ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

V _{CC} , COM_, NO_, NC_, EN, EN, CB0.3V to +6.0V
Continuous Current into Any Terminal ±30mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
10-Pin UTQFN (derate 6.9mW/°C above +70°C) 559mW
Junction-to-Case Thermal Resistance (θ_{JC}) (Note 1)
10-Pin UTQFN

Junction-to-Ambient Thermal Resistance (θ_{JA}) (Note 1)					
10-Pin UTQFN	143.1°C/W				
Operating Temperature Range	40°C to +85°C				
Junction Temperature Range	+150°C				
Storage Temperature Range	65°C to +150°C				
Lead Temperature (soldering 10s)	+300°C				

MIXIM

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maxim-ic.com/thermal-tutorial</u>.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.8V \text{ to } +5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at V_{CC} = +3.0V, T_A = +25^{\circ}C.)$ (Note 2)

	DL CONDITIONS		MIN	TYP	MAX	UNITS	
V _{CC}			2.8		5.5	V	
loo	$V_{CB} = 0V \text{ or } V_{CC},$ $V_{\overline{EN}} = 0V \text{ or } V_{EN} = V_{CC}$	$V_{CC} = 3.0V$		0.6	1.5	μA	
ICC		$V_{CC} = 5.5V$		3	6.5	μΑ	
ISHDN	Switch disabled ($V_{\overline{EN}} = V$	CC or V _{EN} = 0V)		0.1		μΑ	
	$0 \le V_{CB} \le V_{IL}$ or $V_{IH} \le V_{CB} \le V_{CC}$ or $0 \le V_{EN}$ $\le V_{IL}$ or $V_{IH} \le V_{EN} \le V_{CC}$				2	μA	
V _{COM} , V _{NO} , V _{NC}	$V_{EN} = V_{CC} \text{ or } V_{\overline{EN}} = 0V \text{ (Note 3)}$		0		VCC	V	
VFP	COM_ only, $T_A = +25^{\circ}C$		V _{CC} + 0.6	V _{CC} + 0.8	V _{CC} + 1	V	
R _{ON}	V _{COM} = 0V to V _{CC}			5	10	0	
	$V_{COM} = 3.6V, V_{CC} = 3.0V$ 5.		5.5		Ω		
ΔR_{ON}	V _{CC} = 3.0V, V _{COM} = 2V (Note 4)			0.1	1	Ω	
R _{FLAT}	$V_{CC} = 3.0V, V_{COM} = 0V \text{ to } V_{CC} \text{ (Note 5)}$			0.1		Ω	
ICOM(OFF)	$\label{eq:VCC} \begin{array}{l} V_{CC} = 4.5V, \ V_{COM} = 0V \ \text{or} \ 4.5V, \\ V_{NO}, \ V_{NC} = 4.5V \ \text{or} \ 0V \end{array}$		-250		+250	nA	
	V_{CC} = 5.5V, V_{COM} = 0V or 5.5V, V_{NO} , V_{NC} with 50µA sink current to GND				180	μA	
ICOM(ON)	$V_{CC} = 5.5V$, $V_{COM} = 0V$ or 5.5V, V_{NO} , $V_{NC} =$ unconnected		-250		+250	nA	
BW	$R_L = R_S = 50\Omega$, signal = 0dBm			950		MHz	
V _{ISO}	V_{NO} , $V_{NC} = 0$ dBm,	f = 10MHz		-48			
	$R_L = R_S = 50\Omega$	f = 250MHz		-20		dB	
	(Figure 1) f = 500MHz			-17			
	ICC ISHDN VCOM, VNO, VNC VFP RON ΔRON RFLAT ICOM(OFF) ICOM(ON) BW	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{tabular}{ c c c c c } \hline V_{CB} &= 0V \mbox{ or } V_{CC}, & V_{CC} &= 3.0V \\ \hline V_{CC} &= 5.5V \\ \hline V_{CC} &= 0V \mbox{ or } V_{EN} &= V_{CC} \mbox{ or } V_{EN} &= 0V \\ \hline V_{CC} &= 0V \mbox{ or } V_{EN} &= V_{CC} \mbox{ or } V_{EN} &= 0V \\ \hline 0 &\leq V_{CB} &\leq V_{IL} \mbox{ or } V_{IH} &\leq V_{CB} &\leq V_{CC} \mbox{ or } 0 &\leq V_{EN} \\ \hline & & \leq V_{IL} \mbox{ or } V_{IH} &\leq V_{CB} &\leq V_{CC} \mbox{ or } 0 &\leq V_{EN} \\ \hline & V_{COM}, V_{NO}, \\ \hline V_{NC} & V_{EN} &= V_{CC} \mbox{ or } V_{EN} &= 0V \end{tabular} (Note 3) \\ \hline & V_{FP} & COM_{-} \mbox{ only}, \end{tabular} T_{A} &= +25^{\circ}C \\ \hline & V_{COM} &= 0V \mbox{ to } V_{CC} \\ \hline & V_{COM} &= 0V \mbox{ to } V_{CC} \\ \hline & V_{COM} &= 0V \mbox{ to } V_{CC} \\ \hline & V_{COM} &= 3.6V, \end{tabular} V_{CC} &= 3.0V \\ \hline & \Delta R_{ON} & V_{CC} &= 3.0V, \end{tabular} V_{COM} &= 0V \end{tabular} to V_{CC} \end{tabular} (Note 4) \\ \hline & R_{FLAT} & V_{CC} &= 3.0V, \end{tabular} V_{COM} &= 0V \mbox{ to } V_{CC} \end{tabular} to V_{CC} \end{tabular} to V_{NO}, \end{tabular} V_{NO}, \end{tabular} to V_{NO} \end{tabular} to V_{NO}, \end{tabular} to V_{NO} \end{tabular} to V_{NO}, \end{tabular} to V_{NO}, \end{tabular} to V_{NO} \end{tabular} to