	MDATA15		70	D11	80
	MDQM0	External hus interface buts mask signal sutput	11	E3	16
	MDQM1	External bus interface byte mask signal output.	12	E4	17
	MNALE	External bus interface ALE signal to control NAND Flash output pin.	-	-	9
	MNCLE	External bus interface CLE signal to control NAND Flash output pin.	-	-	10
	MNREX	External bus interface read enable signal to control NAND Flash.	-	-	12
	MNWEX	External bus interface write enable signal to control NAND Flash.	-	-	11
	MOEX	External bus interface read enable signal for SRAM.	58	G10	68
	MWEX	External bus interface write enable signal for SRAM.	59	G9	69



Module	Pin name	Function		Pin No.	
wodule	Pin name	Function	LQFP-100	BGA-112	LQFP-120
External	INT00_0		2	C1	2
Interrupt	INT00_1	External interrupt request 00 input pin.	82	C8	97
	INT00_2		87	D7	102
	INT01_0	External interrupt request 01 input pin.	3	C2	3
	INT01_1		83	D9	98
	INT01_2		-	-	85
	INT02_0		4	B3	4
	INT02_1	External interrupt request 02 input pin.	53	J10	63
	INT02_2		-	-	82
	INT03_0	External interrupt request 03 input pin.	93	D6	113
	INT03_1		56	H9	66
	INT03_2		9	E1	14
	INT04_0		12	E4	17
	INT04_1	External interrupt request 04 input pin.	59	G9	69
	INT04_2		10	E2	15
	INT05_0	External interrupt request 05 input pin.	74	C10	89
	INT05_1		65	F9	75
	INT05_2		11	E3	16
	INT06_1	External interrupt request 06 input pin. External interrupt request 07 input pin.	73	C11	88
	INT06_2		45	K8	50
	INT07_2		5	D1	5
	INT08_1		14	F2	19
	INT08_2	External interrupt request 08 input pin.	8	D5	8
	INT09_1		15	F3	20
	INT09_2	External interrupt request 09 input pin.	-	-	11
	INT10_1		16	G1	21
	INT10_2	External interrupt request 10 input pin.	-	-	112
	INT11_1		17	G2	22
	INT11_2	External interrupt request 11 input pin.	-	-	110
	INT12_1		27	J4	32
	INT12_2	External interrupt request 12 input pin.	-	-	108
	INT13_1		28	L5	33
	INT13_2	External interrupt request 13 input pin.	-	-	52
	INT14_1		39	K6	44
	INT14_2	External interrupt request 14 input pin.	-	-	53
	INT15_1		96	C4	116
	INT15_2	External interrupt request 15 input pin.	-	-	54
	NMIX	Non-Maskable Interrupt input.	92	B5	107



Module	Pin name	Function		Pin No.			
		i uncuon	LQFP-100	BGA-112	LQFP-120		
GPIO	P00	_	77	A9	92		
	P01	_	78	B9	93		
	P02	_	79	B11	94		
	P03		80	A8	95		
	P04		81	B8	96		
	P05		82	C8	97		
	P06		83	D9	98		
	P07	General-purpose I/O port 0.	84	A7	99		
	P08		85	B7	100		
	P09		86	C7	101		
	P0A		87	D7	102		
	P0B		88	A6	103		
	P0C		89	B6	104		
	P0D		90	C6	105		
	P0E		91	A5	106		
	P0F		92	B5	107		
	P10		52	J11	62		
	P11		53	J10	63		
	P12		54	J8	64		
	P13		55	H10	65		
	P14	General-purpose I/O port 1.	56	H9	66		
	P15		57	H7	67		
	P16		58	G10	68		
	P17		59	G9	69		
	P18		63	G8	73		
	P19		64	F10	74		
	P1A		65	F9	75		
	P1B		66	E11	76		
	P1C	1	67	E10	77		
	P1D	1	68	F8	78		
	P1E	1	69	E9	79		
	P1F	1	70	D11	80		
	P20		74	C10	89		
	P21	1	73	C11	88		
	P22	1	72	E8	87		
	P23	1	71	D10	86		
	P24	General-purpose I/O port 2.	-	-	85		
	P25		-	-	84		
	P26		-	-	83		
	P27		-	-	82		
	P28		-	-	81		



Pin name	Function	LQFP-100	DOA 440	
Dee			BGA-112	LQFP-120
P30		9	E1	14
P31		10	E2	15
P32		11		16
P33		12	E4	17
P34		13	F1	18
P35		14	F2	19
P36		15	F3	20
P37	Conorol nurnana I/O part 2	16	G1	21
P38	General-purpose I/O port 3.	17	G2	22
P39		18	F4	23
P3A		19	G3	24
P3B		20	H1	25
P3C	7	21	H2	26
P3D	7	22	G4	27
P3E	7	23	H3	28
P3F		24	J2	29
P40	General-purpose I/O port 4.	27	J4	32
P41		28	L5	33
P42		29	K5	34
P43		30	J5	35
P44				36
P45				37
P46				41
				42
				44
				45
				46
				47
				48
				49
	1			50
				2
				3
	1			4
	1			5
				6
				7
	General-purpose I/O port 5.			8
		-		9
				10
		-		11
		_		12
				12
	P33         P34         P35         P36         P37         P38         P39         P3A         P3B         P3C         P3F         P40         P41         P42         P43         P44	P33       P34         P35       P36         P36       P37         P38       P39         P39       P3A         P38       P39         P30       P36         P31       P38         P32       P36         P33       P35         P30       P35         P31       P35         P32       P37         P33       P36         P36       P37         P37       P38         P30       P35         P31       P40         P42       P43         P44       P45         P46       P47         P48       P40         P44       P45         P50       P51         P52       P53         P54       P55         P56       P57         P58       P59         P59       P54	P33         12           P34         13           P35         14           P37         15           P37         16           P38         17           P39         18           P37         18           P38         19           P30         20           P31         18           P32         23           P35         24           P40         27           P41         28           P42         23           P44         31           P44         31           P44         31           P44         31           P45         32           P46         32           P47         36           P48         32           P44         31           P45         32           P46         40           P47         36           P48         42           P40         42           P41         42           P42         33           P44         42           P40         45	P33         12         E4           P35         13         F1           P36         14         F2           P37         15         F3           P38         15         F3           P38         16         G1           P38         17         G2           P38         19         G3           P38         19         G3           P30         P35         20           P30         P37         14           P30         20         H1           P32         20         H1           P1         12         64           P37         24         J2           P40         27         J4           P41         28         L5           P43         P45         30         J5           P44         92         K5           P45         30         J5           P46         36         L3           P48         P40         J6           P44         J7         42           P40         44         J7           P48         P40         J6 <td< td=""></td<>



Madula	Din nomo	Function		Pin No.	
Module	Pin name	Function	LQFP-100	BGA-112	LQFP-120
GPIO	P60		96	C4	116
	P61		95	B4	115
	P62		94	C5	114
	P63		93	D6	113
	P64	General-purpose I/O port 6.	-	-	112
	P65		-	-	111
	P66		-	-	110
	P67		-	-	109
	P68	F	-	-	108
	P70		-	-	51
	P71		-	-	52
	P72		-	-	53
	P73		-	-	54
	P74		-	-	55
	P80	Conorol purposo I/O port 8	98	A3	118
	P81	General-purpose I/O port 8.	99	A2	119
Multi	SIN0_0	Multitunction corial intortace ch () input pin	73	C11	88
Function	SIN0_1		56	H9	66
Serial 0	SOT0_0 (SDA0_0)	Multifunction serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 when it is used in an I ² C (operation mode 4). Multifunction serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL0 when it is used in an I ² C (operation mode 4).	72	E8	87
	SOT0_1 (SDA0_1)		57	H7	67
	SCK0_0 (SCL0_0)		71	D10	86
	SCK0_1 (SCL0_1)		58	G10	68
Multi	SIN1_0	Multifunction parial interface of 1 input his	-	-	8
Function	SIN1_1	<ul> <li>Multifunction serial interface ch.1 input pin.</li> </ul>	53	J10	63
Serial 1	SOT1_0 (SDA1_0)	Multifunction serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as	-	-	9
	SOT1_1 (SDA1_1)	SDA1 when it is used in an $I^2C$ (operation mode 4).	54	J8	64
	SCK1_0 (SCL1_0)	Multifunction serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a UART/CSIO (operation modes 0 to 2) and as	-	-	10
	SCK1_1 (SCL1_1)	SCL1 when it is used in an $I^2C$ (operation mode 4).	55	H10	65



Module	Pin name	Function		Pin No.	
Module	Pin name	Function	LQFP-100	BGA-112	LQFP-120
Multi	SIN2_0	Multifunction serial interface ch.2 input pin.	-	-	53
Function	SIN2_1		-	-	85
Serial 2	SIN2_2		59	G9	69
2	SOT2_0			-	54
	(SDA2_0)	Multifunction serial interface ch.2 output pin.			54
	SOT2_1	This pin operates as SOT2 when it is used in a		_	84
	(SDA2_1)	UART/CSIO/LIN (operation modes 0 to 3) and as			04
	SOT2_2	SDA2 when it is used in an I ² C (operation mode 4).	63	G8	73
	(SDA2_2)			00	10
	SCK2_0	Multifunction serial interface ch.2 clock I/O pin. This pin operates as SCK2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL2 when it is used in an I ² C (operation mode 4).	-	-	55
	(SCL2_0)				
	SCK2_1		-	-	83
	(SCL2_1)				
	SCK2_2		64	F10	74
Multi	(SCL2_2)	Multifunction serial interface ch.3 input pin.	_	-	110
Function	SIN3_0				
Serial	SIN3_1		2	C1	2
3	SIN3_2		39	K6	44
	SOT3_0		-	_	109
	(SDA3_0)	Multifunction serial interface ch.3 output pin.			
	SOT3_1	This pin operates as SOT3 when it is used in a	3	C2	3
	(SDA3_1)	UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an $I^2C$ (operation mode 4).			
	SOT3_2	SDAS when it is used in an i C (operation mode 4).	40	J6	45
	(SDA3_2)				
	SCK3_0		-	-	108
	(SCL3_0)	Multifunction serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL3			
	SCK3_1 (SCL3_1)		4	1 B3	4
	(SCL3_1) SCK3_2	when it is used in an $I^2C$ (operation mode 4).			
	(SCL3_2)		41	L7	46
	(0010_2)				



Din name Eurotian		Pin No.		
Pin name	Function	LQFP-100	BGA-112	LQFP-120
SIN4_0		87	D7	102
SIN4_1	Multifunction serial interface ch.4 input pin.	65	F9	75
SIN4_2		82	C8	97
SOT4_0		00	46	103
(SDA4_0)	Multifunction serial interface ch.4 output pin.	00	AO	103
	This pin operates as SOT4 when it is used in a	66	F11	76
,	UART/CSIO/LIN (operation modes 0 to 3) and as			10
_	SDA4 when it is used in an I ⁻ C (operation mode 4).	83	D9	98
· · · · ·				
_		89	B6	104
		67	E10	77
,	when it is used in an $I^2C$ (operation mode 4).			
		84	A7	99
		90	C6	105
RTS4_1	Multifunction serial interface ch.4 RTS output pin.	69	E9	79
RTS4_2		86	C7	101
CTS4_0	Multifunction serial interface ch.4 CTS input pin.	91	A5	106
CTS4_1		68	F8	78
CTS4_2		85	B7	100
SIN5_0		96	C4	116
SIN5_1	Multifunction serial interface ch.5 input pin.	-	-	113
SIN5_2		87         65         82         88         66         83         89         67         84         90         69         86         91         68         85         96	F3	20
SOT5_0		05	R4	115
(SDA5_0)	Multifunction serial interface ch.5 output pin.	90	D4	115
	This pin operates as SOT5 when it is used in a		L_	112
	UART/CSIO/LIN (operation modes 0 to 3) and as			112
	SDA5 when it is used in an $I^{-}C$ (operation mode 4).	16	G1	21
· · · · ·		-	_	
		94	C5	114
	This pin operates as SCK5 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL5 when it is used in an I ² C (operation mode 4).	-	-	111
SCK5_2 (SCL5_2)		17	G2	22
_	SIN4_1         SIN4_2         SOT4_0         (SDA4_0)         SOT4_1         (SDA4_1)         SOT4_2         (SDA4_2)         SCK4_0         (SCL4_0)         SCK4_1         (SCL4_1)         SCK4_2         (SCL4_2)         RTS4_1         RTS4_2         CTS4_1         CTS4_1         CTS4_1         CTS4_2         SIN5_0         SIN5_1         SIN5_1         SIN5_1         SIN5_2         SOT5_0         (SDA5_0)         SOT5_1         SDA5_2)         SCK5_1         (SCL5_0)         SCK5_1         SCK5_2	SIN4_0         SIN4_1         Multifunction serial interface ch.4 input pin.         SIN4_2         SOT4_0         (SDA4_0)         Multifunction serial interface ch.4 output pin.         SOT4_1         (SDA4_1)         Warr/CSIO/LIN (operation modes 0 to 3) and as         SOT4_2         (SDA4_2)         SCK4_0         (SCL4_0)         Multifunction serial interface ch.4 clock I/O pin.         SCK4_1         This pin operates as SCK4 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL4 when it is used in an I ² C (operation mode 4).         SCK4_2         when it is used in an I ² C (operation mode 4).         (SCL4_2)         RTS4_0         RTS4_1         Multifunction serial interface ch.4 RTS output pin.         RTS4_2         CTS4_1         Multifunction serial interface ch.4 CTS input pin.         SIN5_1         Multifunction serial interface ch.5 input pin.         SIN5_2         SOT5_0         (SDA5_1)         SA5         SOT5_1         (SDA5_2)         SCK5_1         (SCK5_1         SCK5_1         VART/CSIO (operat	SIN4_0LGFP-100SIN4_1Multifunction serial interface ch.4 input pin.87SIN4_2SOT4_082SOT4_0Multifunction serial interface ch.4 output pin.88SOT4_1UART/CSIO/LIN (operation modes 0 to 3) and as66SOT4_2SDA4_Men it is used in an I²C (operation mode 4).83SCK4_0Multifunction serial interface ch.4 clock I/O pin.83SCK4_1UART/CSIO (operation modes 0 to 2) and as SCL467SCK4_1UART/CSIO (operation modes 0 to 2) and as SCL484SCK4_2When it is used in an I²C (operation mode 4).69RTS4_1Multifunction serial interface ch.4 RTS output pin.69RTS4_1Multifunction serial interface ch.4 CTS input pin.69CTS4_2SIN5_096SIN5_2SIN5_096SIN5_1Multifunction serial interface ch.5 output pinSOT5_1Multifunction serial interface ch.5 output pin.95SOT5_2SDA5 when it is used in an I²C (operation mode 4)SOT5_1Multifunction serial interface ch.5 output pinSOT5_1Multifunction serial interface ch.5 output pinSOT5_2SDA5 when it is used in an I²C (operation mode 4)SCK5_1SUA5 when it is used in an I²C (operation mode 4)SCK5_1UART/CSIO/LIN (operation modes 0 to 3) and as-SCK5_1UART/CSIO (operation mode 4)SCK5_2When it is used in an I²C (operation mode 4)SCK5_2When it is used in an	Prin name         Function         LQFP-100         BGA-112           SIN4_0         Multifunction serial interface ch.4 input pin.         87         D7           SIN4_1         Multifunction serial interface ch.4 input pin.         82         C8           SOT4_0         Multifunction serial interface ch.4 output pin.         88         A6           SOT4_1         UART/CSIO/LIN (operation modes 0 to 3) and as SOT4_2         88         A6           (SDA4_1)         UART/CSIO/LIN (operation modes 0 to 3) and as SOT4_4         83         D9           SCK4_0         SCK4_0         88         A6           (SCL4_0)         Multifunction serial interface ch.4 clock I/O pin.         89         B6           SCK4_1         This pin operates as SCK4 when it is used in a UART/CSIO (operation mode 0 to 2) and as SCL4 when it is used in an I°C (operation mode 4).         67         E10           SCK4_2         When it is used in an I°C (operation mode 4).         84         A7           RTS4_0         Multifunction serial interface ch.4 RTS output pin.         68         F8           CTS4_0         Multifunction serial interface ch.5 input pin.         68         F8           SIN5_1         Multifunction serial interface ch.5 input pin.         56         F7           SIN5_2         SDA5 when it is used in an I°C (op





Module	Pin name	Function	Pin No.		
Module	Fill hame	Function	LQFP-100	BGA-112	LQFP-120
Multi	SIN6_0	Multifunction parial interface of 6 input his	5	D1	5
Function	SIN6_1	Multifunction serial interface ch.6 input pin.	12	E4	17
Serial 6	SOT6_0 (SDA6_0)	Multifunction serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a	6	D2	6
	SOT6_1 (SDA6_1)	UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an $I^2C$ (operation mode 4).	11	E3	16
	SCK6_0 (SCL6_0)	Multifunction serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL6 when it is used in an $I^2C$ (operation mode 4).	7	D3	7
	SCK6_1 (SCL6_1)		10	E2	15
Multi	SIN7_0	Multifunction serial interface ch.7 input pin. Multifunction serial interface ch.7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I ² C (operation mode 4).	-	-	11
Function	SIN7_1		45	K8	50
Serial 7	SOT7_0 (SDA7_0)		-	-	12
	SOT7_1 (SDA7_1)		44	J7	49
	SCK7_0 (SCL7_0)	Multifunction serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL7 when it is used in an I ² C (operation mode 4).	-	-	13
	SCK7_1 (SCL7_1)		43	H6	48



