3-Pin, Low-Power µP Reset Circuits

Absolute Maximum Ratings

Terminal Voltage (with respect to GND)

V _{CC}	0.3V to +6V
Push/Pull RESET, RESET	0.3V to (V _{CC} + 0.3V)
Open-Drain RESET	
Input Current (V _{CC})	20mA
Output Current (RESET, RESET)	20mA
Continuous Power Dissipation ($T_A = +70$)°C)
3-Pin SOT23 (derate 4mW/°C above	+70°C)320mW

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+300°C
Lead (Pb)-free packages	+260°C
Package containing lead (Pb)	+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

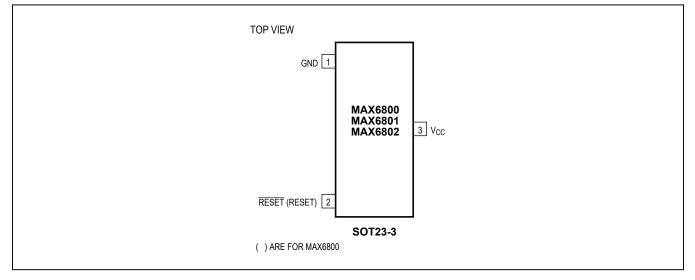
Electrical Characteristics

(V_{CC} = full range, $T_A = -40^{\circ}$ C to +125°C, unless otherwise noted. Typical values are at V_{CC} = +5.0V and $T_A = +25^{\circ}$ C, reset not asserted.) (Note 1)

PARAMETER	SYMBOL		COND	TIONS	MIN	TYP	MAX	UNITS	
	M	$T_A = 0^{\circ}C \text{ to } +125^{\circ}C$		MAX6800/MAX6801	0.7		5.5	V	
Supply Voltage Range				MAX6802	1.0		5.5		
(Note 2)	V _{CC}	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		MAX6800/MAX6801	0.78		5.5		
				MAX6802	1.2		5.5		
Supply Current	1	No load		V _{CC} = +3.0V		4	10		
	Icc			V _{CC} = +5.0V		5	12	μA	
Reset Threshold		MAX680_URDT, Table 1		T _A = +25°C	V _{TH} - 1.8%	V _{TH}	V _{TH} + 1.8%	v	
	V _{TH}			$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$	V _{TH} - 3%	V _{TH}	V _{TH} + 3%		
V _{CC} Falling Reset Delay		V _{CC} falling a	at 10V/ms			30		μs	
	t _{RP}	MAX680_URD1-T		1	1.5	2			
Reset Active Timeout Period		MAX680 UR D2-T		20	30	40	ms		
		 MAX680_URD3-T		100	150	200			
	V _{OL}	Reset asserted	I _{SINK} = 5	0µA, V _{CC} ≥ 1.0V			0.4	,	
RESET Output Low-Voltage			Reset $l_{\text{CDMW}} = 1.2\text{mA}$ $V_{\text{CD}} \ge 2.5$				0.3	v	
(MAX6801/MAX6802)				.2mA, V _{CC} ≥ 4.25V			0.4		
RESET Output High-Voltage	V	Reset not	ISOURCE	= 500µA, V _{CC} ≥ 3.0V	0.8 x V _{CC}			v	
(MAX6801)	V _{OH}	asserted	I _{SOURCE} = 800µA, V _{CC} ≥ 5.0V		0.8 x V _{CC}				
RESET Output Voltage (MAX6800)	V _{OH}	Reset Isour	1	= 1µA, V _{CC} ≥ 1.0V	0.8 x V _{CC}				
				= 200µA, V _{CC} ≥ 1.8V	0.8 x V _{CC}				
				= 800µA, V _{CC} ≥ 4.25V	0.8 x V _{CC}			v	
	V _{OL}	Reset not I _{SINK} =		2mA, V _{CC} ≥ 3.0V			0.3	1	
				2mA, V _{CC} ≥ 5.0V			0.4	1	
RESET Output Leakage Current (MAX6802)		$V_{CC} > V_{TH}$, RESET not asserted				0.5	μA		

Note 1: All parts are production tested at $T_A = +25^{\circ}$ C. Overtemperature limits are guaranteed by design and not production tested. **Note 2:** I_{SOURCE} for the MAX6800 is 100nA. I_{SINK} for the MAX6801 is 100nA. I_{SINK} for the MAX6802 is 50µA.