V_{NO} \end{tabular} to V_{NO}, \end{tabular} to V_{NO} \end{tabular} to V_{NO} \end{tabular} to V_{NO} \end{tabular} to V_{NO}, \end{tabular} to V_{NO} \end{tabular} to V_{NO}, \end{tabular} to V_{NO}, \end{tabular} to V_{NO} \end{tabular} to V_{NO}, \end{tabular} to V_{NO}, \end{tabular} to V_{NO} \end{tabular} to V_{NO}, \end{tabuar} to V_{NO}, \end{tabular} to V_{N$	$\begin{array}{c cc} V_{CB} = 0V \text{ or } V_{CC}, & V_{CC} = 3.0V \\ V_{EN} = 0V \text{ or } V_{EN} = V_{CC} & V_{CC} = 5.5V \\ \hline V_{CC} = 0 \\ \leq V_{LL} \text{ or } V_{IH} \leq V_{CB} \leq V_{CC} \text{ or } 0 \leq V_{EN} \\ \leq V_{IL} \text{ or } V_{IH} \leq V_{CB} \leq V_{CC} \text{ or } 0 \leq V_{EN} \\ \leq V_{IL} \text{ or } V_{IH} \leq V_{EN} \leq V_{CC} \\ \hline V_{COM}, V_{NO}, \\ V_{NC} & V_{EN} = V_{CC} \text{ or } V_{EN} = 0V \text{ (Note 3)} & 0 \\ \hline V_{FP} & COM_only, T_A = +25^{\circ}C \\ \hline V_{COM} = 0V \text{ to } V_{CC} \\ \hline V_{COM} = 0V \text{ to } V_{CC} \\ \hline V_{COM} = 3.6V, V_{CC} = 3.0V \\ \hline \Delta R_{ON} & V_{CC} = 3.0V, V_{COM} = 2V \text{ (Note 4)} \\ \hline R_{FLAT} & V_{CC} = 3.0V, V_{COM} = 0V \text{ to } V_{CC} \text{ (Note 5)} \\ \hline V_{CC} = 4.5V, V_{COM} = 0V \text{ or } 4.5V, \\ V_{NO}, V_{NC} = 4.5V \text{ or } 0V \\ \hline V_{CC} = 5.5V, V_{COM} = 0V \text{ or } 5.5V, \\ V_{NO}, V_{NC} \text{ with } 50\muA \text{ sink current to GND} \\ \hline I_{COM(OFF)} & V_{CC} = 5.5V, V_{COM} = 0V \text{ or } 5.5V, \\ V_{NO}, V_{NC} = unconnected \\ \hline W & R_{L} = R_{S} = 50\Omega, \text{ signal = } 0 \\ \hline W_{NO}, V_{NC} = 0 \\ \hline W & R_{L} = R_{S} = 50\Omega \\ \hline W & R_{L} = R_{S} = 50\Omega \\ \hline W & R_{L} = R_{S} = 50\Omega \\ \hline W & R_{L} = R_{S} = 50\Omega \\ \hline W & R_{L} = R_{S} = 0 \\ \hline W & R_{L} = R_{S} = 0 \\ \hline W & R_{L} = R_{S} = 0 \\ \hline W & R_{L} = R_{S} = 0 \\ \hline W & R_{L} = R_{S} = 0 \\ \hline W & R_{L} = R_{S} = 0 \\ \hline W & R_{L} = R_{S} = 0 \\ \hline W & R_{L} = R_{S} = 0 \\ \hline W & R_{L} = R_{S} = 0 \\ \hline W & R_{L} = R_{S} \\ \hline W & R_{L} \\ \hline $	$\begin{array}{c cc} & V_{CB} = 0V \ or \ V_{CC}, & V_{CC} = 3.0V & 0.6 \\ \hline V_{CR} = 0V \ or \ V_{EN} = V_{CC} & V_{CC} = 3.5V & 3 \\ \hline \\ \hline V_{CC} = 5.5V & 3 \\ \hline \\ \hline \\ V_{CC} = 5.5V & 0.1 \\ \hline \\ V_{CC} = 5.5V & 0.1 \\ \hline \\ \hline \\ V_{COM}, V_{NO}, & V_{CD} \leq V_{IL} \ or \ V_{IH} \leq V_{CB} \leq V_{CC} \ or \ 0 \leq V_{EN} \\ \leq V_{IL} \ or \ V_{IH} \leq V_{EN} \leq V_{CC} \\ \hline \\ \hline \\ V_{COM}, V_{NC} & V_{EN} = V_{CC} \ or \ V_{EN} = 0V \ (Note 3) & 0 \\ \hline \\ \hline \\ V_{COM} = 0V_{CC} \ or \ V_{EN} = 0V \ (Note 3) & 0 \\ \hline \\ \hline \\ V_{FP} & COM_{-} \ only, \ T_{A} = +25^{\circ}C & V_{CC} + V_{CC} + \\ \hline \\ \hline \\ \hline \\ R_{ON} & V_{COM} = 0V \ to \ V_{CC} \\ \hline \\ \hline \\ V_{COM} = 3.6V, \ V_{CC} = 3.0V & 5.5 \\ \hline \\ \hline \\ \Delta R_{ON} & V_{CC} = 3.0V, \ V_{COM} = 2V \ (Note 4) & 0.1 \\ \hline \\ \hline \\ R_{FLAT} & V_{CC} = 3.0V, \ V_{COM} = 0V \ to \ V_{CC} \ (Note 5) & 0.1 \\ \hline \\ \hline \\ \hline \\ R_{FLAT} & V_{CC} = 4.5V, \ V_{COM} = 0V \ or \ 5.5V, \\ \hline \\ \hline \\ \hline \\ \hline \\ R_{ON} \ V_{NO}, \ V_{NC} = 4.5V \ or \ 0V \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ I_{COM(OFF)} & V_{CC} = 5.5V, \ V_{COM} = 0V \ or \ 5.5V, \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ R_{L} = R_{S} = 50\Omega, \ Signal = 0 \\ \hline \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.8V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.0V, T_A = +25^{\circ}\text{C}.)$ (Note 2)