Module	Din nome	Function		Pin No.		
wodule	Pin name	Function	LQFP-100	BGA-112	LQFP-120	
Multi	DTTI0X_0	Input signal controlling wave form generator outputs	18	F4	23	
Function	DTTI0X_1	RTO00 to RTO05 of multi-function timer 0.	69	E9	79	
Timer 0	FRCK0_0	16-bit free-run timer ch.0 external clock input pin.	13	F1	18	
0	FRCK0_1		70	D11	80	
	IC00_0		17	G2	22	
	IC00_1		65	F9	75	
	IC01_0		16	G1	21	
	IC01_1	<ul> <li>16-bit input capture ch.0 input pin of multi-function</li> <li>timer 0.</li> </ul>	66	E11	76	
	IC02_0	<ul> <li>ICxx describes channel number.</li> </ul>	15	F3	20	
	IC02_1		67	E10	77	
	IC03_0		14	F2	19	
	IC03_1		68	F8	78	
	RTO00_0 (PPG00_0)	Wave form generator output of multi-function timer 0. This pin operates as PPG00 when it is used in PPG 0 output modes.	19	G3	24	
	RTO00_1 (PPG00_1)		71	D10	86	
	RTO01_0 (PPG00_0)	Wave form generator output of multi-function timer 0. This pin operates as PPG00 when it is used in PPG 0 output modes.	20	H1	25	
	RTO01_1 (PPG00_1)		-	-	85	
	RTO02_0 (PPG02_0)	Wave form generator output of multi-function timer 0. This pin operates as PPG02 when it is used in PPG 0 output modes.	21	H2	26	
	RTO02_1 (PPG02_1)		-	-	84	
	RTO03_0 (PPG02_0)	Wave form generator output of multi-function timer 0.	22	G4	27	
	RTO03_1 (PPG02_1)	<ul> <li>This pin operates as PPG02 when it is used in PPG 0 output modes.</li> </ul>	-	-	83	
	RTO04_0 (PPG04_0)	Wave form generator output of multi-function timer 0.	23	H3	28	
	RTO04_1 (PPG04_1)	This pin operates as PPG04 when it is used in PPG 0 output modes.	-	-	82	
	RTO05_0 (PPG04_0)	Wave form generator output of multi-function timer 0.	24	J2	29	
	RTO05_1 (PPG04_1)	<ul> <li>This pin operates as PPG04 when it is used in PPG 0 output modes.</li> </ul>	-	-	81	



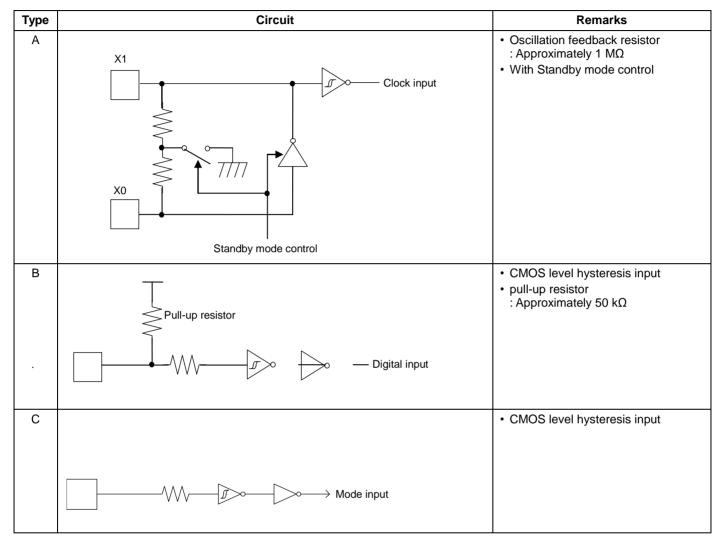
Module	Din nome	Function		Pin No.	
wodule	Pin name	Function	LQFP-100	BGA-112	LQFP-120
Multi	DTTI1X_0	Input signal controlling wave form generator outputs	8	D5	8
Function	DTTI1X_1	RTO10 to RTO15 of multi-function timer 1.	39	K6	44
Timer 1	FRCK1_0	16-bit free-run timer ch.1 external clock input pin.	87	D7	102
	FRCK1_1		44	J7	49
	IC10_0		88	A6	103
	IC10_1		40	J6	45
	IC11_0		89	B6	104
	IC11_1	<ul> <li>16-bit input capture ch.0 input pin of multi-function</li> <li>timer 1.</li> </ul>	41	L7	46
	IC12_0	<ul> <li>ICxx describes channel number.</li> </ul>	90	C6	105
	IC12_1		42	K7	47
	IC13_0		91	A5	106
IC13_1		43	H6	48	
	RTO10_0 (PPG10_0)	Wave form generator output of multi-function timer 1. This pin operates as PPG10 when it is used in PPG 1 output modes.	2	C1	2
	RTO10_1 (PPG10_1)		27	J4	32
	RTO11_0 (PPG10_0)	Wave form generator output of multi-function timer 1. This pin operates as PPG10 when it is used in PPG 1 output modes.	3	C2	3
	RTO11_1 (PPG10_1)		28	L5	33
	RTO12_0 (PPG12_0)	Wave form generator output of multi-function timer 1. This pin operates as PPG12 when it is used in PPG 1 output modes.	4	B3	4
	RTO12_1 (PPG12_1)		29	K5	34
	RTO13_0 (PPG12_0)	Wave form generator output of multi-function timer 1.	5	D1	5
	RTO13_1 (PPG12_1)	This pin operates as PPG12 when it is used in PPG 1 output modes.	30	J5	35
	RTO14_0 (PPG14_0)	Wave form generator output of multi-function timer 1.	6	D2	6
	RTO14_1 (PPG14_1)	This pin operates as PPG14 when it is used in PPG 1 output modes.	31	H5	36
	RTO15_0 (PPG14_0)	Wave form generator output of multi-function timer 1. This pin operates as PPG14 when it is used in PPG 1	7	D3	7
	RTO15_1 (PPG14_1)	output modes.	32	L6	37



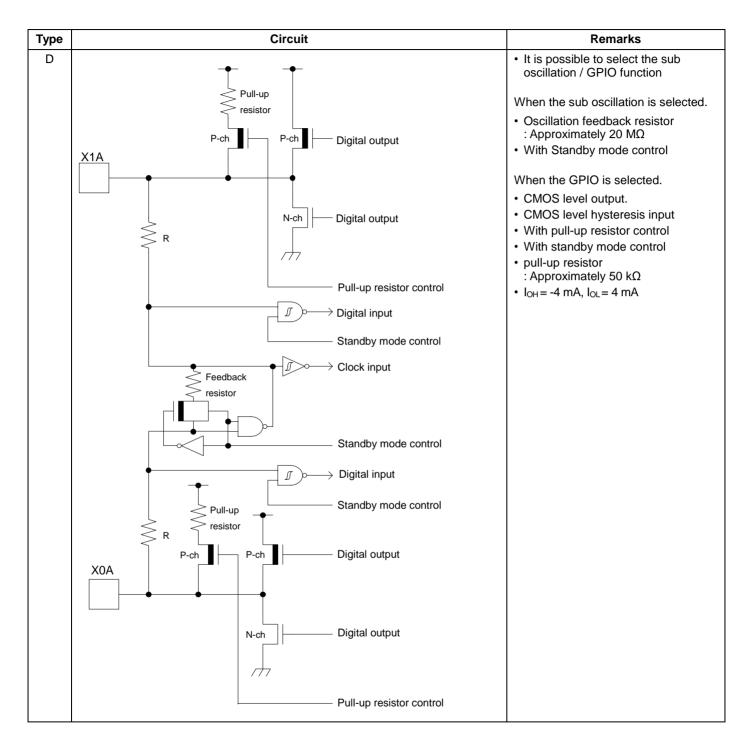


Madula	Din nome	Function		Pin No.	
Module	Pin name	Function	LQFP-100	BGA-112	LQFP-120
Quadrature Position/ Revolution	AIN0_0		9	E1	14
	AIN0_1	QPRC ch.0 AIN input pin.	40	J6	45
Counter	AIN0_2		2	C1	2
0	BIN0_0		10	E2	15
	BIN0_1	QPRC ch.0 BIN input pin.	41	L7	46
	BIN0_2		3	C2	3
	ZIN0_0	QPRC ch.0 ZIN input pin.	11	E3	16
	ZIN0_1		42	K7	47
	ZIN0_2		4	B3	4
Quadrature	AIN1_1	OPPC ob 1 AIN input nin	74	C10	89
Position/ Revolution	AIN1_2	<ul> <li>QPRC ch.1 AIN input pin.</li> </ul>	43	H6	48
Counter	BIN1_1	QPRC ch.1 BIN input pin.	73	C11	88
1	BIN1_2		44	J7	49
	ZIN1_1	OPPC ob 1 ZIN input pip	72	E8	87
	ZIN1_2	<ul> <li>QPRC ch.1 ZIN input pin.</li> </ul>	45	K8	50

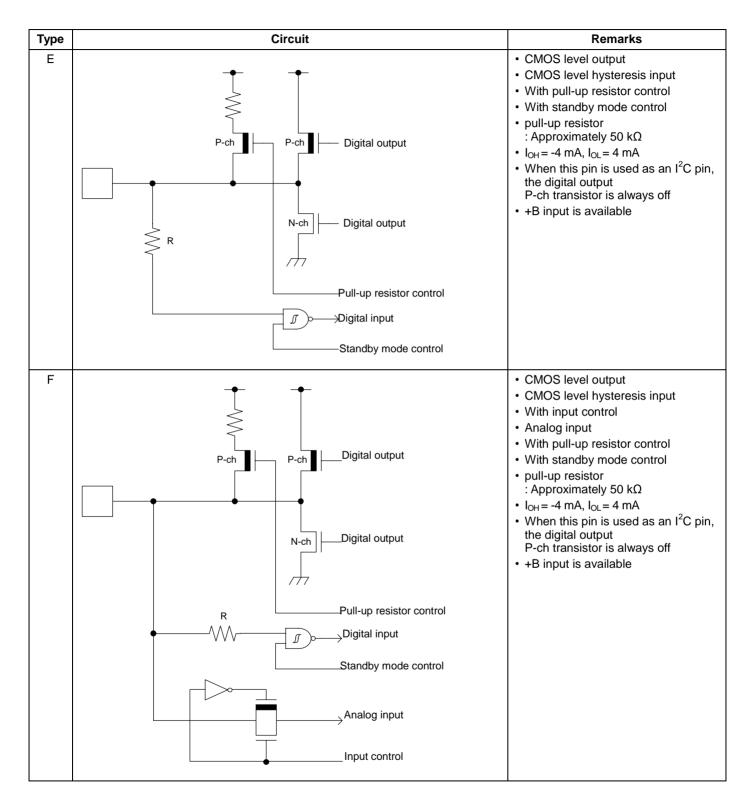



Madula	Din nome	Function		Pin No.	
Module	Pin name	Function	LQFP-100	BGA-112	LQFP-120
Reset	INITX	External Reset Input. A reset is valid when INITX=L.	38	K4	43
Mode MD0		Mode 0 pin. During normal operation, MD0=L must be input. During serial programming to flash memory, MD0=H must be input.	47	L8	57
	MD1	Mode 1 pin. Input must always be at the "L" level.	46	K9	56
Power	VCC		1	B1	1
	VCC		26	J1	31
VCC VCC VCC VCC	VCC		35	K1	40
	VCC	Power Pin.	51	K11	61
	VCC		76	A10	91
	VCC		97	A4	117
GND	VSS		-	B2	-
VSS VSS	VSS		25	L1	30
	VSS		-	K2	-
	VSS		-	J3	-
	VSS		-	H4	-
	VSS		34	L4	39
	VSS		50	L11	60
	VSS		-	K10	-
	VSS	GND Pin.	-	J9	-
	VSS		-	H8	-
	VSS		-	B10	-
	VSS		-	C9	-
	VSS		75	A11	90
	VSS		-	D8	-
	VSS		-	D4	-
	VSS		-	C3	-
	VSS		100	A1	120
Clock	X0	Main clock (oscillation) input pin.	48	L9	58
	X0A	Sub clock (oscillation) input pin.	36	L3	41
	X1	Main clock (oscillation) I/O pin.	49	L10	59
	X1A	Sub clock (oscillation) I/O pin.	37	K3	42
	CROUT	Built-in High-speed CR-osc clock output port.	74	C10	89
Analog	AVCC	A/D converter analog power pin.	60	H11	70
Power	AVRH	A/D converter analog reference voltage input pin.	61	F11	71
Analog GND	AVSS	A/D converter GND pin.	62	G11	72
C-pin	С	Power stabilization capacity pin.	33	L2	38

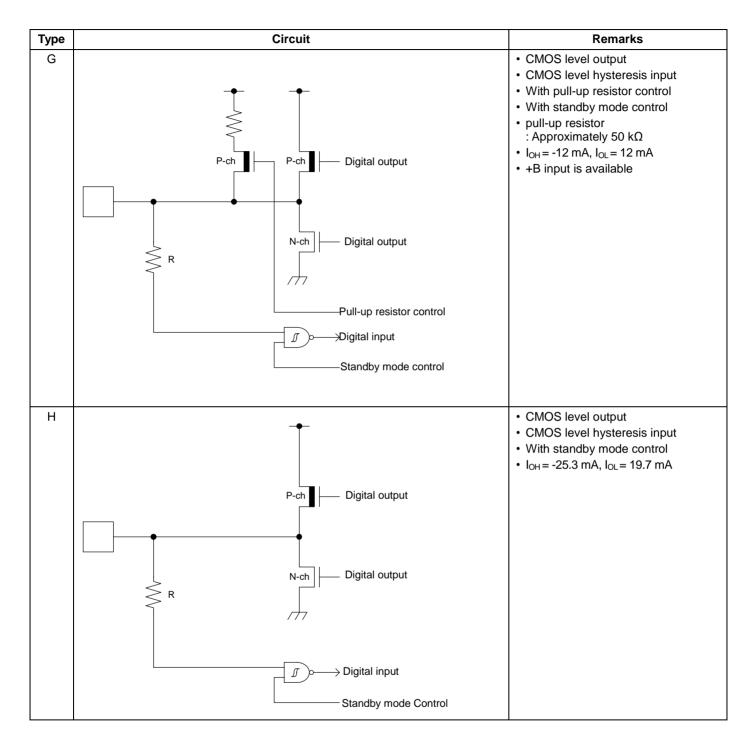
## Note:


 While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP controller.




# 5. I/O Circuit Type


















# 6. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

## 6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

## **Absolute Maximum Ratings**

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

## **Recommended Operating Conditions**

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

## **Processing and Protection of Pins**

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

#### Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

#### **Observance of Safety Regulations and Standards**

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

## Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.



## **Precautions Related to Usage of Devices**

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

#### 6.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales representative.

## Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

#### Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

#### Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

#### **Storage of Semiconductor Devices**

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

#### Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h



## **Static Electricity**

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1  $M\Omega$ ).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

## 6.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.



# 7. Handling Devices

## Power supply pins

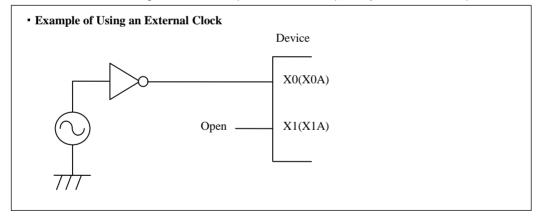
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device.

## Stabilizing power supply voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/µs when there is a momentary fluctuation on switching the power supply.

## Crystal oscillator circuit


Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

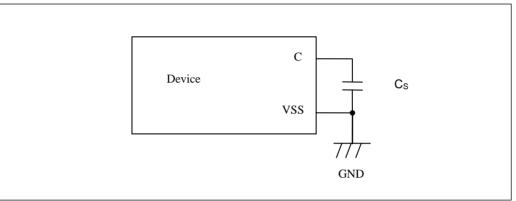
#### Using an external clock

When using an external clock, the clock signal should be input to the X0,X0A pin only and the X1,X1A pin should be kept open.



## Handling when using Multi function serial pin as I²C pin

If it is using multi function serial pin as  $I^2C$  pins, P-ch transistor of digital output is always disable. However,  $I^2C$  pins need to keep the electrical characteristic like other pins and not to connect to external  $I^2C$  bus system with power OFF.




## C Pin

This series contains the regulator. Be sure to connect a smoothing capacitor ( $C_S$ ) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use

by evaluating the temperature characteristics of a capacitor.