3-Pin, Low-Power µP Reset Circuits


Typical Operating Characteristics

(Reset not asserted, T_A = +25°C, unless otherwise noted.)

3-Pin, Low-Power µP Reset Circuits

Pin Configuration

Pin Description

Р	IN			
MAX6800	MAX6801/ MAX6802	NAME	FUNCTION	
1	1	GND	Ground	
_	2	RESET	Active-Low Reset Output. $\overline{\text{RESET}}$ is asserted while V_{CC} is below the reset threshold and remains asserted for a reset timeout period (t_{RP}) after V_{CC} rises above the reset threshold. $\overline{\text{RESET}}$ on the MAX6801 is push/pull. $\overline{\text{RESET}}$ on the MAX6802 is open-drain.	
2	_	RESET	Active-High Reset Output. RESET is asserted while V _{CC} is below the reset threshold and remains asserted for a reset timeout period (t_{RP}) after V _{CC} rises above the reset threshold. RESET on the MAX6800 is push/pull.	
3	3	V _{CC}	Supply Voltage Input	

3-Pin, Low-Power µP Reset Circuits

Applications Information

Interfacing to μPs with Bidirectional Reset Pins

Since the $\overline{\text{RESET}}$ output on the MAX6802 is opendrain, this device interfaces easily with µPs that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the µP supervisor's $\overline{\text{RESET}}$ output directly to the microcontroller's (µC's) $\overline{\text{RESET}}$ pin with a single pullup resistor allows either device to assert reset (Figure 1).

Negative-Going V_{CC} Transients

In addition to issuing a reset to the μ P during power-up, power-down, and brownout conditions, these devices are relatively immune to short-duration, negativegoing V_{CC} transients (glitches). The <u>Typical Operating</u> <u>Characteristics</u> show the Maximum Transient Duration vs. Reset Comparator Overdrive graph. The graph shows the maximum pulse width that a negative-going V_{CC} transient may typically have without issuing a reset signal. As the amplitude of the transient increases, the maximum allowable pulse width decreases.

Ensuring a Valid Reset Output Down to $V_{CC} = 0V$

When V_{CC} falls below 1V and approaches the minimum operating voltage of 0.7V, push/pull-structured reset sinking (or sourcing) capabilities decrease drastically. High-impedance CMOS-logic inputs connected to the RESET pin can drift to indeterminate voltages. This does not present a problem in most cases, since most µPs and circuitry do not operate when V_{CC} drops below 1V. For the MAX6801 application, where RESET must be valid down to 0V, adding a pulldown resistor between RESET and GND removes stray leakage currents, holding RESET low (Figure 2a). The pulldown resistor value is not critical; 100k Ω is large enough not to load RESET and small enough to pull it low. For the MAX6800 application, where RESET must be valid to V_{CC} = 0V, a 100k Ω pullup resistor between RESET and V_{CC} will hold RESET high when V_{CC} falls below 0.7V (Figure 2b).

Since the MAX6802 has an open-drain, active-low output, it typically uses a pullup resistor. With this device, RESET will most likely not maintain an active condition, but will drift to a non-active level due to the pullup resistor and the reduced sinking capability of the open-drain device. Therefore, this device is not recommended for applications where the RESET pin is required to be valid down to $V_{CC} = 0V$.