PARAMETER	IETER SYMBOL CONDITIONS		TIONS	MIN	ТҮР	MAX	UNITS
	VCT	$V_{NO}, V_{NC} = 0$ dBm, $f = 10$ MHz			-73		
Crosstalk (Note 6)		$R_L = R_S = 50\Omega$,	f = 250MHz		-54		dB
		Figure 1	f = 500MHz		-33		-
LOGIC INPUT		•					
Input Logic-High	VIH			1.4			V
Input Logic-Low	VIL					0.5	V
Input Leakage Current	liN			-250		+250	nA
DYNAMIC							
Turn-On Time	ton	V_{NO} or V_{NC} = 1.5V, R_L = $V_{\overline{EN}}$ = V_{CC} to 0V or V_{EN}			20	100	μs
Turn-Off Time	tOFF	$V_{NO} \text{ or } V_{NC} = 1.5V, R_L = 300\Omega, C_L = 35pF,$ $V_{EN} = V_{CC} \text{ to } 0V \text{ or } V_{\overline{EN}} = 0V \text{ to } V_{CC} \text{ (Figure 2)}$			1	5	μs
Propagation Delay	tplh, tphl	$R_L = R_S = 50\Omega$, Figure 3			100		ps
Fault Protection Response Time	tFP	$V_{COM} = 0V$ to 5V step, $R_L = R_S = 50\Omega$, $V_{CC} = 3.3V$ (Figure 4)		0.5		5.0	μs
Fault Protection Recovery Time	tFPR	$V_{COM} = 5V$ to 0V step, $R_L = R_S = 50\Omega$, $V_{CC} = 3.3V$ (Figure 4)				100	μs
Output Skew Between Switches	tsĸ	Skew between switch 1 (Figure 3, Note 7)	and 2, $R_L = R_S = 50\Omega$,		40		ps
NO_ or NC_ Off-Capacitance	C _{NO(OFF)} or C _{NC(OFF)}	f = 1MHz (Figure 5, Note 7)			2		pF
COM Off-Capacitance		f = 1MHz			5.5		ъĘ
(Figure 5, Note 7)	CCOM(OFF)	f = 240MHz	f = 240MHz		4.8		pF
COM On-Capacitance	C _{COM} (ON)	f = 1MHz			6.5		рF
(Figure 5, Note 7)	CCOM(ON)	f = 240MHz			5.5		рі
Total Harmonic Distortion Plus Noise	THD+N	$\label{eq:VCOM} \begin{array}{l} V_{COM} = 1 V_{P\text{-}P}, V_{BIAS} = 1 V, R_L = R_S = 50 \Omega, \\ f = 20 Hz \text{ to } 20 k Hz \end{array}$			0.03		%
ESD PROTECTION							
		Human Body Model			±15		
COM1, COM2		IEC 61000-4-2 Air-Gap Discharge			±15		kV
		IEC 61000-4-2 Contact	Discharge		±8		κv
All Pins		Human Body Model			±2		