A smoothing capacitor of about 4.7µF would be recommended for this series.



## Mode pins (MD0, MD1)

Connect the MD pin (MD0, MD1) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

#### Notes on power-on

Turn power on/off in the following order or at the same time. If not using the A/D converter, connect AVCC =VCC and AVSS = VSS.

Turning on : VCC  $\rightarrow$  AVCC  $\rightarrow$  AVRH

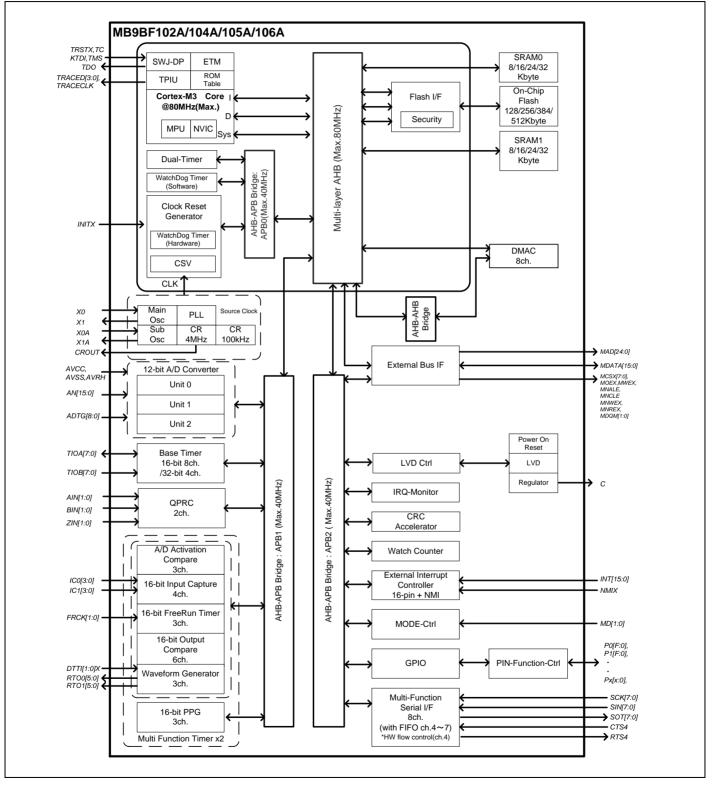
Turning off : AVRH  $\rightarrow$  AVCC  $\rightarrow$  VCC

#### **Serial Communication**

There is a possibility to receive wrong data due to the noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, restransmit the data.


# Differences in features among the products with different memory sizes and between FLASH products and MASK products

The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between FLASH products and MASK products are different because chip layout and memory structures are different.

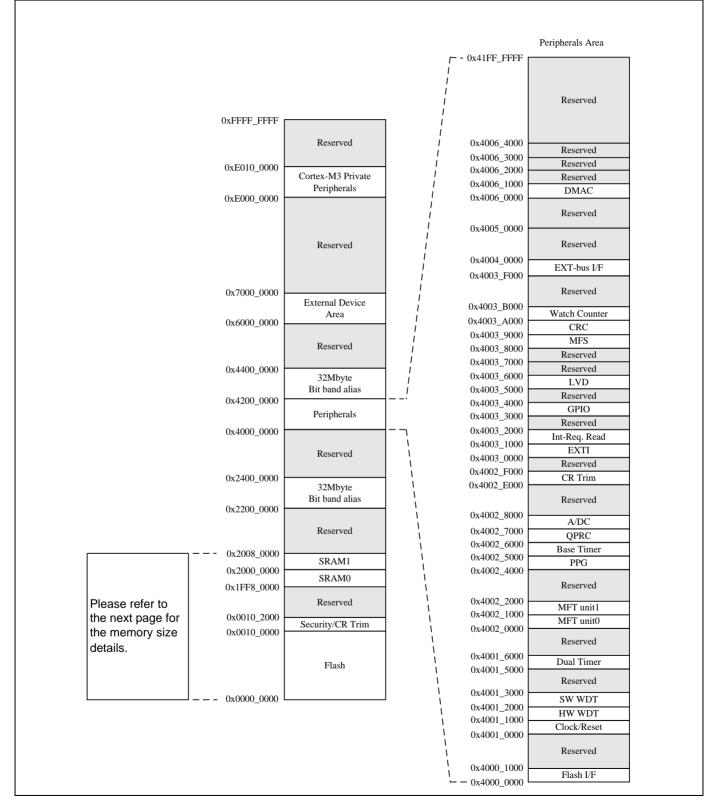
If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.



# 8. Block Diagram



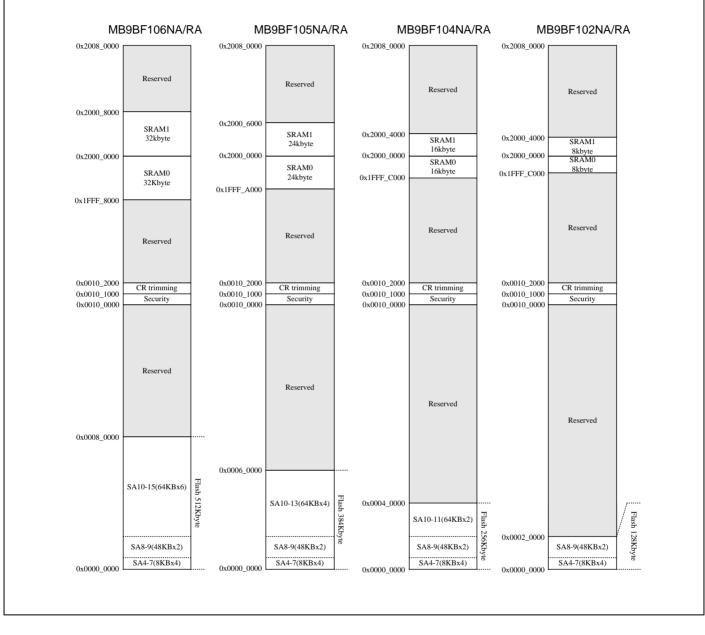
# 9. Memory Size


See "Memory size" in "PRODUCT LINEUP" to confirm the memory size.





# 10. Memory Map


## Memory Map (1)







## Memory Map (2)



*: See "MB9B500/400/300/100/MB9A100 Series Flash programming Manual" for sector structure of Flash.



## Peripheral Address Map

Start address	End address	Bus	Peripherals
0x4000_0000	0x4000_0FFF		Flash Memory I/F register
0x4000_1000	0x4000_FFFF	— AHB	Reserved
0x4001_0000	0x4001_0FFF		Clock/Reset Control
0x4001_1000	0x4001_1FFF		Hardware Watchdog timer
0x4001_2000	0x4001_2FFF		Software Watchdog timer
0x4001_3000	0x4001_4FFF	APB0	Reserved
0x4001_5000	0x4001_5FFF		Dual-Timer
0x4001_6000	0x4001_FFFF		Reserved
0x4002_0000	0x4002_0FFF		Multi-function timer unit0
0x4002_1000	0x4002_1FFF		Multi-function timer unit1
0x4002_2000	0x4002_3FFF		Reserved
0x4002_4000	0x4002_4FFF		PPG
0x4002_5000	0x4002_5FFF		Base Timer
0x4002_6000	0x4002_6FFF	- APB1	Quadrature Position/Revolution Counter
0x4002_7000	0x4002_7FFF		A/D Converter
0x4002_8000	0x4002_DFFF		Reserved
0x4002_E000	0x4002_EFFF		Internal CR trimming
0x4002_F000	0x4002_FFFF		Reserved
0x4003_0000	0x4003_0FFF		External Interrupt Controller
0x4003_1000	0x4003_1FFF		Interrupt Request Batch-Read Function
0x4003_2000	0x4003_2FFF		Reserved
0x4003_3000	0x4003_3FFF		GPIO
0x4003_4000	0x4003_4FFF		Reserved
0x4003_5000	0x4003_5FFF		Low Voltage Detector
0x4003_6000	0x4003_6FFF	APB2	Reserved
0x4003_7000	0x4003_7FFF		Reserved
0x4003_8000	0x4003_8FFF		Multi-function serial Interface
0x4003_9000	0x4003_9FFF		CRC
0x4003_A000	0x4003_AFFF		Watch Counter
0x4003_B000	0x4003_EFFF		Reserved
0x4003_F000	0x4003_FFFF		External Memory interface
0x4004_0000	0x4004_FFFF		Reserved
0x4005_0000	0x4005_FFFF		Reserved
0x4006_0000	0x4006_0FFF		DMAC register
0x4006_1000	0x4006_1FFF	AHB	Reserved
0x4006_2000	0x4006_2FFF		Reserved
0x4006_3000	0x4006_3FFF		Reserved
0x4006_4000	0x41FF_FFFF		Reserved



## 11. Pin Status in Each CPU State

The terms used for pin status have the following meanings.

## ■INITX=0

This is the period when the INITX pin is the "L" level.

#### ■INITX=1

This is the period when the INITX pin is the "H" level.

## ■SPL=0

This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "0".

## ■SPL=1

This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "1".

## ■Input enabled

Indicates that the input function can be used.

#### ■Internal input fixed at "0"

This is the status that the input function cannot be used. Internal input is fixed at "L".

#### ■Hi-Z

Indicates that the output drive transistor is disabled and the pin is put in the Hi-Z state.

Setting disabled

Indicates that the setting is disabled.

■Maintain previous state

Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.

#### ■Analog input is enabled

Indicates that the analog input is enabled.

■Trace output

Indicates that the trace function can be used.



## List of Pin Status

Pin status	Function means	Power-on reset or low voltage detection state	INITX input state	Device internal reset state	Run mode or sleep mode state	Timer mode or sleep mode state		
type	Function group	Power supply unstable	-	oply stable	Power supply stable	Power supply stable		
		-	INITX=0	INITX=1	INITX=1	INIT		
		-	-	-	-	SPL=0	SPL=1	
A	Main crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	
В	Main crystal oscillator output pin	H output/ Internal input fixed at "0"/ or Input enabled	H output/ Internal input fixed at "0"	H output/ Internal input fixed at "0"	Maintain previous state/ H output at oscillation stop (*1)/ Internal input fixed at "0"	Maintain previous state/ H output at oscillation stop (*1)/ Internal input fixed at "0"	Maintain previous state/ H output at oscillation stop (*1)/ Internal input fixed at "0"	
С	INITX input pin	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	
D	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	
E	JTAG selected	Hi-Z	Pull-up/ Input enabled	Pull-up/ Input enabled	Maintain previous state	Maintain previous state	Maintain previous state	
	GPIO selected	Setting disabled	Setting disabled	Setting disabled			Hi-Z/ Internal input fixed at "0"	
F	Trace selected	Setting	Setting	Setting	Maintain	Maintain	Trace output	
	External interrupt enabled selected	disabled	disabled	disabled	previous state	previous state	Maintain previous state	
	GPIO	Hi-Z	Hi-Z/	Hi-Z/	1		Hi-Z/	
	selected, or other than above resource selected		Input enabled	Input enabled			Internal input fixed at "0"	



Pin status	-	Power-on reset or low voltage detection state	INITX input state	Device internal reset state	Run mode or sleep mode state		or sleep mode ate
type	Function group	Power supply unstable	Power su	oply stable	Power supply stable	Power su	oply stable
		-	INITX=0	INITX=1	INITX=1	ΙΝΙΤ	`X=1
		-	-	-	-	SPL=0	SPL=1
G	Trace selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Trace output
	GPIO selected, or other than above resource selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled			Hi-Z/ Internal input fixed at "0"
Н	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state
	GPIO selected, or other than above resource selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled			Hi-Z/ Internal input fixed at "0"
I	GPIO selected, resource selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
J	NMIX selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state
	GPIO selected, or other than above resource selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled			Hi-Z/ Internal input fixed at "0"



Pin status	Function mount	Power-on reset or low voltage detection state	INITX input state	Device internal reset state	Run mode or sleep mode state		or sleep mode ate	
type	Function group	Power supply unstable	Power supply stable		Power supply stable	Power supply stable		
		-	INITX=0	INITX=1	INITX=1		`X=1	
		-	-	-	-	SPL=0	SPL=1	
К	Analog input selected	Hi-Z	Hi-Z/ Internal input fixed at "0"/					
			Analog input enabled					
	GPIO selected, or other than above resource selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
L	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	
	Analog input selected	Hi-Z	Hi-Z/ Internal input fixed at "0"/ Analog input enabled					
	GPIO selected, or other than above resource selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
М	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
	Sub crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	



Pin status		Power-on reset or low voltage detection state	INITX input state	Device internal reset state	Run mode or sleep mode state		imer mode or sleep mode state	
type	Function group	Power supply unstable	Power supply stable		Power supply stable	Power supply stable		
		-	INITX=0	INITX=1	INITX=1	INIT		
		-	-	-	-	SPL=0	SPL=1	
N	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
	Sub crystal oscillator output pin	Hi-Z/ Internal input fixed at "0"	Hi-Z/ Internal input fixed at "0"	Hi-Z/ Internal input fixed at "0"	Maintain previous state	Maintain previous state/ Hi-Z at oscillation stop (*2)/ Internal input fixed at "0"	Maintain previous state/ Hi-Z at oscillation stop (*2)/ Internal input fixed at "0"	
0	GPIO selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	

*1: Oscillation is stopped at sub timer mode, Low speed CR timer mode, and stop mode.

*2: Oscillation is stopped at stop mode.



# **12. Electrical Characteristics**

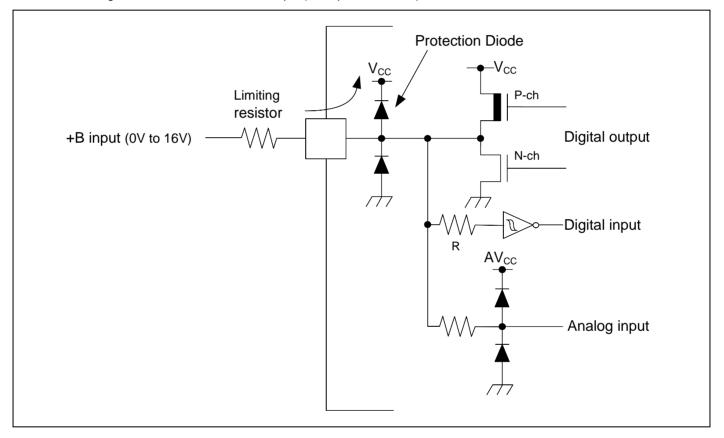
## 12.1 Absolute Maximum Ratings

Parameter	Symbol		ting	Unit	Remarks
	-	Min	Мах	•	Remarks
Power supply voltage*1,*2	Vcc	Vss - 0.5	Vss + 6.5	V	
Analog power supply voltage*1,*3	AVcc	Vss - 0.5	Vss + 6.5	V	
Analog reference voltage*1,*3	AVRH	Vss - 0.5	Vss + 6.5	V	
Input voltage*1	VI	Vss - 0.5	Vcc + 0.5 (≤ 6.5 V)	V	
Analog pin input voltage*1	VIA	Vss - 0.5	AVcc + 0.5 (≤ 6.5 V)	V	
Output voltage*1	Vo	Vss - 0.5	Vcc + 0.5 (≤ 6.5 V)	V	
Clamp maximum current	I _{CLAMP}	-2	+2	mA	*7
Clamp total maximum current	Σ[I _{CLAMP} ]		+20	mA	*7
			10	mA	4mA type
"L" level maximum output current*4	I _{OL}	-	20	mA	12mA type
			39	mA	P80, P81
			4	mA	4mA type
"L" level average output current*5	I _{OLAV}	-	12	mA	12mA type
			19.7	mA	P80, P81
"L" level total maximum output current	Σlol	-	100	mA	
"L" level total average output current*6	Σl _{OLAV}	-	50	mA	
			- 10	mA	4mA type
"H" level maximum output current*4	I _{OH}	-	- 20	mA	12mA type
			- 39	mA	P80, P81
			- 4	mA	4mA type
"H" level average output current*5	I _{OHAV}	-	- 12	mA	12mA type
			- 25.3	mA	P80, P81
"H" level total maximum output current	∑I _{ОН}	-	- 100	mA	
"H" level total average output current*6	Σl _{ohav}	-	- 50	mA	
Power consumption	PD	-	800	mW	
Storage temperature	T _{STG}	- 55	+ 150	°C	

*1: These parameters are based on the condition that Vss = AVss = 0.0 V.

*2: Vcc must not drop below Vss - 0.5 V.

*3: Be careful not to exceed Vcc + 0.5 V, for example, when the power is turned on.


*4: The maximum output current is the peak value for a single pin.

*5: The average output is the average current for a single pin over a period of 100 ms.

*6: The total average output current is the average current for all pins over a period of 100 ms.



