Precision, Micropower, Low-Dropout Voltage References

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND

IN0.3V to +13.5V
OUT0.3V to (V _{IN} + 0.3V)
Output Short Circuit to GND or IN (VIN < 6V)Continuous
Output Short Circuit to GND or IN ($V_{IN} \ge 6V$)60s
Continuous Power Dissipation ($T_A = +70^{\circ}C$)

Operating Temperature Range40°C to +85°C	С
Junction Temperature+150°C	С
Storage Temperature Range65°C to +150°C	С
Lead Temperature (soldering, 10s)+300°C	С
Soldering Temperature (reflow)+260°C	С

8-Pin SO (derate 5.88mW/°C above +70°C).....471mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. **ELECTRICAL CHARACTERISTICS**—MAX6190

 $(V_{IN} = 5V, I_{OUT} = 0nA, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
OUTPUT				- I			1
			MAX6190A	1.248	1.250	1.252	
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6190B	1.246	1.250	1.254	V
			MAX6190C	1.244	1.250	1.256	
		MAX6190A			2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCVOUT	MAX6190B			4	10	ppm/°C
		MAX6190C			8	25	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$2.5V \le V_{\rm IN} \le 12.6V$	1		8	80	μV/V
Load Regulation	ΔVουτ/	Sourcing: 0 ≤ 1001	r ≤ 500µA		0.12	0.5	
Load Regulation	ΔI_{OUT}	Sinking: -500µA ≤	l _{OUT} ≤ 0		0.15	0.6	μV/μΑ
Short-Circuit Current	Isc	Short to GND			4		mA
Short-Girean Gurrent	150	Short to IN	Short to IN				
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC	1			I			1
		0.1Hz to 10Hz			25		μV _{P-P}
Noise Voltage	eout	10Hz to 10kHz			65		μV _{RMS}
Ripple Rejection	Vout/Vin	$V_{IN} = 5V \pm 100 \text{mV}$, f = 120Hz		86		dB
Turn-On Settling Time	t _R	To 0.1%, Cout =	50pF		30		μs
Capacitive-Load Stability Range	Cout	(Note 3)		0		2.2	nF
INPUT				- I			1
Supply Voltage Range	VIN	Guaranteed by lin	e-regulation test	2.5		12.6	V
Quiescent Supply Current	lin				27	35	μA
Change in Supply Current	IIN/VIN	$2.5V \le V_{\rm IN} \le 12.6V$	/		0.8	2	μA/V

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6191

(VIN = 5V, I_{OUT} = 0nA, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT				1			
			MAX6191A	2.046	2.048	2.050	
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6191B	2.043	2.048	2.053	V
			MAX6191C	2.038	2.048	2.058	1
		MAX6191A			2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCVOUT	MAX6191B			4	10	ppm/°C
		MAX6191C			8	25	1
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$2.5V \leq V_{\rm IN} \leq 12.6 \label{eq:VIN}$	1		10	100	μV/V
Load Regulation	ΔVουτ/	Sourcing: 0 ≤ I _{OU} -	r ≤ 500µA		0.12	0.55	
	ΔΙΟυτ	Sinking: -500µA ≤	Sinking: $-500\mu A \le I_{OUT} \le 0$		0.18	0.70	- μV/μA
Short-Circuit Current	I _{SC}	Short to GND			4		mA
	-30	Short to IN	Short to IN		4		
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC	1			I			1
		0.1Hz to 10Hz			40		μV _{P-P}
Noise Voltage	eout	10Hz to 10kHz			105		μV _{RMS}
Ripple Rejection	Vout/Vin	$V_{IN} = 5V \pm 100 \text{mV}$, f = 120Hz		84		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} =	50pF		30		μs
Capacitive-Load Stability Range	COUT	(Note 3)		0		2.2	nF
INPUT							
Supply Voltage Range	VIN	Guaranteed by lin	e-regulation test	2.5		12.6	V
Quiescent Supply Current	l _{IN}				27	35	μA
Change in Supply Current	I _{IN} /V _{IN}	$2.5V \le V_{\rm IN} \le 12.6V$			0.8	2	μA/V