Note 2: All devices are 100% production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.

Note 3: The switch turns off for voltages above VFP, protecting downstream circuits in case of a fault condition.

Note 4: $\Delta R_{ON(MAX)} = ABS(R_{ON(CH1)} - R_{ON(CH2)}).$

Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog signal ranges.

Note 6: Between any two switches.

Note 7: Switch off-capacitance, switch on-capacitance, and output skew between switches are not production tested; guaranteed by design.

Test Circuits/Timing Diagrams $OFF-ISOLATION = 20log \frac{V_{OUT}}{V_{IN}}$ NETWORK ANALYZER $CROSSTALK = 20 \log \frac{V_{OUT}}{V_{IN}}$ 50Ω 50Ω OV OR V_{CC} -CB VIN COM **MIXIM** NC1 MAX4983E/ REF MEAS VOUT | $\sum_{50\Omega}^{.5}$ MAX4984E N01 50**Ω** 50Ω SWITCH IS ENABLED. *FOR CROSSTALK THIS PIN IS NO2. MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS. NC2 AND COM2 ARE OPEN. OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH. CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL. SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 1. Off-Isolation and Crosstalk

MAX4983E/MAX4984E

Figure 2. Switching Time

_Test Circuits/Timing Diagrams (continued)

Figure 3. Output Signal Skew, Rise/Fall Time, Propagation Delay

MAX4983E/MAX4984E

Test Circuits/Timing Diagrams (continued)

Figure 4. Fault-Protection Response/Recovery Time

Figure 5. Channel Off-/On-Capacitance

Typical Operating Characteristics

(V_{CC} = 3.0V, T_A = $+25^{\circ}$ C, unless otherwise noted.)

MAX4983E/MAX4984E

Downloaded from Arrow.com.

Pin Description

P	IN		FUNCTION	
MAX4983E	MAX4984E	NAME		
1	1	NC1	Normally Closed Terminal for Switch 1	
2	2	NO1	Normally Open Terminal for Switch 1	
3	3	COM1	Common Terminal for Switch 1	
4	4	GND	Ground	
5	5	COM2	Common Terminal for Switch 2	
6	6	NO2	Normally Open Terminal for Switch 2	
7	7	NC2	Normally Closed Terminal for Switch 2	
8		ĒN	Active-Low Enable Input. Drive $\overline{\text{EN}}$ high to put switches in high impedance. Drive $\overline{\text{EN}}$ low for normal operation.	
_	8	EN	Active-High Enable Input. Drive EN low to put switches in high impedance. Drive EN high for normal operation.	
9	9	V _{CC}	Positive Supply Voltage Input. Bypass V_{CC} to GND with a $0.1\mu F$ ceramic capacitor as close as possible to the device.	
10	10	СВ	Digital Control Input. Drive CB low to connect COM_ to NC Drive CB high to connect COM_ to NO	

Detailed Description

The MAX4983E/MAX4984E are ± 15 kV ESD-protected DPDT analog switches. The devices are ideal for USB 2.0 Hi-Speed (480Mbps) switching applications and also meet USB low- and full-speed requirements.