- *7:
- See "List of Pin Functions" and "I/O Circuit Type" about +B input available pin.
- Use within recommended operating conditions.
- Use at DC voltage (current) the +B input.
- The +B signal should always be applied a limiting resistance placed between the +B signal and the device.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the device drive current is low, such as in the low-power consumption modes, the +B input potential may pass through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices.
- Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- The following is a recommended circuit example (I/O equivalent circuit).



#### WARNING:

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.



## 12.2 Recommended Operating Conditions

(Vss = AVss = 0.0V)

Parameter		Symbol	Conditions	Val	ue	Unit	Remarks	
		Symbol	Conditions	Min	Max	Unit	Rellidiks	
Power supply v	oltage	Vcc	-	2.7* ²	5.5	V		
Analog power s	upply voltage	AVcc	-	2.7	5.5	V	AVcc = Vcc	
Analog reference	ce voltage	AVRH	-	2.7	AVcc	V		
Smoothing capacitor		Cs	-	1	10	μF	For built-in regulator* ¹	
Operating	LQM120 LQI100	T _A	When mounted on four-layer PCB	- 40	+ 85	°C		
Temperature	LBC112	IA	When mounted on	- 40	+ 85	°C	$lcc \le 100 \text{ mA}$	
			double-sided single-layer PCB	- 40	+ 70	°C	lcc > 100 mA	

*1: See "C Pin" in "HANDLING DEVICES" for the connection of the smoothing capacitor.

*2: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is possible to operate only.

#### WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.



## 12.3 DC Characteristics

## 12.3.1 Current rating

(Vcc = AVcc = 2.7V to 5.5V	$\lambda / z = \lambda / z = 0 / T$	4000 4- 0000
VCC = AVCC = 2 / V IO 5 5V	VSS = AVSS = UV   A =	$-40^{\circ}$ , to $+85^{\circ}$ ,
(100 = 1000 = 2000)	, <b>100</b> = 1000 = 000, <b>100</b> = 000	

Dama	0	, Pin	Conditions		Value		11. 14	Dementer
Parameter	Symbol	name		Conditions	Typ* ³	Max* ⁴	Unit	Remarks
				CPU: 80 MHz, Peripheral: 40 MHz, FLASH 2 Wait FRWTR.RWT = 10 FSYNDN.SD = 000	96	118	mA	*1, *5
RUN mode current			PLL	CPU: 60 MHz, Peripheral: 30 MHz, FLASH 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000	76	94	mA	*1, *5
		vcc	RUN mode	CPU: 80 MHz, Peripheral: 40 MHz, FLASH 5 Wait FRWTR.RWT = 10 FSYNDN.SD = 011	66	82	mA	*1, *5
	Icc			CPU: 60 MHz, Peripheral: 30 MHz, FLASH 3 Wait FRWTR.RWT = 00 FSYNDN.SD = 011	52	65	mA	*1, *5
			High-speed CR RUN mode	CPU/Peripheral: 4 MHz ^{*2} FLASH 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000	6.0	9.2	mA	*1
			Sub RUN mode	CPU/Peripheral: 32 kHz FLASH 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000	0.2	2.24	mA	*1, *6
			Low-speed CR RUN mode	CPU/Peripheral: 100 kHz FLASH 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000	0.3	2.36	mA	*1
			PLL SLEEP mode	Peripheral: 40 MHz	43	54	mA	*1, *5
SLEEP mode	lccs		High-speed CR SLEEP mode	Peripheral: 4 MHz* ²	3.5	6.2	mA	*1
current	1005		Sub SLEEP mode	Peripheral: 32 kHz	0.15	2.18	mA	*1, *6
			Low-speed CR SLEEP mode	Peripheral: 100 kHz	0.22	2.27	mA	*1

*1: When all ports are fixed.

*2: When setting it to 4 MHz by trimming.

*3:  $T_A = +25^{\circ}C$ ,  $V_{CC} = 3.3 V$ 

*4:  $T_A = +85^{\circ}C$ ,  $V_{CC} = 5.5 V$ 

*5: When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit)

*6: When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit)



Parameter	Symbol	Pin		Conditions	Va	lue	Unit	Remarks
Farameter	Symbol	name		Conditions		Max* ³	Unit	Relliarks
TIMER mode I _{CCT} current			Main	$T_A = + 25^{\circ}C$ , When LVD is off	2.4	2.5	mA	*1, *4
		TIMER mode	$T_A = + 85^{\circ}C$ , When LVD is off	-	5.4	mA	*1, *4	
	ICCT	VCC	VCC Sub TIMER mode	$T_A = + 25^{\circ}C$ , When LVD is off	110	300	μA	*1, *5
				$T_A = + 85^{\circ}C$ , When LVD is off	-	2.2	mA	*1, *5
STOP mode I _{CCH} current		Icch STO	STOP mode	$T_A = + 25^{\circ}C$ , When LVD is off	50	200	μA	*1
	ICCH		STOP mode	$T_A = + 85^{\circ}C$ , When LVD is off	-	2	mA	*1

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ 

*1: When all ports are fixed.

*2: V_{CC}=3.3 V

*3: V_{CC}=5.5 V

*4: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)

*5: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)

## Low-Voltage Detection Current

(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V,  $T_A$  = - 40°C to + 85°C)

		Pin		Va	lue			
Parameter	Symbol	name	Conditions	Тур	Max	Unit	Remarks	
Low-Voltage detection circuit (LVD) power supply current	ICCLVD	VCC	At operation for interrupt	2	10	μA	At not detect	

## Flash Memory Current

(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C to + 85°C)

		Pin name		Va	lue		
Parameter	Symbol		Conditions	Тур	Max	Unit	Remarks
Flash memory write/erase current	Iccflash	VCC	At Write/Erase	13	24	mA	

## **A/D Converter Current**

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = AVRL = 0V, T_A = -40^{\circ}C to + 85°C)

	Symbol	Pin name		Va	lue		
Parameter			Conditions	Тур	Мах	Unit	Remarks
Power supply Ic	1	AVCC	At 1unit operation	2.3	3.6	mA	
	ICCAD		At stop	0.1	2	μA	
Reference power supply current	Iccavrh	AVRH	At 1unit operation AVRH=5.5 V	2.2	3.0	mA	
			At stop	0.03	0.6	μA	

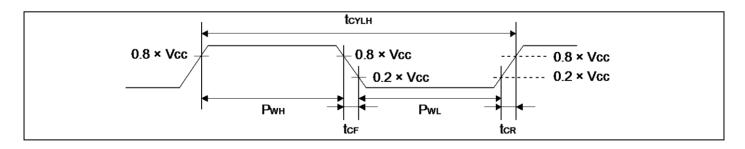


## 12.3.2 Pin Characteristics

Parameter	Symbol	Pin name	Conditions		Value		Unit	Remarks
Falameter	Symbol	Finname	Conditions	Min	Тур	Max	Unit	nema ko
"H" level input voltage (hysteresis input)	V _{IHS}	CMOS hysteresis input pin, MD0,1	-	Vcc × 0.8	-	Vcc + 0.3	V	
"L" level input voltage (hysteresis input)	VILS	CMOS hysteresis input pin, MD0,1	-	Vss - 0.3	-	Vcc × 0.2	V	
"H" level output voltage	4mA type	$Vcc \ge 4.5 V$ $I_{OH} = -4 mA$ $Vcc < 4.5 V$ $I_{OH} = -2 mA$	- Vcc - 0.5	-	Vcc	V		
	12mA type	$\label{eq:1} \begin{array}{l} Vcc \geq 4.5 \ V \\ I_{OH} = - \ 12 \ mA \\ Vcc < 4.5 \ V \\ I_{OH} = - \ 8 \ mA \end{array}$	- Vcc - 0.5	-	Vcc	V		
	P80, P81	$\label{eq:1} \begin{array}{l} Vcc \geq 4.5 \ V \\ I_{OH} = -\ 25.3 \ mA \\ Vcc < 4.5 \ V \\ I_{OH} = -\ 13.4 \ mA \end{array}$	- Vcc - 0.4	-	Vcc	V		
		4mA type	$Vcc \ge 4.5 V$ $I_{OL} = 4 mA$ $Vcc < 4.5 V$ $I_{OL} = 2 mA$	- Vss	-	0.4	V	
"L" level output voltage	Vol	12mA type	$\label{eq:local_states} \begin{array}{l} Vcc \geq 4.5 \ V \\ I_{OL} = 12 \ mA \\ Vcc < 4.5 \ V \\ I_{OL} = 8 \ mA \end{array}$	- Vss	-	0.4	V	
		P80, P81	$V_{CC} \ge 4.5 V \\ I_{OL} = 19.7 mA \\ V_{CC} < 4.5 V \\ I_{OL} = 11.9 mA$	- Vss	-	0.4	V	
Input leak current	IIL	-	-	- 5	-	5	μA	
Pull-up resistance	R _{PU}	Pull-up pin	$Vcc \ge 4.5 V$	25	50	100	kΩ	
value	1 FU	r uii-up pii)	Vcc < 4.5 V	30	80	200	1,32	
Input capacitance	C _{IN}	Other than Vcc, Vss, AVcc, AVss, AVRH	-	-	5	15	pF	

# (Vcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, $T_A$ = - 40°C to + 85°C)

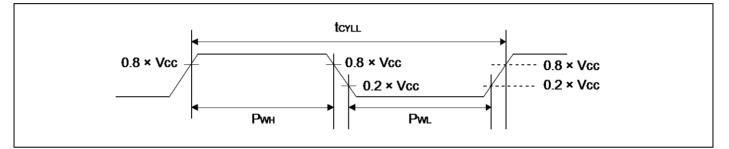



## **12.4 AC Characteristics**

## 12.4.1 Main Clock Input Characteristics

Demonster	0	Pin	O a malificia ma	Va	lue		
Parameter	Symbol	name	Conditions	Min	Max	Unit	Remarks
			$Vcc \ge 4.5 V$	4	48	MHz	When crystal oscillator is
Input fraguanay	-		Vcc < 4.5 V	4	20		connected
Input frequency	F _{CH}		$Vcc \geq 4.5 \ V$	4	48	MHz	When using external
			Vcc < 4.5 V	4	20		clock
Input clock cycle	tarres	X0	$Vcc \geq 4.5 \ V$	20.83	250	ns	When using external
Input clock cycle	t _{CYLH}	X1	Vcc < 4.5 V	50	250	115	clock
Input clock pulse width	-		Pwh/tcylh Pwl/tcylh	45	55	%	When using external clock
Input clock rise time and fall time	t _{CF} t _{CR}		-	-	5	ns	When using external clock
	F _{CM}	-	-	-	80	MHz	Master clock
Internal operating clock*1	F _{CC}	-	-	-	80	MHz	Base clock (HCLK/FCLK)
clock [*] frequency	F _{CP0}	-	-	-	40	MHz	APB0 bus clock*2
liequency	F _{CP1}	-	-	-	40	MHz	APB1 bus clock* ²
	F _{CP2}	-	-	-	40	MHz	APB2 bus clock*2
Internal operating	t _{cycc}	-	-	12.5	-	ns	Base clock (HCLK/FCLK)
clock*1	t _{CYCP0}	-	-	25	-	ns	APB0 bus clock*2
cycle time	t _{CYCP1}	-	-	25	-	ns	APB1 bus clock*2
	t _{CYCP2}	-	-	25	-	ns	APB2 bus clock*2

(Vcc = 2.7V to 5.5V, Vss = 0V,  $T_A = -40^{\circ}C$  to + 85°C)


*1: For more information about each internal operating clock, see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL". *2: For about each APB bus which each peripheral is connected to, see "Block Diagram" in this data sheet.





## 12.4.2 Sub Clock Input Characteristics

	$(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$											
Parameter	Symbol	Pin name	Conditions		Value		Unit	Remarks				
Farameter	Symbol			Min	Тур	Max	Unit					
	F		-	-	32.768	-	kHz	When crystal oscillator is connected				
Input frequency	F _{CL}	X0A	-	32	-	100	kHz	When using external clock				
Input clock cycle	t _{CYLL}	X1A	-	10	-	31.25	μs	When using external clock				
Input clock pulse width	-		Pwh/tcyll Pwl/tcyll	45	-	55	%	When using external clock				



## 12.4.3 Built-in CR Oscillation Characteristics

#### Built-in high-speed CR

## $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks	
Farameter	Symbol	Conditions	Min	Тур	Мах	Unit	Remarks	
		T _A = + 25°C	3.92	4	4.08			
Clock frequency	F _{CRH}	$T_A = 0^\circ C$ to + 70°C	3.84	4	4.16	MHz	When trimming* ¹	
		$T_A = -40^{\circ}C \text{ to } + 85^{\circ}C$	3.8	4	4.2			
		$T_A = -40^{\circ}C \text{ to } + 85^{\circ}C$	3	4	5		When not trimming	
Frequency stability time	t _{CRWT}	-	-	-	50	μs	*2	

*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.

*2: Frequency stable time is time to stable of the frequency of the High-speed CR clock after the trim value is set. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock.

#### Built-in low-speed CR

## (Vcc = 2.7V to 5.5V, Vss = 0V, $T_A$ = - 40°C to + 85°C)

Parameter	Symbol Conditions			Value		Unit	Remarks	
	Symbol	Conditions	Min	Тур	Max	Unit	Reilidiks	
Clock frequency	F _{CRL}	-	50	100	150	kHz		



## 12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of PLL)

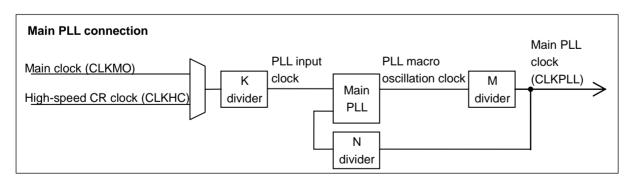
 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ 

Parameter	Symbol	Value			Unit	Remarks
Farameter	Symbol	Min	Тур	Max	Unit	Reindiks
PLL oscillation stabilization wait time (LOCK UP time)*1	t _{LOCK}	100	-	-	μs	
PLL input clock frequency	f _{PLLI}	4	-	30	MHz	
PLL multiple rate	-	4	-	30	multiple	
PLL macro oscillation clock frequency	f _{PLLO}	60	-	120	MHz	
Main PLL clock frequency* ²	F _{CLKPLL}	-	-	80	MHz	

*1: Time from when the PLL starts operating until the oscillation stabilizes.

*2: For more information about Main PLL clock (CLKPLL), see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL".

## 12.4.5 Operating Conditions of Main PLL (In the case of using built-in high speed CR)


 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ Value Parameter Symbol Unit Remarks Min Тур Max PLL oscillation stabilization wait time (LOCK UP 100 _ **t**LOCK μs time)*1 PLL input clock frequency 3.8 4.2 MHz **f**_{PLLI} 4 PLL multiple rate _ 15 -28 multiple PLL macro oscillation clock frequency MHz 120 **f**_{PLLO} 57 -Main PLL clock frequency*2 80 MHz FCLKPLL --

*1: Time from when the PLL starts operating until the oscillation stabilizes.

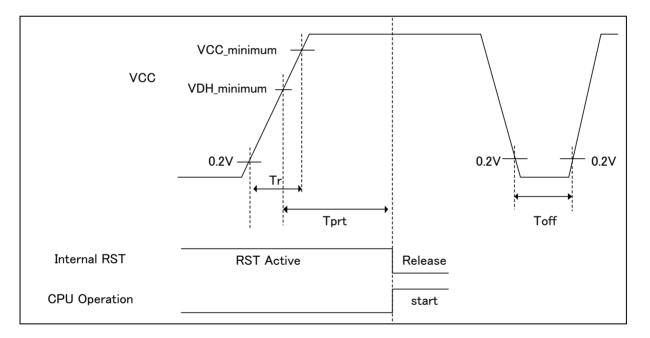
*2: For more information about Main PLL clock (CLKPLL), see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL".

## Note:

Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency has been trimmed.