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6192

(V_{IN} = 5V, I_{OUT} = 0nA, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							
			MAX6192A	2.498	2.500	2.502	
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6192B	2.495	2.500	2.505	V
			MAX6192C	2.490	2.500	2.510	1
		MAX6192A	I		2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCVOUT	MAX6192B			4	10	ppm/°C
		MAX6192C			8	25	1
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V$	IN ≤ 12.6V		15	140	μV/V
Load Regulation	ΔVout/	Sourcing: $0 \le I_{OU}$	r ≤ 500µA		0.14	0.60	μV/μΑ
Load negulation	ΔI_{OUT}	Sinking: -500µA ≤			0.18	0.80	
Dropout Voltage (Note 4)	VIN - VOUT	$\Delta V_{\rm OUT} \leq 0.2\%, \ I_{\rm O}$	$\Delta V_{OUT} \le 0.2\%$, $I_{OUT} = 500 \mu A$			200	mV
Short-Circuit Current	ISC	Short to GND			4		mA
	130	Short to IN	Short to IN		4		
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC	1			I			
		0.1Hz to 10Hz			60		μVp-p
Noise Voltage	eout	10Hz to 10kHz			125		μVrms
Ripple Rejection	Vout/Vin	$V_{IN} = 5V \pm 100 \text{mV}$, f = 120Hz		82		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} =	To 0.1%, C _{OUT} = 50pF		85		μs
Capacitive-Load Stability Range	Соит	(Note 3)		0		2.2	nF
INPUT	1			1			
Supply Voltage Range	VIN	Guaranteed by lin	e-regulation test	Vout + (0.2	12.6	V
Quiescent Supply Current	lin				27	35	μA
Change in Supply Current	lin/Vin	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		0.8	2	µA/V	

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS-MAX6193

(V_{IN} = 5V, I_{OUT} = 0nA, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT				L.			
			MAX6193A	2.998	3.000	3.002	
Output Voltage	Vout	V_{OUT} $T_A = +25^{\circ}C$	MAX6193B	2.995	3.000	3.005	V
			MAX6193C	2.990	3.000	3.010	1
		MAX6193A			2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCVOUT	MAX6193B			4	10	ppm/°C
		MAX6193C			8	25	1
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$2.5V \le V_{\rm IN} \le 12.6V$	1		20	150	μV/V
Load Regulation	ΔVουτ/	Sourcing: 0 ≤ I _{OUT}	⁻ ≤ 500µA		0.14	0.60	
	ΔΙΟυτ	Sinking: -500µA ≤	I _{OUT} ≤ 0		0.18	0.80	μV/μΑ
Dropout Voltage (Note 4)	Vin - Vout	Ιουτ = 500μΑ			100	200	mV
Short-Circuit Current	Isc	Short to GND			4		mA
	130	Short to IN	Short to IN		4		
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC				L			
	0.01/7	0.1Hz to 10Hz			75		μVp-p
Noise Voltage	eout	10Hz to 10kHz			150		μVRMS
Ripple Rejection	Vout/Vin	$V_{\rm IN} = 5V \pm 100 {\rm mV},$	f = 120Hz		80		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} = 50pF			100		μs
Capacitive-Load Stability Range	Соит	(Note 3)		0		2.2	nF
INPUT				L			
Supply Voltage Range	VIN	Guaranteed by line	e-regulation test	V _{OUT} + ().2	12.6	V
Quiescent Supply Current	l _{IN}				27	35	μA
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			0.8	2	µA/V