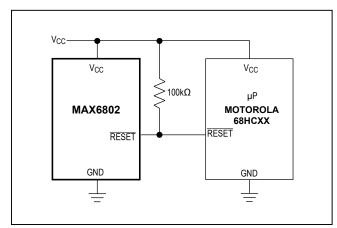


Figure 1. Interfacing to µPs with Bidirectional Reset Pins

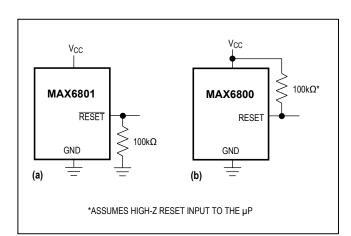


Figure 2. Ensuring Reset Valid Down to V_{CC} = 0V

3-Pin, Low-Power µP Reset Circuits

RESET THRESHOLD		T _A = +25°C		T _A = -40°C	to +125°C
SUFFIX	MIN	TYP (V _{TH})	MAX	MIN	MAX
48	4.714	4.80	4.886	4.656	4.944
47	4.615	4.70	4.785	4.559	4.841
46	4.547	4.63	4.713	4.491	4.769
45	4.419	4.50	4.581	4.365	4.635
44	4.301	4.38	4.459	4.249	4.511
43	4.223	4.30	4.377	4.171	4.429
42	4.124	4.20	4.276	4.074	4.326
41	4.026	4.10	4.174	3.977	4.223
40	3.928	4.00	4.072	3.880	4.120
39	3.830	3.90	3.970	3.783	4.017
38	3.732	3.80	3.868	3.686	3.914
37	3.633	3.70	3.767	3.589	3.811
36	3.535	3.60	3.665	3.492	3.708
35	3.437	3.50	3.563	3.395	3.605
34	3.339	3.40	3.461	3.298	3.502
33	3.241	3.30	3.359	3.201	3.399
32	3.142	3.20	3.258	3.104	3.296
31	3.025	3.08	3.135	2.988	3.172
30	2.946	3.00	3.054	2.910	3.090
29	2.877	2.93	2.983	2.842	3.018
28	2.750	2.80	2.850	2.716	2.884
27	2.651	2.70	2.749	2.619	2.781
26	2.583	2.63	2.677	2.551	2.709

Table 1. Factory-Trimmed Reset Thresholds

3-Pin, Low-Power µP Reset Circuits

PART	OUTPUT STAGE	NOMINAL V _{TH} (V)	MIN RESET TIMEOUT (ms)	SOT TOP MARK
MAX6800UR26D3-T	Push/Pull RESET	2.63	100	FZIE
MAX6800UR29D3-T	Push/Pull RESET	2.93	100	FZIF
MAX6800UR31D3-T	Push/Pull RESET	3.08	100	FZIG
MAX6800UR44D3-T	Push/Pull RESET	4.38	100	FZIH
MAX6800UR46D3-T	Push/Pull RESET	4.63	100	FZII
MAX6801UR26D3-T	Push/Pull RESET	2.63	100	FZIK
MAX6801UR29D3-T	Push/Pull RESET	2.93	100	FZIM
MAX6801UR31D3-T	Push/Pull RESET	3.08	100	FZIN
MAX6801UR44D3-T	Push/Pull RESET	4.38	100	FZIO
MAX6801UR46D3-T	Push/Pull RESET	4.63	100	FZIP
MAX6802UR26D3-T	Open-Drain RESET	2.63	100	FZIQ
MAX6802UR29D3-T	Open-Drain RESET	2.93	100	FZIR
MAX6802UR31D3-T	Open-Drain RESET	3.08	100	FZIS
MAX6802UR44D3-T	Open-Drain RESET	4.38	100	FZIT
MAX6802UR46D3-T	Open-Drain RESET	4.63	100	FZIU

Selector Guide (Standard Versions*)

*Sample stock is generally held on all standard versions.

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX6800URDT	-40°C to +125°C	3 SOT23
MAX6801URDT	-40°C to +125°C	3 SOT23
MAX6802URDT	-40°C to +125°C	3 SOT23

*These devices are available in factory-set V_{CC} reset thresholds from 2.63V to 4.80V, in approximately 0.1V increments. Choose the desired reset threshold suffix from Table 1 and insert it in the blanks following "UR" in the part number. Factory-programmed reset timeout periods are also available. Insert the number corresponding to the desired nominal reset timeout period (1 = 1ms min, 2 = 20ms min, 3 = 100ms min) in the blank following "D" in the part number. There are 15 standard versions with a required order increment of 2500 pieces. Sample stock is generally held on the standard versions only (see Selector Guide). Contact the factory for availability of non-standard versions (required order increment is 10,000 pieces). All devices available in tape-and-reel only.

Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
3 SOT23	U3-1	<u>21-0051</u>	<u>90-0179</u>

3-Pin, Low-Power µP Reset Circuits

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
3	10/11	Added automotive-qualified part information to Ordering Information.	1
4	3/12	Updated Factory-Trimmed Reset Thresholds table.	5
5	2/16	Updated Ordering Information table	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2016 Maxim Integrated Products, Inc. 8