## 12.4.6 Reset Input Characteristics

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
i didineter	e y		Conditione	Min	Max	•	Remarko
Reset input time	t _{INITX}	INITX	-	500	-	ns	

## 12.4.7 Power-on Reset Timing

(Vcc = 2.7V to 5.5V, Vss = 0V,  $T_A$  = - 40°C to + 85°C)

Parameter	Symbol	Pin	Val	ue	Unit	Remarks
Parameter	Symbol	name	Min	Max	Unit	Remarks
Power supply rising time	Tr		0	-	ms	
Power supply shut down time	Toff	Vcc	1	-	ms	
Time until releasing Power-on reset	Tprt		0.422	0.704	ms	



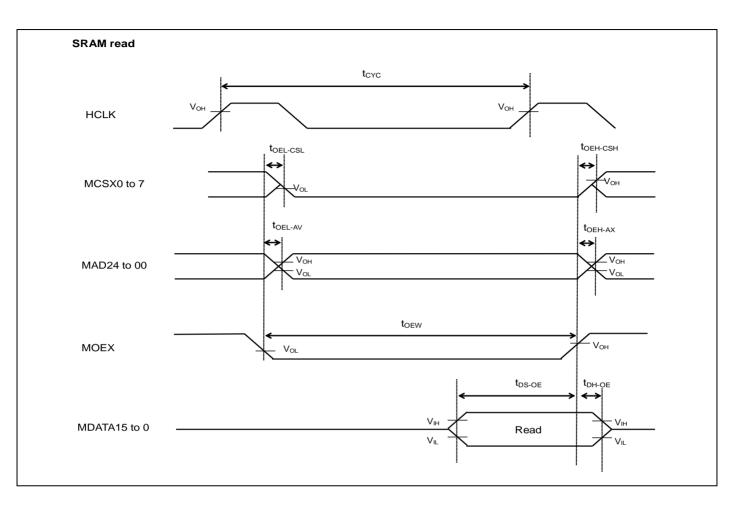
## Glossary

- + VCC_minimum: Minimum  $V_{CC}$  of recommended operating conditions
- VDH_minimum: Minimum release voltage of Low-Voltage detection reset. See "12.6 Low-Voltage Detection Characteristics"

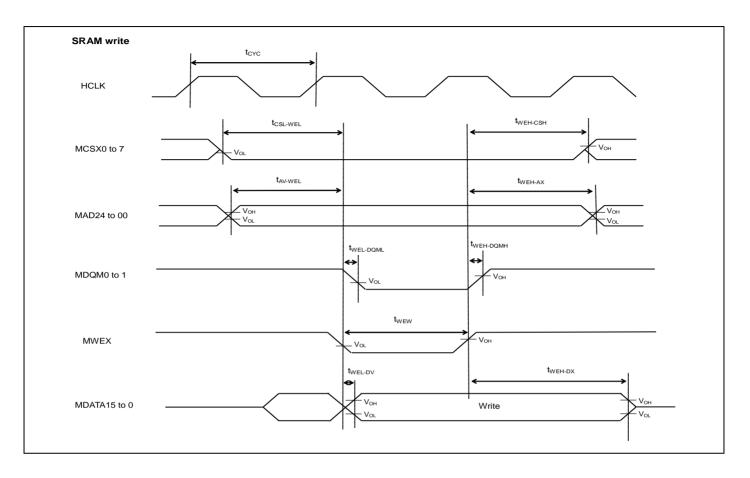


## 12.4.8 External Bus Timing

## Asynchronous SRAM Mode


Γ			(	Vcc = 2.7V to 5.5V,	v 35 – UV,	, IA — - <del>4</del> 0	J C 10 7 85 C)
Parameter	Symbol	Pin name	Conditions	Value Min	Max	Unit	Remarks
MOEX		MOEY	Vcc ≥ 4.5 V				
Min pulse width	t _{OEW}	MOEX	Vcc < 4.5 V	Т _{НСLК} ×1 - 3	-	ns	
$MOEX \downarrow \Rightarrow$	<b>*</b>	MOEX	Vcc ≥ 4.5 V	0	10	<b>n</b> 0	
Address delay time	t _{OEL - AV}	MAD24 to 00	Vcc < 4.5 V	0	20	ns	
MOEX↑⇒	+	MOEX	$Vcc \ge 4.5 V$	0	10	ns	
Address delay time	t _{OEH - AX}	MAD24 to 00	Vcc < 4.5 V	0	20	115	
$MOEX\downarrow\Rightarrow$	tory on	MOEX	Vcc ≥ 4.5 V	0	10	ns	
MCSX $\downarrow$ delay time	t _{OEL - CSL}	MCSX	Vcc < 4.5 V	0	10	115	
$MOEX \uparrow \Rightarrow$	t _{OEH -} CSH	MOEX	Vcc ≥ 4.5 V	0	10	ns	
MCSX ↑ delay time	CEH - CSH	MCSX	Vcc < 4.5 V	0	10	115	
Data set up	taa ar	MOEX	Vcc ≥ 4.5 V	20	-	ns	
$\Rightarrow$ MOEX $\uparrow$ time	t _{DS - OE}	MDATA15 to 0	Vcc < 4.5 V	38	-	115	
$MOEX \uparrow \Rightarrow$	tou or	MOEX	Vcc ≥ 4.5 V	0	_	ns	
Data hold time	t _{DH - OE}	MDATA15 to 0	Vcc < 4.5 V		_	115	
$MCSX \downarrow \Rightarrow$	t _{CSL-WEL}	MCSX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
MWEX $\downarrow$ delay time	CSL - WEL	MWEX	Vcc < 4.5 V	Т _{НСLК} ×1 - 10	-	115	
$MWEX \uparrow \Rightarrow$	t _{WEH - CSH}	MCSX	Vcc ≥ 4.5 V	Т _{НСLК} ×1 - 5	-	ns	
MCSX ↑ delay time	WEH - CSH	MWEX	Vcc < 4.5 V	Т _{НСLК} ×1 - 10	-	115	
$Address \Rightarrow$	t _{AV - WEL}	MWEX	Vcc ≥ 4.5 V	Т _{НСLК} ×1 - 5	-	ns	
MWEX $\downarrow$ delay time	AV - WEL	MAD24 to 00	Vcc < 4.5 V	Т _{НСLК} ×1 - 15	-	115	
$MWEX \uparrow \Rightarrow$	t _{WEH - AX}	MWEX	Vcc ≥ 4.5 V	Т _{НСLК} ×1 - 5	-	ns	
Address delay time	WEH - AX	MAD24 to 00	Vcc < 4.5 V	Т _{НСLК} ×1 - 15	-	113	
$MWEX\downarrow \Rightarrow$	two pow	MWEX	Vcc ≥ 4.5 V	0	5	ns	
MDQM $\downarrow$ delay time	twel - DQML	MDQM0 to 1	Vcc < 4.5 V	0	10	115	
$MWEX \uparrow \Rightarrow$	tweh - dqmh	MWEX	Vcc ≥ 4.5 V	0	5	ns	
MDQM [↑] delay time	WEH - DQMH	MDQM0 to 1	Vcc < 4.5 V	0	10	115	
MWEX	t _{WEW}	MWEX	Vcc ≥ 4.5 V	Т _{нськ} ×1 - 3	-	ns	
Min pulse width	WEW		Vcc < 4.5 V	THCLK T - 5	-	115	
$MWEX \downarrow \Rightarrow$	two	MWEX	Vcc ≥ 4.5 V	- 5	5	ns	
Data delay time	twel - DV	MDATA15 to 0	Vcc < 4.5 V	-15	15	115	
$MWEX \uparrow \Rightarrow$	twee py	MWEX	Vcc ≥ 4.5 V	Т _{НСLК} ×1 - 5	-	ns	
Data delay time	t _{WEH} - DX	MDATA15 to 0	$Vcc < 4.5 \ V$	Т _{НСLК} ×1 - 15	-	115	

## (Vcc = 2.7V to 5.5V, Vss = 0V, $T_{\text{A}}$ = - 40°C to + 85°C)


#### Note:

- When the external load capacitance  $C_L = 50 \text{ pF}$ .



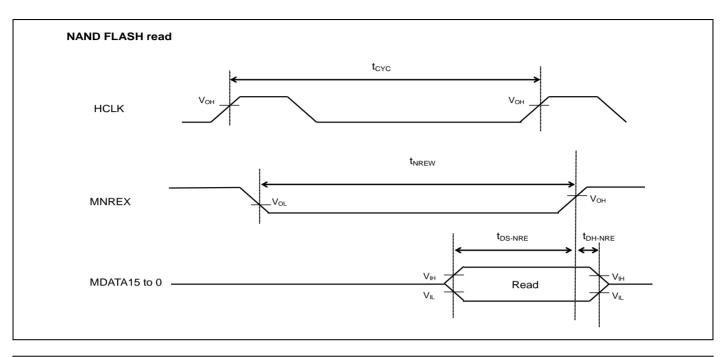


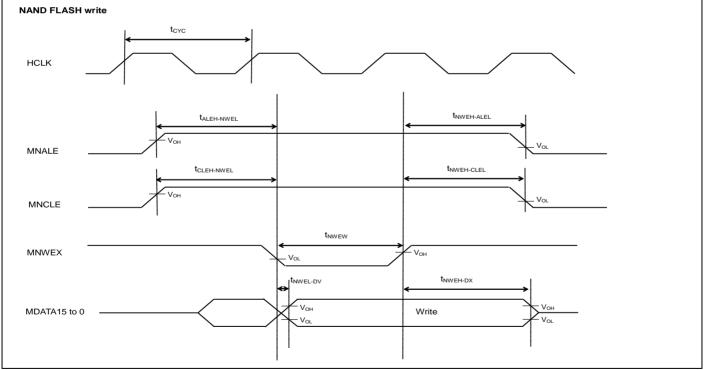






## NAND FLASH mode


Demonstration	O much a l	Pin name	O an all the	Value	Value		
Parameter	Symbol		Conditions	Min	Max	Unit	Remarks
MNREX			Vcc ≥ 4.5 V	T			
Min pulse width	t _{NREW}	MNREX	Vcc < 4.5 V	Т _{НСLК} ×1 - 3	-	ns	
Data set up		MNREX	Vcc ≥ 4.5 V	20	-		
$\Rightarrow$ MNREX $\uparrow$ time	t _{DS - NRE}	MDATA15 to 0	Vcc < 4.5 V	38	-	ns	
$MNREX \uparrow \Rightarrow$	<b>.</b>	, MNREX	Vcc ≥ 4.5 V	0	-		
Data hold time	t _{DH} - NRE	MDATA15 to 0	Vcc < 4.5 V	0	-	ns	
MNALE $\uparrow \Rightarrow$	<b>t</b>	MNALE MNWEX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
MNWEX delay time	delay time		Vcc < 4.5 V	Т _{НСLК} ×1 - 15	-	115	
$MNWEX \uparrow \Rightarrow$	t _{NWEH - ALEL}	H - ALEL MNWEX	Vcc ≥ 4.5 V	Т _{НСLК} ×1 - 5	-	ns	
MNALE delay time			Vcc < 4.5 V	Т _{нськ} ×1 - 15	-	115	
$MNCLE \uparrow \Rightarrow$	t	MNCLE	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
MNWEX delay time	t _{CLEH} - NWEL	MNWEX	Vcc < 4.5 V	Т _{НСLК} ×1 - 15	-	115	
$\begin{array}{l} MNWEX \uparrow \Rightarrow \\ MNCLE \ delay \ time \end{array}   t_{NWE} \end{array}$	t	MNCLE	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
	t _{NWEH} - CLEL	MNWEX	Vcc < 4.5 V	Т _{нськ} ×1 - 15	-	115	
MNWEX	MNWEX		Vcc ≥ 4.5 V	Т _{НСЬК} ×1 - 3		ns	
Min pulse width	t _{NWEW}	MNWEX	Vcc < 4.5 V	THCLK T - 5	_	115	
$MNWEX \downarrow  \Rightarrow$	<b>t</b>	EL-DV MNWEX MDATA15 to 0	Vcc ≥ 4.5 V	- 5	+ 5	ns	
Data delay time	INVVEL - DV		Vcc < 4.5 V	-15	+15	115	
$MNWEX \uparrow \Rightarrow$	t	MNWEX	Vcc ≥ 4.5 V	T _{HCLK} ×1 - 5	-	ns	
Data delay time	t _{NWEH} - DX	MDATA15 to 0	Vcc < 4.5 V	Т _{нськ} ×1 - 15	-	115	


## (Vcc = 2.7V to 5.5V, Vss = 0V, $T_A$ = - 40°C to + 85°C)

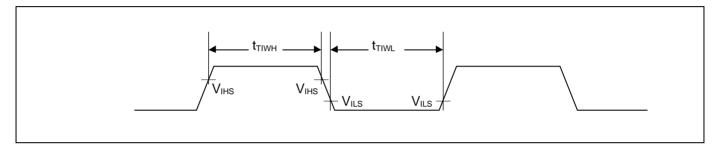
## Note:

- When the external load capacitance  $C_L = 50 \text{ pF}$ .





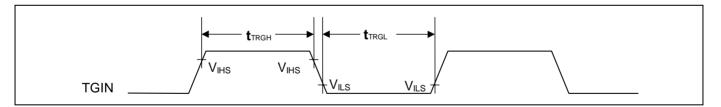





## 12.4.9 Base Timer Input Timing

## **Timer input timing**

(Vcc = 2.7V to 5.5V, Vss = 0V,  $T_A$  = - 40°C to + 85°C)


Parameter	Symbol	Pin name	Conditions	Va	ue	Unit	Remarks	
				Min	Max	Unit		
Input pulse width	t _{⊤IWH} t _{⊤IWL}	TIOAn/TIOBn (when using as ECK,TIN)	-	2t _{CYCP}	-	ns		



## **Trigger input timing**

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ 

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks	
				Min	Max	Unit	Remarks	
Input pulse width	t _{TRGH} t _{TRGL}	TIOAn/TIOBn (when using as TGIN)	-	2t _{CYCP}	-	ns		



## Note:

t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which the Base Timer is connected to, see "Block Diagram" in this data sheet.

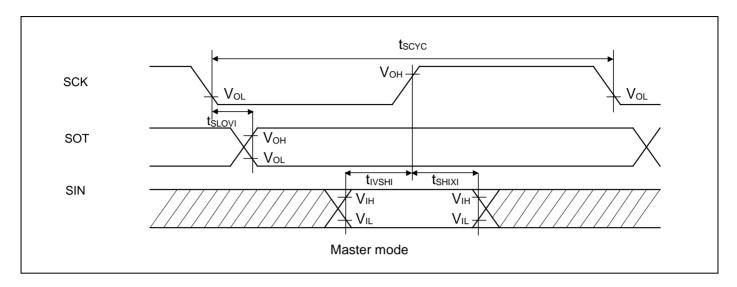


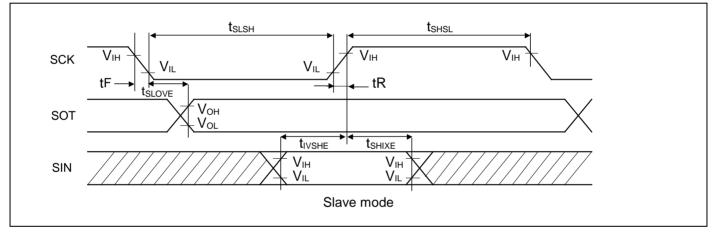
## 12.4.10 CSIO/UART Timing

## CSIO (SPI = 0, SCINV = 0)

Parameter	Symbol	Pin name	Conditions	Vcc < 4.5 V		Vcc ≥ 4.5 V		11
				Min	Max	Min	Max	Unit
Baud Rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	tscyc	SCKx	Master mode	4t _{CYCP}	-	4t _{CYCP}	-	ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVI}	SCKx SOTx		-30	+30	- 20	+ 20	ns
$SIN \to SCK \uparrow setup  time$	t _{i∨sнi}	SCKx SINx		50	-	30	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXI}	SCKx SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx	Slave mode	2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \to SCK \uparrow setup  time$	t _{IVSHE}	SCKx SINx		10	-	10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKx SINx		20	-	20	-	ns
SCK fall time	tF	SCKx		-	5	-	5	ns
SCK rise time	tR	SCKx		-	5	-	5	ns

## $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$


## Notes:


- The above characteristics apply to CLK synchronous mode.

t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet.

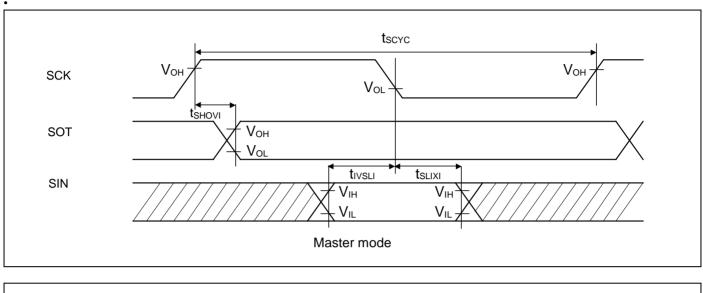
- These characteristics only guarantee the same relocate port number.
   For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance  $C_L = 50 \text{ pF}$ .