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6194

($V_{IN} = 5V$, $I_{OUT} = 0nA$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
INPUT							
			MAX6194A	4.498	4.500	4.502	
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6194B	4.495	4.500	4.505	1 v
			MAX6194C	4.490	4.500	4.510	1
		MAX6194A			2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCVOUT	MAX6194B			4	10	ppm/°C
Coemcient (Note 1)		MAX6194C			8	25	1
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$(V_{OUT} + 0.2V) \le V$	IN ≤ 12.6V		25	160	μV/V
Load Regulation	ΔVout/	Sourcing: 0 ≤ IOUT	r ≤ 500µA		0.16	0.80	
	ΔI_{OUT}	Sinking: -500µA ≤	l _{OUT} ≤ 0		0.22	1.00	- μV/μΑ
Dropout Voltage (Note 4)	V _{IN -} V _{OUT}	$\Delta V_{OUT} \le 0.2\%$, Io	JT = 500μA		100	200	mV
Short-Circuit Current	Isc	Short to GND			4		mA
	130	Short to IN	Short to IN		4		
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC							
Noise Voltage	00117	0.1Hz to 10Hz			110		μVp-p
Noise voltage	eout	10Hz to 10kHz			215		μV _{RMS}
Ripple Rejection	Vout/Vin	$V_{IN} = 5V \pm 100 \text{mV}$	f = 120Hz		76		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} = 50pF			180		μs
Capacitive-Load Stability Range	C _{OUT}	(Note 3)		0		2.2	nF
OUTPUT				I			
Supply Voltage Range	VIN	Guaranteed by lin	e-regulation test	V _{OUT} + ().2	12.6	V
Quiescent Supply Current	lin				27	35	μA
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			0.8	2	µA/V

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6195

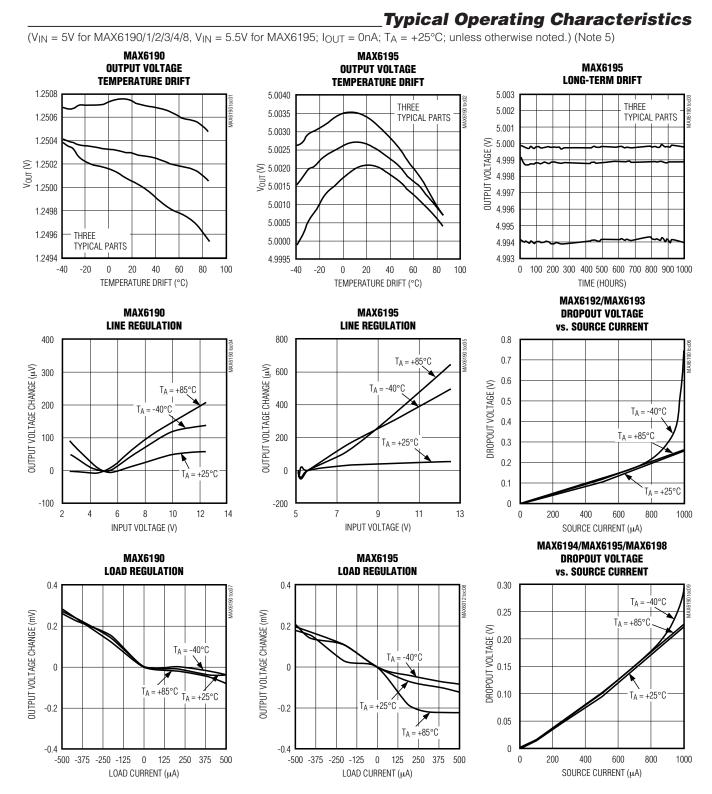
(VIN = 5.5V, I_{OUT} = 0nA, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
INPUT				I			1
			MAX6195A	4.998	5.000	5.002	
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6195B	4.995	5.000	5.005	V
			MAX6195C	4.990	5.000	5.010	
		MAX6195A			2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCVOUT	MAX6195B			4	10	ppm/°C
		MAX6195C			8	25	
Line Regulation	$\Delta V_{OUT} / \Delta V_{IN}$	$(V_{OUT} + 0.2V) \le V_{I}$	N ≤ 12.6V		25	160	μV/V
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT}	⁻ ≤ 500µA		0.17	0.85	μV/μΑ
Load negulation	Δlout	Sinking: -500µA ≤	lout ≤ 0		0.24	1.10	
Dropout Voltage (Note 4)	Vin - Vout	$\Delta V_{OUT} \le 0.2\%$, Iou	T = 500μA		100	200	mA
Short-Circuit Current	Isc	Short to GND			4		mA
	130	Short to IN	Short to IN		4		
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC				I			
Noise Voltage	00117	0.1Hz to 10Hz			120		μVp-p
Noise voltage	eout	10Hz to 10kHz			240		μVRMS
Ripple Rejection	Vout/Vin	$V_{IN} = 5.5V \pm 100m$	V, f = 120Hz		72		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} = 50pF			220		μs
Capacitive-Load Stability Range	Соит	(Note 3)		0		2.2	nF
OUTPUT							
Supply Voltage Range	VIN	Guaranteed by line	e-regulation test	Vout + ().2	12.6	V
Quiescent Supply Current	lin				27	35	μA
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			0.8	2	μA/V