The MAX4983E/MAX4984E are fully specified to operate from a single +2.8V to +5.5V supply. The low V_{IH} threshold of the devices permits them to be used with logic levels as low as 1.4V. The MAX4983E/MAX4984E are based on a charge-pump-assisted n-channel architecture. The devices feature a shutdown mode to reduce the quiescent current to less than 0.1µA (typ).

Digital Control Input

The MAX4983E/MAX4984E provide a single-bit control logic input, CB. CB controls the position of the switches as shown in the *Functional Diagram/Truth Table*. Driving CB rail-to-rail minimizes power consumption. With a +2.8V to +5.5V supply voltage range, the device is +1.4V logic compatible.

Analog Signal Levels

The on-resistance of the MAX4983E/MAX4984E is very low and stable as the analog input signals are swept from ground to V_{CC} (see the *Typical Operating Characteristics*). These switches are bidirectional, allowing NO_, NC_, and COM_ to be configured as either inputs or outputs. The charge-pump-assisted n-channel architecture allows the switch to pass analog signals that exceed V_{CC} up to the overvoltage fault protection threshold. This allows USB signals that exceed V_{CC} to pass, allowing compliance with USB requirements for voltage levels.

Overvoltage Fault Protection

The MAX4983E/MAX4984E feature overvoltage fault protection on COM_. Fault protection protects the switch and USB transceiver from damaging voltage levels. When voltages on COM exceed the fault protection threshold, (VFP), COM_, NC_ and NO_ are high impedance.

Enable Input

The MAX4983E/MAX4984E feature a shutdown mode that reduces the supply current to less than 0.1 μ A and places COM_ in high impedance. Drive EN high for the MAX4983E or EN low for the MAX4984E to place the devices in shutdown mode. When EN is driven low or EN is driven high, the devices are in normal operation.

Applications Information

USB Switching

The MAX4983E/MAX4984E analog switches are fully compliant with the USB 2.0 specification. The low on-resistance and low on-capacitance of these switches make them ideal for high-performance switching applications.

The MAX4983E/MAX4984E are ideal for routing USB data lines (see Figure 6) and for applications that require switching between multiple USB hosts (see Figure 7). The MAX4983E/MAX4984E also feature overvoltage fault protection to guard systems against shorts to the USB VBUS voltage that is required for all USB applications.

Extended ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. COM1 and COM2 are further protected against static electricity. The ESD structures withstand high ESD in normal operation and when the device is powered down. After an ESD event, the MAX4983E/ MAX4984E continue to function without latchup.

The MAX4983E and MAX4984E are characterized for protection to the following limits:

- ±15kV using Human Body Model
- ±8kV using IEC 61000-4-2 Contact Discharge method
- ±15kV using IEC 61000-4-2 Air-Gap Discharge method

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 8a shows the Human Body Model and Figure 8b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 k\Omega$ resistor.

IEC 61000-4-2

The main difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2. Because series resistance is lower in the IEC 61000-4-2 ESD test model (Figure 9a), the ESD-withstand voltage measured to this standard is generally lower than that measured using the Human Body Model. Figure 9b shows the current waveform for the $\pm 8kV$ IEC 61000-4-2 Level 4 ESD Contact Discharge test.

The Air-Gap Discharge test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.

Layout

USB Hi-Speed requires careful PCB layout with 45Ω controlled-impedance matched traces of equal lengths.

_Functional Diagram/Truth Table

Ensure that bypass capacitors are as close as possible to the device. Use large ground planes where possible.

Power-Supply Sequencing

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all devices. Always apply V_{CC} before applying analog signals, especially if the analog signal is not current limited.

PROCESS: BICMOS

MAX4983E/MAX4984E

MAX4983E/MAX4984E

Figure 6. USB Data Routing/Typical Application Circuit

Figure 8a. Human Body ESD Test Model

Figure 9a. IEC 61000-4-2 ESD Test Model

Figure 7. Switching Between Multiple USB Hosts

Figure 8b. Human Body Current Waveform

Figure 9b. IEC 61000-4-2 ESD Generator Current Waveform

Package Information

For the latest package outline information, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 Ultra-Thin QFN	V101A1CN-1	<u>21-0028</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	2/08	Initial release	—
1	5/08	Removal of future product asterisks, global change to Hi-Speed	1, 8, 9, 10
2	9/08	Changes to EC table	3

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2008 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.