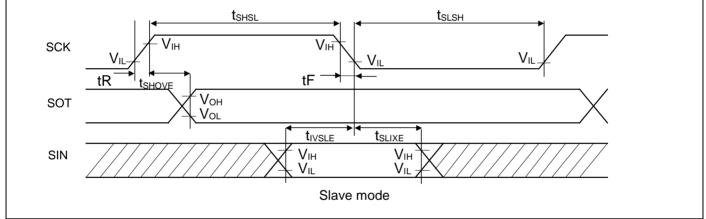









# CSIO (SPI = 0, SCINV = 1)


Parameter	Symbol	Pin	Conditions	Vcc < 4.	5 V	Vcc ≥ 4	4.5 V	Unit
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Baud Rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	t _{SCYC}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVI}	SCKx SOTx		-30	+30	- 20	+ 20	ns
$SIN \to SCK \downarrow setup  time$	t _{IVSLI}	SCKx SINx	Master mode	50	-	30	-	ns
$SCK \downarrow \to SIN$ hold time	t _{SLIXI}	SCKx SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \uparrow \to SOT \text{ delay time}$	t _{SHOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \to SCK \downarrow setup \ time$	t _{IVSLE}	SCKx SINx	Slave mode	10	-	10	-	ns
$SCK \downarrow \to SIN \text{ hold time}$	t _{SLIXE}	SCKx SINx		20	-	20	-	ns
SCK fall time	tF	SCKx	]	-	5	-	5	ns
SCK rise time	tR	SCKx	1	-	5	-	5	ns

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ 

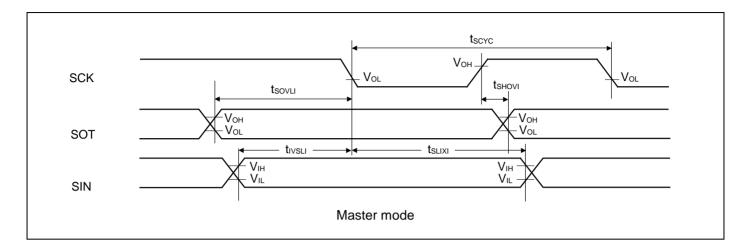
- The above characteristics apply to CLK synchronous mode.
- *t*_{CYCP} indicates the APB bus clock cycle time.
- About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet.
- These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance  $C_L = 50 \text{ pF}$ .

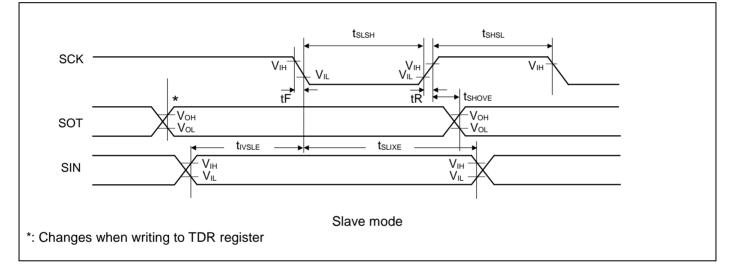









# CSIO (SPI = 1, SCINV = 0)


Parameter	Symbol	Pin	Conditions	Vcc < 4.	5 V	Vcc ≥ 4.5 V		Unit
Farameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Baud Rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	t _{SCYC}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
$SCK \uparrow \to SOT$ delay time	t _{SHOVI}	SCKx SOTx		-30	+30	- 20	+ 20	ns
$SIN \to SCK \downarrow setup  time$	t _{IVSLI}	SCKx SINx	Master mode	50	-	30	-	ns
$SCK \downarrow \to SIN \text{ hold time}$	t _{SLIXI}	SCKx SINx		0	-	0	-	ns
$SOT \to SCK \downarrow delay  time$	t _{SOVLI}	SCKx SOTx		2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \uparrow \to SOT$ delay time	t _{SHOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \to SCK \downarrow setup time$	t _{IVSLE}	SCKx SINx	Slave mode	10	-	10	-	ns
$SCK \downarrow \to SIN \text{ hold time}$	t _{SLIXE}	SCKx SINx		20	-	20	-	ns
SCK fall time	tF	SCKx	1	-	5	-	5	ns
SCK rise time	tR	SCKx		-	5	-	5	ns

(Vcc = 2.7V to 5.5V, Vss = 0V,  $T_A$  = - 40°C to + 85°C)

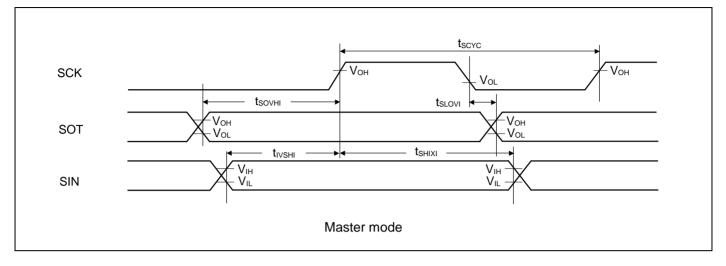
- The above characteristics apply to CLK synchronous mode.
- *t*_{CYCP} indicates the APB bus clock cycle time.
- About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet.
- These characteristics only guarantees the same relocate port number.
   For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance  $C_L = 50 \text{ pF}$ .

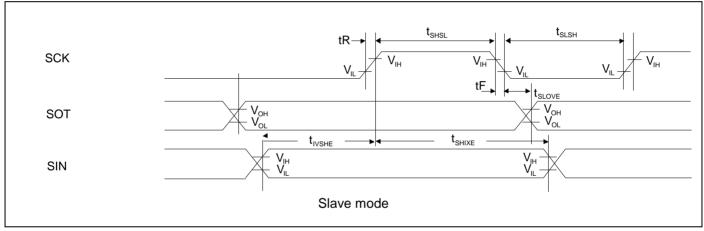








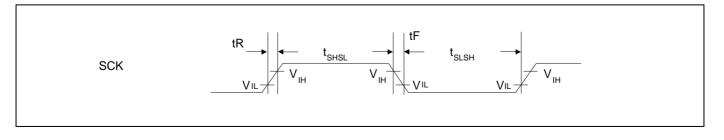

# CSIO (SPI = 1, SCINV = 1)


Deremeter	Symphol	Pin	Conditions	Vcc < 4.	5 V	Vcc ≥	4.5 V	Unit
Parameter	Symbol	name	Conditions	Min	Max	Min Max		Unit
Baud Rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	tscyc	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVI}	SCKx SOTx		-30	+30	- 20	+ 20	ns
$SIN \to SCK \uparrow setup  time$	t _{IVSHI}	SCKx SINx	Master mode	50	-	30	-	ns
$SCK \uparrow \to SIN$ hold time	t _{SHIXI}	SCKx SINx		0	-	0	-	ns
$SOT \to SCK \uparrow delay  time$	t _{SOVHI}	SCKx SOTx		2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \to SCK \uparrow setup  time$	t _{IVSHE}	SCKx SINx	Slave mode	10	-	10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKx SINx		20	-	20	-	ns
SCK fall time	tF	SCKx		-	5	-	5	ns
SCK rise time	tR	SCKx	]	-	5	-	5	ns

### (Vcc = 2.7V to 5.5V, Vss = 0V, $T_A$ = - 40°C to + 85°C)

- The above characteristics apply to CLK synchronous mode.
- *t*_{CYCP} indicates the APB bus clock cycle time.
- About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet.
- These characteristics only guarantee the same relocate port number.
   For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance  $C_L = 50 \text{ pF}$ .





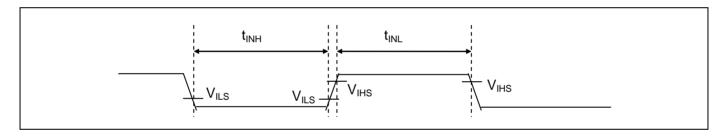



# UART external clock input (EXT = 1)

(Vcc = 2.7V to 5.5V, Vss = 0V,  $T_A$  = - 40°C to + 85°C)

Parameter	Symbol	Conditions	Min	Мах	Unit	Remarks
Serial clock "L" pulse width	t _{SLSH}		t _{CYCP} + 10	-	ns	
Serial clock "H" pulse width	t _{SHSL}		t _{CYCP} + 10	-	ns	
SCK fall time	tF	C _L = 50 pF	-	5	ns	
SCK rise time	tR		-	5	ns	



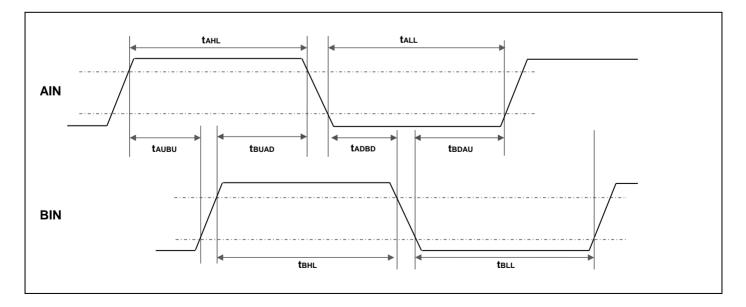



### 12.4.11 External input timing

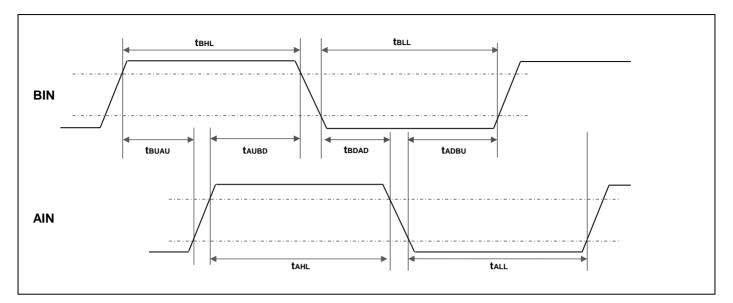
 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ 

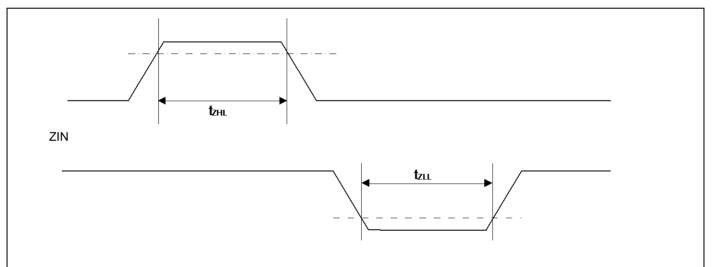
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
Faranielei	Symbol	Fill liallie	Conditions	Min	Max	Unit	Rellarks
		ADTG					A/D converter trigger input
	FRCKx	FRCKx	-	2t _{CYCP} *	-	ns	Free-run timer input clock
lanut nulan t	ICxx					Input capture	
Input pulse width	t _{INH} t _{INL}	DTTIxX	-	2t _{CYCP} *	-	ns	Wave form generator
UNL UNL	LINE	INTxx, NMIX	Except Timer mode, Stop mode	2t _{CYCP} + 100 *	-	ns	External interrupt
	INIVILA		Timer mode, Stop mode	500	-	ns	NMI

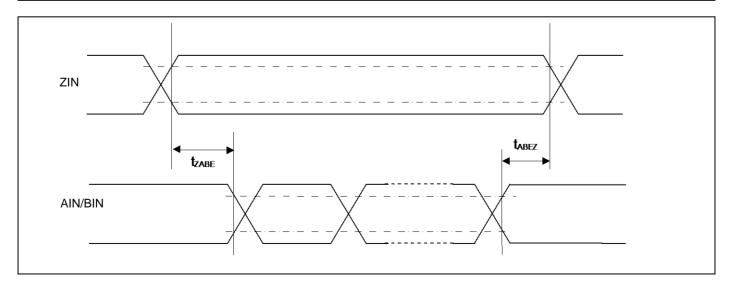
*: t_{CYCP} indicates the APB bus clock cycle time. About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to, see "Block Diagram" in this data sheet.







### 12.4.12 Quadrature Position/Revolution Counter timing


Parameter	Symbol	Conditions	Valu	le	Unit
Farameter	Symbol	Conditions	Min	Max	Unit
AIN pin "H" width	t _{AHL}	-			
AIN pin "L" width	t _{ALL}	-			
BIN pin "H" width	t _{BHL}	-			
BIN pin "L" width	t _{BLL}	-			
BIN rise time from AIN pin "H" level	t _{AUBU}	PC_Mode2 or PC_Mode3			
AIN fall time from BIN pin "H" level	t _{BUAD}	PC_Mode2 or PC_Mode3			
BIN fall time from AIN pin "L" level	t _{ADBD}	PC_Mode2 or PC_Mode3			
AIN rise time from BIN pin "L" level	t _{BDAU}	PC_Mode2 or PC_Mode3			
AIN rise time from BIN pin "H" level	t _{BUAU}	PC_Mode2 or PC_Mode3	2t _{CYCP} *	-	ns
BIN fall time from AIN pin "H" level	t _{AUBD}	PC_Mode2 or PC_Mode3			
AIN fall time from BIN pin "L" level	t _{BDAD}	PC_Mode2 or PC_Mode3			
BIN rise time from AIN pin "L" level	t _{ADBU}	PC_Mode2 or PC_Mode3			
ZIN pin "H" width	t _{ZHL}	QCR:CGSC="0"			
ZIN pin "L" width	t _{ZLL}	QCR:CGSC="0"			
AIN/BIN rise and fall time from determined ZIN level	t _{ZABE}	QCR:CGSC="1"			
Determined ZIN level from AIN/BIN rise and fall time	t _{ABEZ}	QCR:CGSC="1"			


*: t_{CYCP} indicates the APB bus clock cycle time. About the APB bus number which the Quadrature Position/Revolution Counter is connected to, see "Block Diagram" in this data sheet.











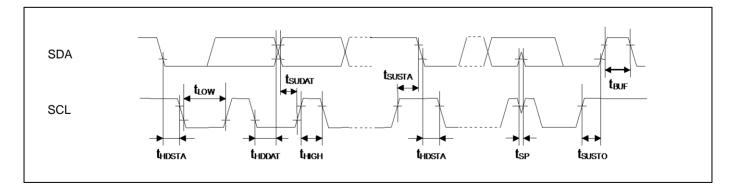


# 12.4.13 I²C timing

Parameter	Symbol	Conditions	Standar	rd-mode	Fast-	mode	Unit	Remarks
Faranieter 5	Symbol	Conditions	Min	Max	Min	Max	Unit	Remarks
SCL clock frequency	F _{SCL}		0	100	0	400	kHz	
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL $\downarrow$	t _{HDSTA}		4.0	-	0.6	-	μs	
SCLclock "L" width	t _{LOW}		4.7	-	1.3	-	μs	
SCLclock "H" width	t _{ніGH}		4.0	-	0.6	-	μs	
(Repeated) START setup time SCL $\uparrow \rightarrow$ SDA $\downarrow$	t _{susta}	C ₁ = 50 pF.	4.7	-	0.6	-	μs	
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t _{HDDAT}	$C_{L} = 50 \text{ pF},$ R = (Vp/I _{OL} )* ¹	0	3.45* ²	0	0.9* ³	μs	
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL $\uparrow$	t _{sudat}		250	-	100	-	ns	
STOP condition setup time SCL $\uparrow \rightarrow$ SDA $\uparrow$	tsusтo		4.0	-	0.6	-	μs	
Bus free time between "STOP condition" and "START condition"	t _{BUF}		4.7	-	1.3	-	μs	
Noise filter	t _{SP}	-	2 t _{CYCP} *4	-	2 t _{CYCP} *4	-	ns	

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ 

*1: R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.

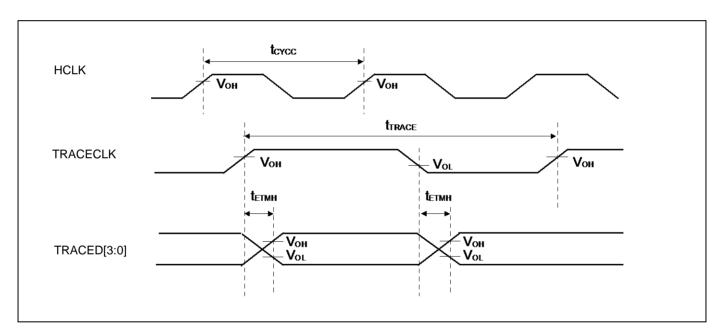

*2: The maximum t_{HDDAT} must satisfy that it doesn't extend at least "L" period (t_{LOW}) of device's SCL signal.

*3: Fast-mode I²C bus device can be used on Standard-mode I²C bus system as long as the device satisfies the requirement of "t_{SUDAT} ≥ 250 ns".

*4: t_{CYCP} is the APB bus clock cycle time.

About the APB bus number that I²C is connected to, see "Block Diagram" in this data sheet. To use Standard-mode, set the APB bus clock at 2 MHz or more.

To use Fast-mode, set the APB bus clock at 8 MHz or more.