Precision, Micropower, Low-Dropout Voltage References

ELECTRICAL CHARACTERISTICS—MAX6198

(VIN = 5V, I_{OUT} = 0nA, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

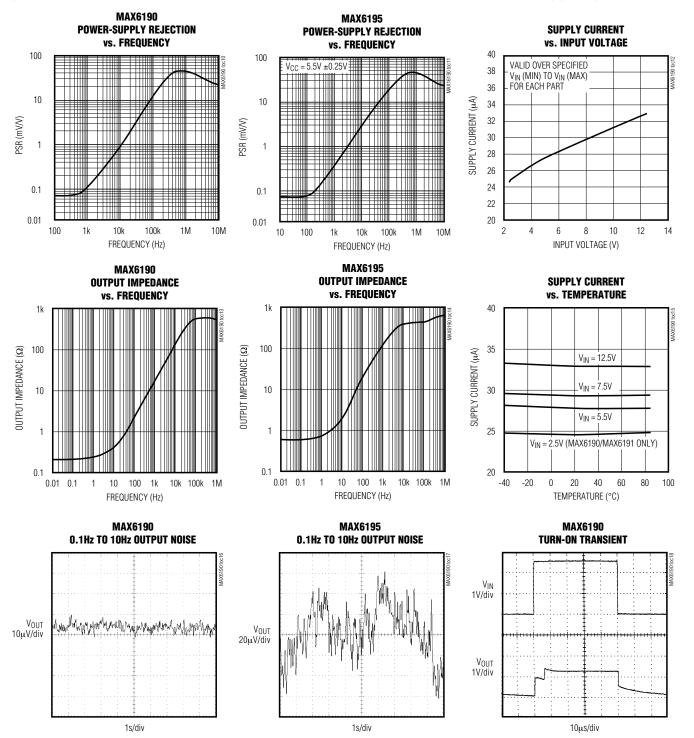

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							
			MAX6198A	4.094	4.096	4.098	
Output Voltage	VOUT	$T_A = +25^{\circ}C$	MAX6198B	4.091	4.096	4.101	V
			MAX6198C	4.086	4.096	4.106	
		MAX6198A	·		2	5	
Output-Voltage Temperature Coefficient (Note 1)	TCVOUT	MAX6198B			4	10	ppm/°C
		MAX6198C			8	25	
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$(V_{OUT} + 0.2V) \le V_{IN}$	N ≤ 12.6V		25	160	μV/V
Load Regulation	ΔVουτ/	Sourcing: 0 ≤ I _{OUT}	≤ 500µA		0.15	0.70	μV/μA
Load Regulation	Δlout	Sinking: -500µA ≤ I	Sinking: -500 μ A \leq I _{OUT} \leq 0		0.20	0.90	μν/μΑ
Dropout Voltage (Note 4)	VIN - VOUT	$\Delta V_{OUT} \le 0.2\%$, I_{OU}	$\Delta V_{OUT} \le 0.2\%$, $I_{OUT} = 500 \mu A$		100	200	mV
Short-Circuit Current	I _{SC}	Short to GND			4		mA
	130	Short to IN			4		
Temperature Hysteresis (Note 2)	ΔV _{OUT} / cycle				75		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hrs at +25°C			50		ppm/ 1000hrs
DYNAMIC							
Noise Voltage	0.01.17	0.1Hz to 10Hz			100		μV _{P-P}
Noise voitage	eout	10Hz to 10kHz			200		μVRMS
Ripple Rejection	VOUT/VIN	$V_{IN} = 5V \pm 100 mV$,	f = 120Hz		77		dB
Turn-On Settling Time	t _R	To 0.1%, C _{OUT} = 5	To 0.1%, C _{OUT} = 50pF		160		μs
Capacitive-Load Stability Range	Cout	(Note 3)		0		2.2	nF
INPUT							
Supply Voltage Range	VIN	Guaranteed by line	-regulation test	V _{OUT} + ().2	12.6	V
Quiescent Supply Current	l _{IN}				27	35	μA
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN}$	N ≤ 12.6V		0.8	2	μΑ/V
							•

Note 1: Temperature Coefficient is measured by the "box" method; i.e., the maximum ΔV_{OUT} is divided by the maximum Δt .

Note 2: Thermal Hysteresis is defined as the change in $+25^{\circ}$ C output voltage before and after cycling the device from T_{MIN} to T_{MAX}. **Note 3:** Not production tested. Guaranteed by design.

Note 4: Dropout voltage is the minimum input voltage at which V_{OUT} changes \leq 0.2% from V_{OUT} at V_{IN} = 5.0V (V_{IN} = 5.5V for MAX6195).

Precision, Micropower, Low-Dropout Voltage References

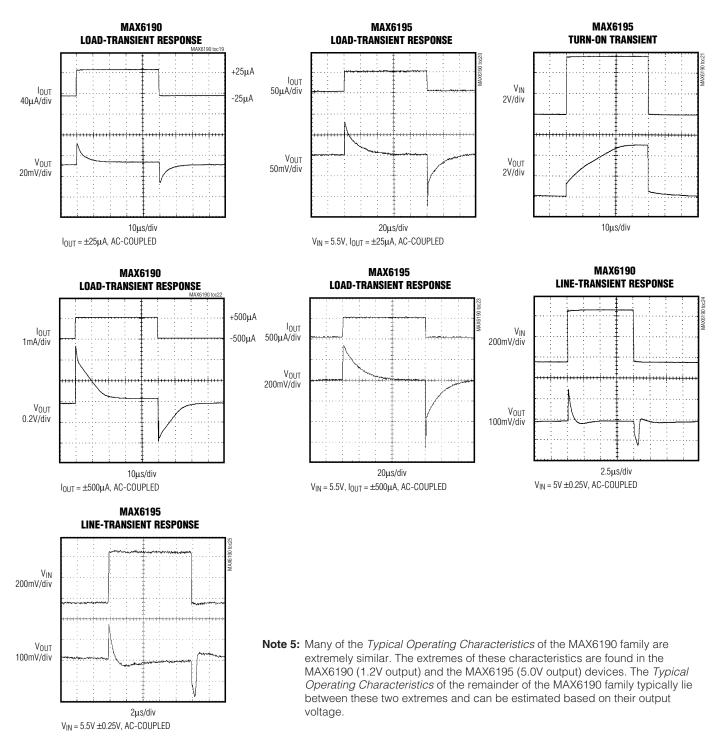


Maxim Integrated

Precision, Micropower, Low-Dropout Voltage References

Typical Operating Characteristics (continued)

 $(V_{IN} = 5V \text{ for MAX6190}/1/2/3/4/8, V_{IN} = 5.5V \text{ for MAX6195}; I_{OUT} = 0nA; T_A = +25^{\circ}C; unless otherwise noted.) (Note 5)$


Maxim Integrated

10

Precision, Micropower, Low-Dropout Voltage References

_Typical Operating Characteristics (continued)

 $(V_{IN} = 5V \text{ for MAX6190}/1/2/3/4/8, V_{IN} = 5.5V \text{ for MAX6195}; I_{OUT} = 0nA; T_A = +25^{\circ}C; unless otherwise noted.) (Note 5)$

Maxim Integrated

Precision, Micropower, Low-Dropout Voltage References

Pin Description

PIN	NAME	FUNCTION
1, 3, 5, 7, 8	N.C.	No Connection. Not internally connected.
2	IN	Supply Voltage Input
4	GND	Ground
6	OUT	Reference Voltage Output

Detailed Description

The MAX6190–MAX6195/MAX6198 precision bandgap references use a proprietary curvature-correction circuit and laser-trimmed thin-film resistors, resulting in a low temperature coefficient of <5ppm/°C and initial accuracy of better than 0.1%. These devices can sink and source up to 500 μ A with <200mV of dropout voltage, making them attractive for use in low-voltage applications.