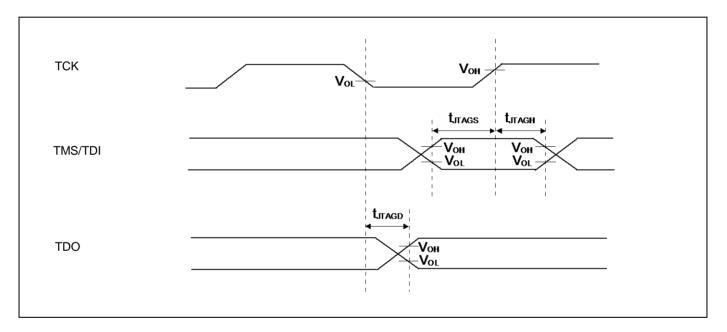



# 12.4.14 ETM timing

			(	Vcc = 2.7V	to 5.5V	Vss = (	$V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C$
Parameter	Symbol	Pin name	Conditions	Valu		Unit	Remarks
	<b>1</b>	TRACECLK	Vcc ≥ 4.5 V	Min 2	Max 9		
Data hold t _{ETMH}		Vcc < 4.5 V	2	15	ns		
TRACECLK	1/t _{TRACE}		Vcc ≥ 4.5 V	-	50	MHz	
Frequency	TRACE	- TRACECLK	Vcc < 4.5 V	-	32	MHz	
TRACECLK clock cycle time	t== =		Vcc ≥ 4.5 V	20	-	ns	
	TRACE		Vcc < 4.5 V	31.25	-	ns	

**Note:** - When the external load capacitance  $C_L = 50 \text{ pF}$ .






# 12.4.15 JTAG timing

 $(Vcc = 2.7V \text{ to } 5.5V, Vss = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ 

Parameter	Symbol	Pin name	Conditions	Va	alue	Unit	Remarks	
Farailleter	Symbol	Fininame	Conditions	Min	Max	Unit	Relliarks	
TMS,TDI setup time	DI setup time $t_{\text{ULAGS}}$ TCK $\text{Vcc} \ge 4.5 \text{ V}$ 15			20				
TWO, TOT Setup time	t _{JTAGS}	TMS,TDI	Vcc < 4.5 V	15	-	ns		
TMS,TDI hold time	+	ТСК	Vcc ≥ 4.5 V	15		20		
	t _{JTAGH}	TMS,TDI	Vcc < 4.5 V	15	-	ns		
TDO delay time	timop	тск	Vcc ≥ 4.5 V	-	25	ns		
TDO delay time	t _{JTAGD}	TDO	Vcc < 4.5 V	-	45	115		

⁻ When the external load capacitance  $C_L = 50 \text{ pF}$ .





### 12.5 12-bit A/D Converter

### Electrical characteristics for the A/D converter.

Parameter	Symbol	Pin		Value		Unit	Remarks	
Falailletei	Symbol	name	Min	Тур	Max	Unit	Reillarks	
Resolution	-	-	-	-	12	bit		
Integral Nonlinearity	-	-	-	± 2	± 4.5	LSB		
Differential Nonlinearity	-	-	-	± 2	± 2.5	LSB	AVRH = 2.7 V to 5.5 V	
Zero transition voltage	V _{ZT}	ANxx	-	± 5	± 20	mV	AVRT = 2.7 V 10 5.5 V	
Full-scale transition voltage	V _{FST}	ANxx	-	AVRH ± 10	AVRH ± 20	mV		
			1.0* ¹	-	-		AVcc ≥ 4.5 V	
Conversion time	-	-	2.666* ¹	-	-	μs	AVcc < 4.5 V	
	т.		*2	-	-		AVcc ≥ 4.5 V	
Sampling time	Ts	-	*2	-	-	ns	AVcc < 4.5 V	
				55.5				AVcc ≥ 4.5 V
Compare clock cycle *3	Tcck	-	166.6* ⁴	-	10000	ns	AVcc < 4.5 V	
State transition time to operation permission	Tstt	-	-	-	2.5	μs		
Analog input capacity	CAIN	-	-	-	14.5	pF		
	<b>D</b>				0.93	1.0	AVcc ≥ 4.5 V	
Analog input resistance	R _{AIN}	-	-	-	2.04	kΩ	AVcc < 4.5 V	
Interchannel disparity	-	-	-	-	4	LSB		
Analog port input leak current	-	ANxx	-	-	5	μA		
Analog input voltage	-	ANxx	AVss	-	AVRH	V		
Reference voltage	-	AVRH	2.7	-	AV _{CC}	V		

### (Vcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, $T_A$ = - 40°C to + 85°C)

*1: The Conversion time is the value of sampling time (Ts) + compare time (Tc).

The condition of the minimum conversion time is the following.

AVcc ≥ 4.5 V, HCLK = 72 MHz sampling time: 0.222 µs compare time: 0.778 µs

AVcc < 4.5 V, HCLK = 54 MHz sampling time: 0.333 µs compare time: 2.333 µs

Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck).

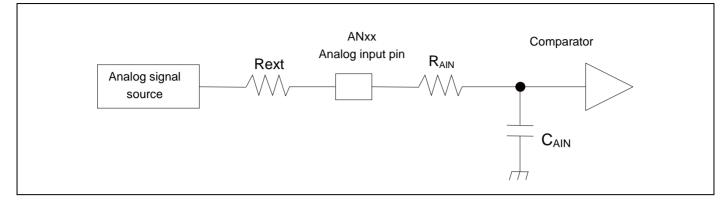
For setting of the sampling time and compare clock cycle, see "CHAPTER 1-1: A/D Converter" in "FM3 Family PERIPHERAL MANUAL Analog Macro Part".

The registers setting of the A/D Converter are reflected in the operation according to the APB bus clock timing.

The sampling clock and compare clock is generated from the Base clock (HCLK).

About the APB bus number which the A/D Converter is connected to, see "Block Diagram" in this data sheet.

*2: A necessary sampling time changes by external impedance.


Ensure that it set the sampling time to satisfy (Equation 1)

*3: The Compare time (Tc) is the value of (Equation 2)

*4: When 12-bit A/D converter is used at AVcc<4.5 V, there is a limitation as follows.

Please set the HCLK frequency under 54 MHz.





(Equation 1) Ts $\geq$	$(R_{AIN} + Rext) \times C_{AIN} \times 9$
------------------------	--------------------------------------------

Ts:	Sampling time	
R _{AIN} :	Input resistance of A/D = $0.93k\Omega$	$4.5~\textrm{V} \leq \textrm{AV}_{\textrm{CC}} \leq 5.5~\textrm{V}$
	Input resistance of A/D = $2.04k\Omega$	$2.7~\textrm{V} \leq \textrm{AV}_{\textrm{CC}} < 4.5~\textrm{V}$
C _{AIN} :	Input capacity of A/D = 14.5pF	$2.7~\textrm{V} \leq \textrm{AV}_{\textrm{CC}} \leq 5.5~\textrm{V}$
Rext:	Output impedance of external circu	uit

(Equation 2) Tc = Tcck  $\times$  14

Tc: Compare time

Tcck: Compare clock cycle



### Definition of 12-bit A/D Converter Terms

- Resolution:
- Integral Nonlinearity:

· Differential Nonlinearity:

Analog variation that is recognized by an A/D converter. Deviation of the line between the zero-transition point (0b00000000000  $\leftarrow \rightarrow$  0b0000000001) and the full-scale transition point (0b11111111110  $\leftarrow \rightarrow$  0b1111111111) from the actual conversion characteristics. Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.

Integral Nonlinearity Differential Nonlinearity 0xFFF Actual conversion Actual conversion characteristics 0xFFE 0x(N+1) characteristics  $LSB(N-1) + V_{ZT}$ {1 0xFFD  $V_{\text{FST}}$ Ideal characteristics (Actually-0x0 Digital output 0x(N-1) 0xN Digital output measured value) 0x004 V_{NT} (Actually-measured value) V_{(N+1)T} 0x003 (Actually-measured Actual conversion value) 0x002 characteristics V_{NT} (Actually-measured Ideal characteristics 0x(N-2) value) 0x001 V_{ZT} (Actually-measured value) Actual conversion characteristics AVRH AVRH AV_{SS}  $AV_{SS}$ Analog input Analog input  $\frac{V_{NT} - \{1LSB \times (N - 1) + V_{ZT}\}}{1LSB}$  [LSB] Integral Nonlinearity of digital output N = Differential Nonlinearity of digital output N =  $\frac{V_{(N+1)T} - V_{NT}}{1LSB} - 1$  [LSB]  $1LSB = \frac{V_{FST} - V_{ZT}}{4094}$ N: A/D converter digital output value. V_{7т}: Voltage at which the digital output changes from 0x000 to 0x001. V_{FST}: Voltage at which the digital output changes from 0xFFE to 0xFFF. Voltage at which the digital output changes from 0x(N - 1) to 0xN. V_{NT}:



# 12.6 Low-Voltage Detection Characteristics

### 12.6.1 Low-Voltage Detection Reset

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ 

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ 

Parameter	Symbol	Conditions		Value		Unit	Remarks
Falameter	Symbol	Conditions	Min	Тур	Max	Unit	Reillarks
Detected voltage	VDL	-	2.20	2.40	2.60	V	When voltage drops
Released voltage	VDH	-	2.30	2.50	2.70	V	When voltage rises

### 12.6.2 Interrupt of Low-Voltage Detection

Deremeter	Symphol	Conditions		Va	lue	Unit	Demerke
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Detected voltage	VDL	SVHI = 0000	2.58	2.8	3.02	V	When voltage drops
Released voltage	VDH	3711 = 0000	2.67	2.9	3.13	V	When voltage rises
Detected voltage	VDL	SVHI = 0001	2.76	3.0	3.24	V	When voltage drops
Released voltage	VDH	3001 = 0001	2.85	3.1	3.34	V	When voltage rises
Detected voltage	VDL	SVHI = 0010	2.94	3.2	3.45	V	When voltage drops
Released voltage	VDH	3001 = 0010	3.04	3.3	3.56	V	When voltage rises
Detected voltage	VDL	SVHI = 0011	3.31	3.6	3.88	V	When voltage drops
Released voltage	VDH	3001 = 0011	3.40	3.7	3.99	V	When voltage rises
Detected voltage	VDL	SVHI = 0100	3.40	3.7	3.99	V	When voltage drops
Released voltage	VDH	3001 = 0100	3.50	3.8	4.10	V	When voltage rises
Detected voltage	VDL	SVHI = 0111	3.68	4.0	4.32	V	When voltage drops
Released voltage	VDH	3001 = 0111	3.77	4.1	4.42	V	When voltage rises
Detected voltage	VDL	SV/LII 1000	3.77	4.1	4.42	V	When voltage drops
Released voltage	VDH	SVHI = 1000	3.86	4.2	4.53	V	When voltage rises
Detected voltage	VDL	SVHI = 1001	3.86	4.2	4.53	V	When voltage drops
Released voltage	VDH	SVHI = 1001	3.96	4.3	4.64	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	2040 xt _{CYCP} *	μs	

*:  $t_{\mbox{CYCP}}$  indicates the APB2 bus clock cycle time.



# 12.7 Flash Memory Write/Erase Characteristics

# 12.7.1 Write / Erase time

### $(Vcc = 2.7V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Bar	Parameter Value		Value		Remarks
Fala		Тур*	Max*	Unit	Reillarks
Sector erase	Large Sector	1.6	7.5	- s	Includes write time prior to internal erase
time	Small Sector	0.4	2.1	- 3	includes write time pror to internal erase
Half word (16 bi write time	t)	25	400	μs	Not including system-level overhead time.
Chip erase time		16	76.8	s	Includes write time prior to internal erase

*: The typical value is immediately after shipment, the maximum value is guarantee value under 100,000 cycle of erase/write.

### 12.7.2 Erase/write cycles and data hold time

Erase/write cycles (cycle)	Data hold time (year)	Remarks
1,000	20 *	
10,000	10 *	
100,000	5 *	

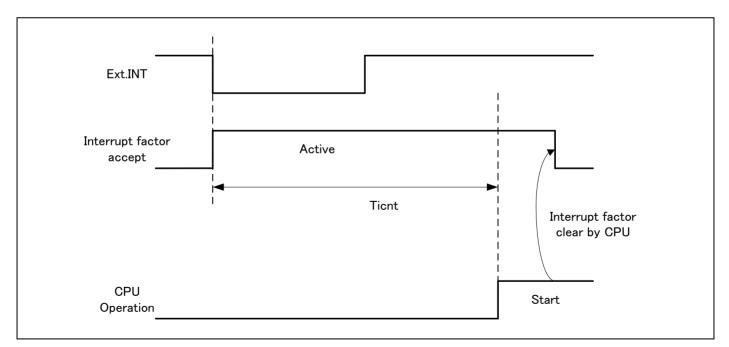
*: At average + 85°C



# 12.8 Return Time from Low-Power Consumption Mode

### 12.8.1 Return Factor: Interrupt

The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation.

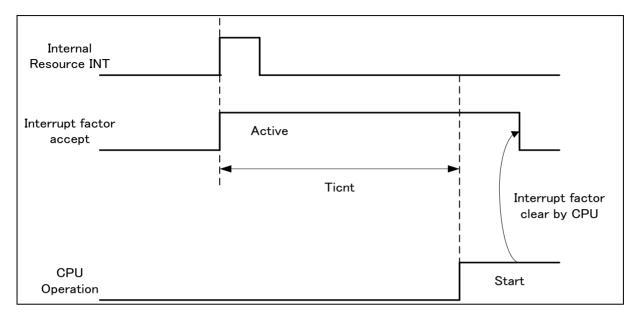

## **Return Count Time**

 $(V_{CC} = 2.7V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$ 

Parameter	Symbol	Symbol Value			Remarks
Falailletei	Symbol	Тур	Max*	Unit	Reillarks
SLEEP mode		t _{CY}	(CC	ns	
High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode		33	100	μs	
Low-speed CR TIMER mode	Ticnt	445	1061	μs	
Sub TIMER mode	]	445	1061	μs	
STOP mode		445	1061	μs	

*: The maximum value depends on the accuracy of built-in CR.

# Operation example of return from Low-Power consumption mode (by external interrupt*)




*: External interrupt is set to detecting fall edge.





# Operation example of return from Low-Power consumption mode (by internal resource interrupt*)



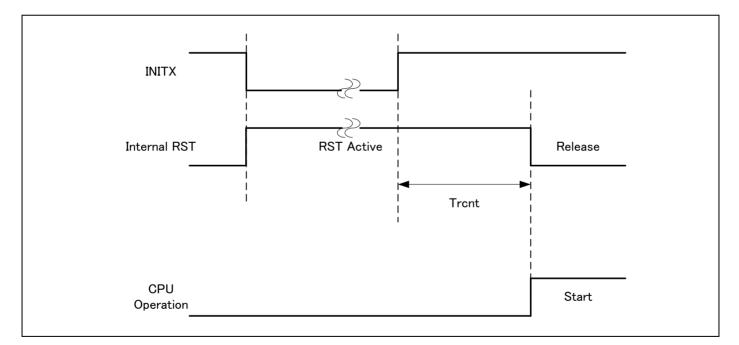
*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.

- The return factor is different in each Low-Power consumption modes. See "CHAPTER 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL MANUAL about the return factor from Low-Power consumption mode.
- When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "CHAPTER 6: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL".

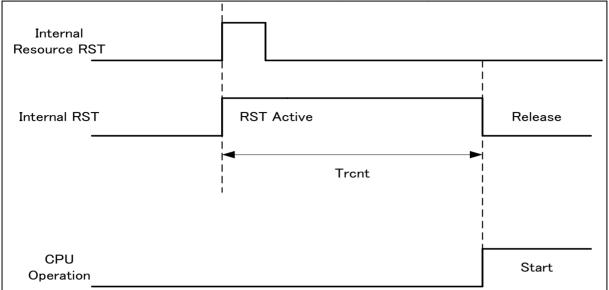


### 12.8.2 Return Factor: Reset

The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation.


# **Return Count Time**

 $(V_{CC} = 2.7V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$ 


Parameter	Symbol	Value	9	Unit	Remarks
Falameter	Symbol	Тур	Max*	Unit	Reillarks
SLEEP mode		82	181	μs	
High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode		82	181	μs	
Low-speed CR TIMER mode	Trcnt	431	1003	μs	
Sub TIMER mode		431	1003	μs	
STOP mode		431	1003	μs	

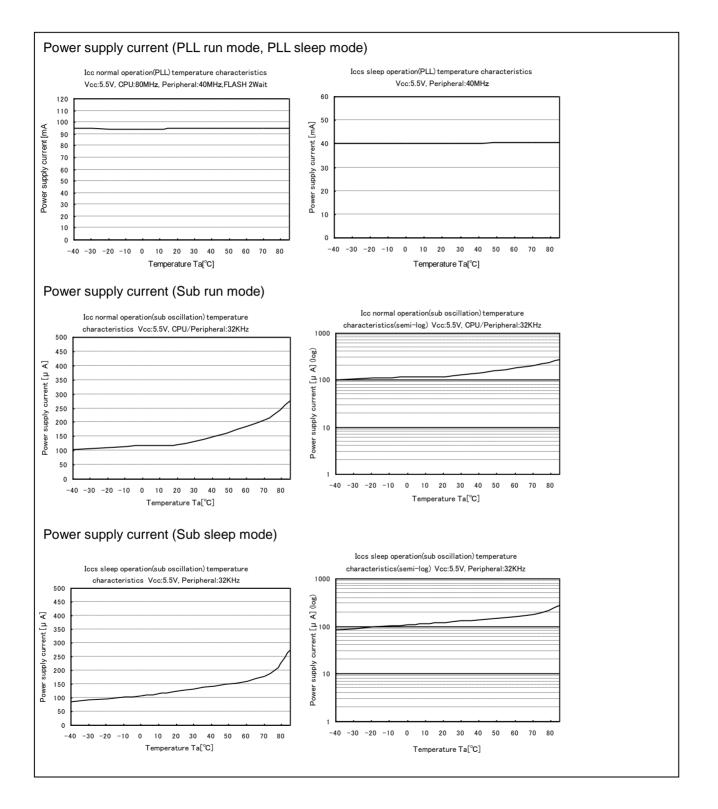
*: The maximum value depends on the accuracy of built-in CR.

# Operation example of return from Low-Power consumption mode (by INITX)

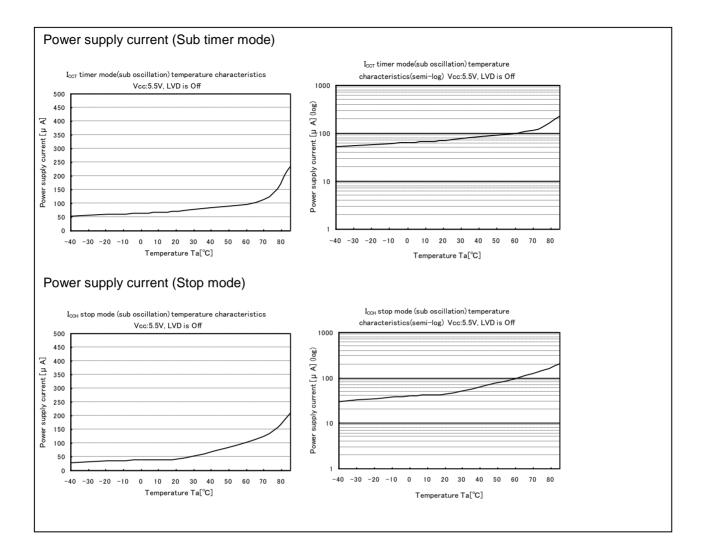







# Operation example of return from low power consumption mode (by internal resource reset*)

*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.


- The return factor is different in each Low-Power consumption modes. See "CHAPTER 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL MANUAL.
- When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "CHAPTER 6: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL".
- The time during the power-on reset/low-voltage detection reset is excluded. See "(6) Power-on Reset Timing in 4. AC Characteristics in ELECTRICAL CHARACTERISTICS" for the detail on the time during the power-on reset/low -voltage detection reset.
- When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time.
- The internal resource reset means the watchdog reset and the CSV reset.

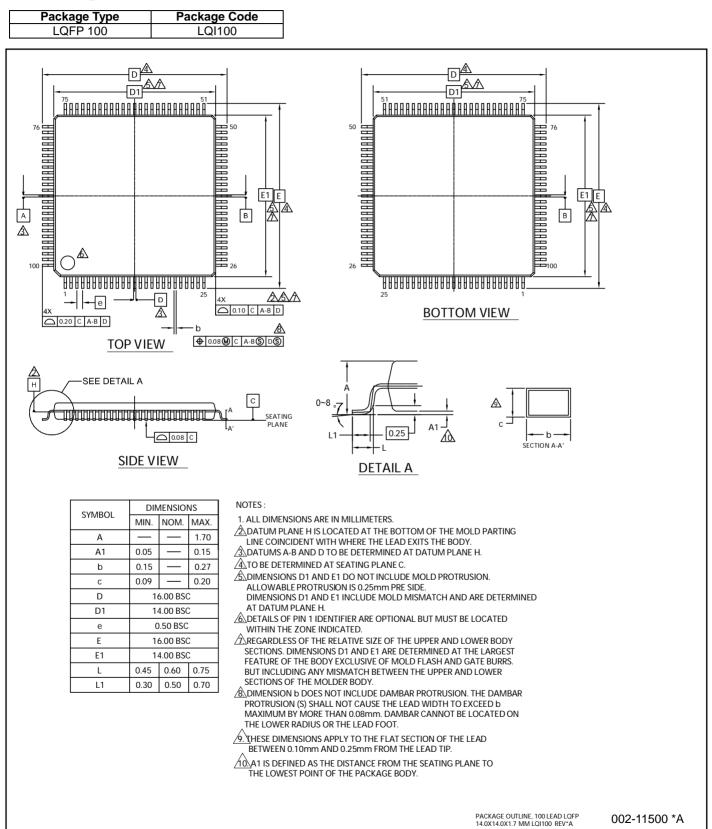


# 13. Example of Characteristic

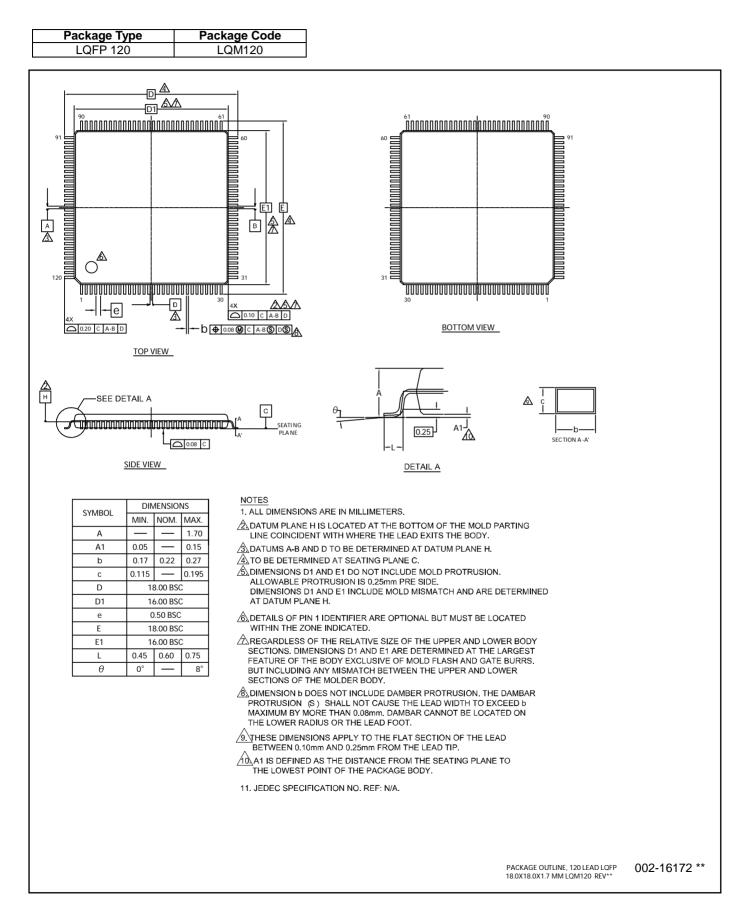




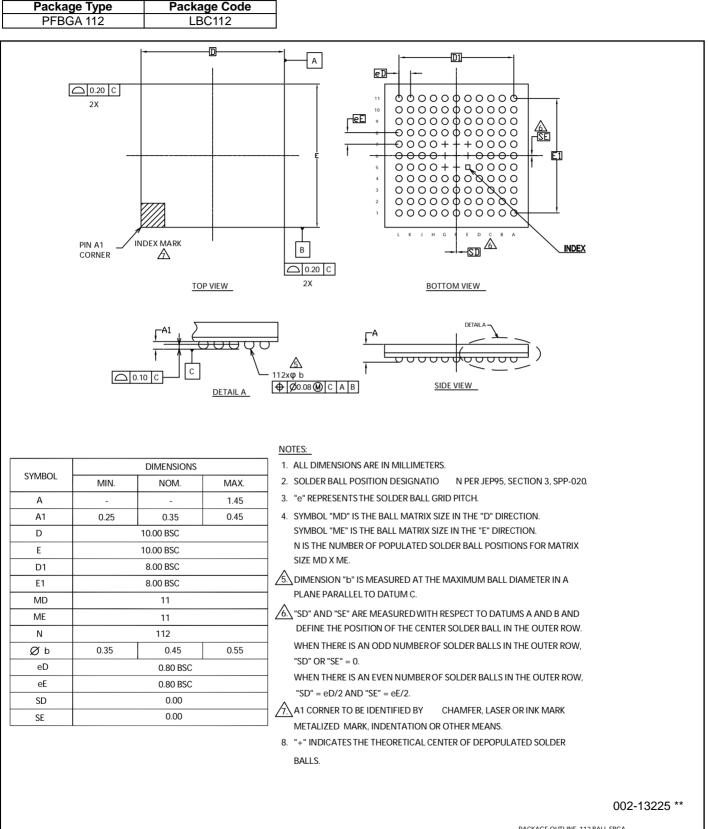





# **14. Ordering Information**


Part number	On-chip Flash memory	On-chip SRAM	Package	Packing
MB9BF102NAPMC-G-JNE2	128Kbyte	16Kbyte		
MB9BF104NAPMC-G-JNE2	256Kbyte	32Kbyte	Plastic · LQFP	
MB9BF105NAPMC-G-JNE2	384Kbyte	48Kbyte	(0.5mm pitch),100-pin (LQI100)	
MB9BF106NAPMC-G-JNE2	512Kbyte	64Kbyte	(	
MB9BF102RAPMC-G-JNE2	128Kbyte	16Kbyte		
MB9BF104RAPMC-G-JNE2	256Kbyte	32Kbyte		Trovi
MB9BF105RAPMC-G-JNE2	384Kbyte	48Kbyte	(0.5mm pitch),120-pin (LQM120)	Tray
MB9BF106RAPMC-G-JNE2	512Kbyte	64Kbyte		
MB9BF102NABGL-GK6E1	128Kbyte	16Kbyte		
MB9BF104NABGL-GK6E1	256Kbyte	32Kbyte	Plastic • PFBGA	
MB9BF105NABGL-GK6E1	384Kbyte	48Kbyte	(0.8mm pitch),112-pin (LBC112)	
MB9BF106NABGL-GK6E1	512Kbyte	64Kbyte		




# 15. Package Dimensions













# 16. Errata

This chapter describes the errata for MB9B100R series. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

### 16.1 Part Numbers Affected

Part Number
Initial Revision
MB9BF102RPMC-G-JNE2, MB9BF104RPMC-G-JNE2, MB9BF105RPMC-G-JNE2, MB9BF106RPMC-G-JNE2, MB9BF102NPMC-G-JNE2, MB9BF104NPMC-G-JNE2, MB9BF105NPMC-G-JNE2, MB9BF106NPMC-G-JNE2, MB9BF102NBGL-GE1, MB9BF104NBGL-GE1, MB9BF105NBGL-GE1, MB9BF106NBGL-GE1

### 16.2 Qualification Status

Product Status: In Production – Qual.

### 16.3 Errata Summary

This table defines the errata applicability to available devices.

Items	Part Number	Silicon Revision	Fix Status
[1] Timer and stop issue	Refer to 16.1	Rev. initial rev.	Fixed in Rev. A

#### 16.4 Errata Detail

#### 16.4.1 Timer and stop mode issue

PROBLEM DEFINITION MCU does not return form timer or stop mode.

■PARAMETERS AFFECTED

N/A

TRIGGER CONDITION(S) The condition is that the timing of entering timer or stop mode and an interruption occurrence meet.

SCOPE OF IMPACT MCU does not return from time or stop mode.

■WORKAROUND This error cannot be avoided by any software, except not using timer and stop mode.

FIX STATUS This issue was fixed in Rev. A.



# 17. Major Changes

# Spansion Publication Number: DS706-00020

Page	Section	Change Results
Revision	1.0	
-	-	Initial release
Revision	1.1	
-	-	Company name and layout design change
Revision	2.0	
3	FEATURES External Bus Interface	Added the description of Maximum area size
8	PACKAGES	Deleted the description of ES
17	LIST OF PIN FUNCTIONS · List of pin numbers	Modified the Pin state type of P4E from I to H
32-35	LIST OF PIN FUNCTIONS · List of pin functions	Added LIN to the description of SOTxx
42	I/O CIRCUIT TYPE	Added the description of I ² C to the type of E and F
42, 43	I/O CIRCUIT TYPE	Added about +B input
48	HANDLING DEVICES	Added "Stabilizing power supply voltage"
48	HANDLING DEVICES Crystal oscillator circuit	Added the following description "Evaluate oscillation of your using crystal oscillator by your mount board."
49	HANDLING DEVICES C Pin	Changed the description
50	BLOCK DIAGRAM	Modified the block diagram
50	MEMORY SIZE	Changed to the following description See "Memory size" in "PRODUCT LINEUP" to confirm the memory size.
51	MEMORY MAP · Memory map(1)	Modified the area of "External Device Area"
52	MEMORY MAP · Memory map(2)	Added the summary of Flash memory sector and the note
59, 60	ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings	<ul> <li>Added the Clamp maximum current</li> <li>Added the output current of P80 and P81</li> <li>Added about +B input</li> </ul>
61	ELECTRICAL CHARACTERISTICS 2. Recommended Operation Conditions	<ul> <li>Modified the minimum value of Analog reference voltage</li> <li>Added Smoothing capacitor</li> <li>Added the note about less than the minimum power supply voltage</li> </ul>
62, 63	ELECTRICAL CHARACTERISTICS 3. DC Characteristics (1) Current rating	Changed the table format     Added Main TIMER mode current     Added Flash Memory Current     Moved A/D Converter Current
65	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (1) Main Clock Input Characteristics	Added Master clock at Internal operating clock frequency
66	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (3) Built-in CR Oscillation Characteristics	Added Frequency stability time at Built-in high-speed CR
67	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (4-1)(4-2) Operating Conditions of Main PLL	<ul> <li>Added Main PLL clock frequency</li> <li>Added the figure of Main PLL connection</li> </ul>
68	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (6) Power-on Reset Timing	Added Time until releasing Power-on reset     Changed the figure of timing





Page	Section	Change Results
74-81	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (7) CSIO/UART Timing	Modified from UART Timing to CSIO/UART Timing     Changed from Internal shift clock operation to Master mode     Changed from External shift clock operation to Slave mode
88	ELECTRICAL CHARACTERISTICS 5. 12bit A/D Converter	<ul> <li>Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero transition voltage and Full-scale transition voltage</li> <li>Added Conversion time at AVcc &lt; 4.5V</li> <li>Modified Stage transition time to operation permission</li> <li>Modified the minimum value of Reference voltage</li> </ul>
92	ELECTRICAL CHARACTERISTICS 7. Flash Memory Write/Erase Characteristics	Change to the erase time of include write time prior to internal erase
93-96	ELECTRICAL CHARACTERISTICS 8. Return Time from Low-Power Consumption Mode	Added Return Time from Low-Power Consumption Mode
99	ORDERING INFORMATION	Change to full part number
100	PACKAGE DIMENSIONS	Deleted FPT-100P-M20 and FPT-120P-M21



# **Document History**

# Document Title: MB9B100A Series 32-bit ARM[®] Cortex[®]-M3 FM3 Microcontroller

Document Number: 002-05605

Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	-	AKIH	12/15/2014	Migrated to Cypress and assigned document number 002-05605. No change to document contents or format.	
*A	5213577	AKIH	04/14/2016	Updated to Cypress format.	
		NOSU	03/02/2017	<ul> <li>Changed the package codes in the following chapters as the table below.</li> <li>2. Packages</li> <li>3. Pin Assignment</li> <li>12.2. Recommended Operating Conditions</li> <li>14. Ordering Information</li> <li>15. Package Dimensions.</li> </ul>	
				Before After	
*B	5486354			FPT-100P-M23LQI100FPT-120P-M37LQM120BGA-112P-M04LBC112Changed a word "J-TAG" to "JTAG" in 4. List of Pin Functions (Page 26).Added a note of "TAP Controller" in 4. List of Pin Functions (Page 38).Changed a word "Ta" to "T _A " in the following chapters.12.2. Recommended Operating Conditions (Page 59)12.3. DC Characteristics (Page 60 to 62)12.4. AC Characteristics (Page 63 to 86)12.5. 12bit A/D Converter (Page 87)12.6. Low-Voltage Detection Characteristics (Page 90)12.7. Flash Memory Write/Erase Characteristics (Page 91)12.8 Return Time from Low-Power Consumption Mode (Page 92 to 94)Added the Baud rate spec in 12.4.10 CSIO Timing (Page 73, 75, 77, 79)Corrected the following statementAnalog port input current → Analog port input leak currentin chapter 12.5 12-bit A/D Converter (Page 87).Corrected the following statementComrare clock cycle → Compare clock cyclein chapter 12.5 12-bit A/D Converter (Page 87).Corrected the following statementComrare clock cycle → Compare clock cyclein chapter 12.5 12-bit A/D Converter (Page 88).Corrected the Part numbers in chapter 14. Ordering InformationMB9BF102NABGL-G-YE1 → MB9BF102NABGL-GK6E1-MB9BF104NABGL-G-YE1 → MB9BF104NABGL-GK6E1	
				<ul> <li>MB9BF105NABGL-G-YE1 → MB9BF105NABGL-GK6E1</li> <li>MB9BF106NABGL-G-YE1 → MB9BF106NABGL-GK6E1</li> <li>Updated 15. Package Dimensions</li> <li>Added 16. Errata</li> </ul>	



Revision	ECN	Orig. of Change	Submission Date	Description of Change
*C	5811604	YSAT	07/13/2017	Adapted new Cypress logo



# Sales, Solutions, and Legal Information

#### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

### Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

# **PSoC[®] Solutions**

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

#### **Cypress Developer Community**

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

#### **Technical Support**

cypress.com/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2011-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.