Applications Information

Output/Load Capacitance

Devices in this family do not require an output capacitance for frequency stability. They are stable for capacitive loads from 0 to 2.2nF. However, in applications where the load or the supply can experience step changes, an output capacitor will reduce the amount of overshoot (or undershoot) and assist the circuit's transient response. Many applications do not need an external capacitor, and this family can offer a significant advantage in these applications when board space is critical.

Supply Current

The quiescent supply current of these series-mode references is a maximum of 35μ A and is virtually independent of the supply voltage, with only a 0.8μ A/V variation with supply voltage. Unlike series references, shuntmode references operate with a series resistor connected to the power supply. The quiescent current of a shunt-mode reference is thus a function of the input voltage. Additionally, shunt-mode references have to be biased at the maximum expected load current, even if the load current is not present all the time. In the series-mode MAX6190 family, the load current is drawn from the input voltage only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency can help reduce power dissipation and extend battery life.

When the supply voltage is below the minimum specified input voltage (as during turn-on), the devices can draw up to 200µA beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Output Voltage Hysteresis

Output voltage hysteresis is the change in the output voltage at $T_A = +25^{\circ}C$ before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical temperature hysteresis value is 75ppm.

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value in 30µs to 220µs, depending on the device. The turn-on time can increase up to 1.5ms with the device operating at the minimum dropout voltage and the maximum load.

Positive and Negative Low-Power Voltage Reference

Figure 1 shows a typical method for developing a bipolar reference. The circuit uses a MAX681 voltage doubler/inverter charge-pump converter to power an ICL7652, thus creating a positive as well as a negative reference voltage.

Precision, Micropower, Low-Dropout Voltage References

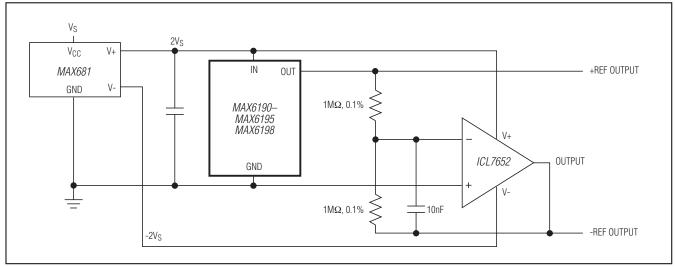
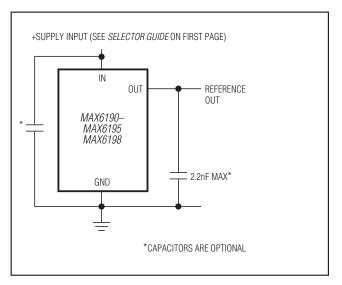


Figure 1. Positive and Negative References from Single 3V or 5V Supply

_Ordering Information (continued)


PART	TEMP RANGE	PIN-PACKAGE
MAX6193AESA+	-40°C to +85°C	8 SO
MAX6193BESA+	-40°C to +85°C	8 SO
MAX6193CESA+	-40°C to +85°C	8 SO
MAX6194AESA+	-40°C to +85°C	8 SO
MAX6194BESA+	-40°C to +85°C	8 SO
MAX6194CESA+	-40°C to +85°C	8 SO
MAX6195AESA+	-40°C to +85°C	8 SO
MAX6195BESA+	-40°C to +85°C	8 SO
MAX6195CESA+	-40°C to +85°C	8 SO
MAX6198AESA+	-40°C to +85°C	8 SO
MAX6198BESA+	-40°C to +85°C	8 SO
MAX6198CESA+	-40°C to +85°C	8 SO
MAX6198AESA/V+	-40°C to +85°C	8 SO
Donatos a load(Ph) t	Fran /DallC appropriate	t

+Denotes a lead(Pb)-free /RoHS-compliant package. N denotes an automotive qualified part.

Chip Information

PROCESS: BICMOS

Typical Operating Circuit

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
8 SO	S8+2	<u>21-0041</u>	<u>90-0096</u>

Maxim Integrated

Precision, Micropower, Low-Dropout Voltage References

Revision History

REVISIO NUMBEF		DESCRIPTION	PAGES CHANGED
3	4/10	Added automotive grade part, added lead-free information, and made style changes	1–14

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

14

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2010 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.