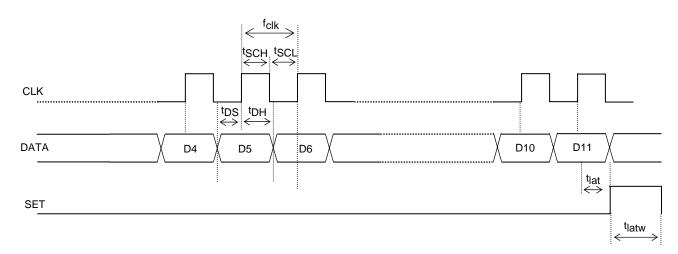
Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	VBB		10 to 45	V
Logic supply voltage	V _{CC}		4.5 to 5.5	V
Reference voltage	VREF		0.0 to 3.0	V


Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 5V$, VBB = 45V, VRES = 1.52V

Parameter	Symbol	Conditions		Ratings		unit
r dramotor	Cymbol		min		max	unit
Output Block	T	1	-			
Output stage supply current	IBB ON		1.6	2.4	3.5	mA
	IBB OFF		1.3	1.9	2.5	mA
Output saturation voltage 1	V _O sat1	I _O =+1.0A (sink)		1.2	1.6	V
Output saturation voltage 2	V _O sat2	I _O =+1.5 A (sink)		1.5	1.9	V
Output saturation voltage 3	V _O sat3	I _O =-1.0 A (source)		1.9	2.2	V
Output saturation voltage 4	V _O sat4	I _O =-1.5 A (source)		2.2	2.4	V
Output leakage current	I _O 1 (leak)	V _O =VBB (sink)			50	μΑ
	I _O 2 (leak)	V _O =0V (source)	-50			μA
Output sustain voltage	V _O sus	L=15mH I _O =1.5A *	45			V
Logic Block						
Logic system supply current	I _{CC} ON	D0=1,D1=1,D2=1,D3=1 When these data values are set	25.5	37	48.5	mA
	I _{CC} OFF1	D0=0,D1=0,D2=0,D3=0	18	26	34	mA
	I _{CC} OFF2	ST=LOW	0.01	0.05	0.1	mA
Input voltage	VIH		2			V
	VIL				0.8	V
Input current	IIH	V _{IH} =2V			35	μA
	l _{IL}	V _{IL} =0.8V	6			μΑ
Sense voltages	VE	D0=1,D1=1,D2=1,D3=1				
C C		When these data values are set	0.470	0.50	0.525	V
		D0=1,D1=1,D2=1,D3=0	0.445	0.48	0.505	V
		D0=1,D1=1,D2=0,D3=1	0.425	0.46	0.485	V
		D0=1,D1=1,D2=0,D3=0	0.410	0.43	0.465	V
		D0=1,D1=0,D2=1,D3=1	0.385	0.41	0.435	V
		D0=1,D1=0,D2=1,D3=0	0.365	0.39	0.415	V
		D0=1,D1=0,D2=0,D3=1	0.345	0.37	0.385	V
		D0=1,D1=0,D2=0,D3=0	0.325	0.35	0.365	V
		D0=0,D1=1,D2=1,D3=1	0.280	0.30	0.325	V
		D0=0,D1=1,D2=1,D3=0	0.240	0.26	0.285	V
		D0=0,D1=1,D2=0,D3=1	0.195	0.22	0.235	V
		D0=0,D1=1,D2=0,D3=0	0.155	0.17	0.190	V
		D0=0,D1=0,D2=1,D3=1	0.115	0.13	0.145	V
		D0=0,D1=0,D2=1,D3=0	0.075	0.09	0.100	V
Reference current	IREF	VREF=1.5V	-0.5			μΑ
CR pin current	ICR	CR=1.0V	-1.7	-1.25	-0.9	mA
MD pin current	IMD	MD=1.0V, CR=4.0V	-5.0			μA
Logic system on voltage	VLSDON		2.6	2.8	3.0	V
Logic system off voltage	VLSDOFF		2.45	2.65	2.85	V
LVSD hysteresis	VLHIS		0.03	0.15	0.35	V
Thermal shutdown temperature	Ts		0.00	170	0.00	°C

*Design guaranteed value

AC Electrical Characteristics at $V_{\mbox{CC}}=5V$

Desemator	Sumbol	conditions		Ratings			
Parameter	Symbol	Conditions	min	typ	max	unit	
Clock frequency	f _{clk}	V _{CC} =5.0V		200	550	kHz	
Data setup time	^t DS	V _{CC} =5.0V	0.9	2.5		μs	
Data hold time	^t DH	V _{CC} =5.0V	0.9	2.5		μs	
Minimum clock high-level pulse width	^t SCH	V _{CC} =5.0V	0.9	2.5		μs	
Minimum clock low-level pulse width	^t SCL	V _{CC} =5.0V	0.9	2.5		μs	
SET pin stipulated time	^t lat	V _{CC} =5.0V	0.9	2.5		μs	
SET pin signal pulse width	t _{latw}	V _{CC} =5.0V	1.9	5.0		μs	

V_{CC}=3.3V Specification

Absolute Maximum Ratings

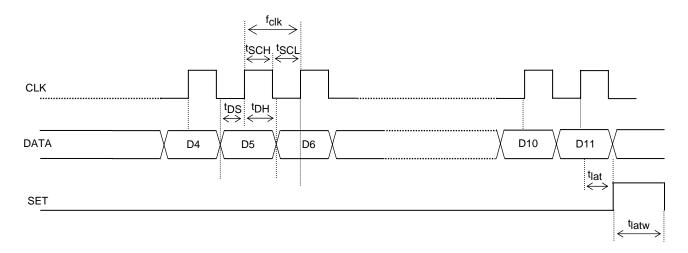
Parameter	Symbol	Conditions	Ratings	Unit
Emitter output voltage	VE		0.5	V

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Motor system supply voltage	VBB		10 to 45	V
Logic system supply voltage	V _{CC}		3.0 to 3.6	V
Reference voltage	VREF		0.0 to 1.0	V

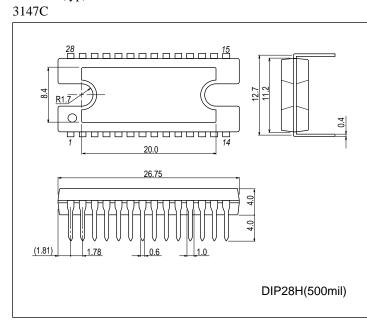
Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 3.3V$, VBB = 45V, VREF = 1.0V

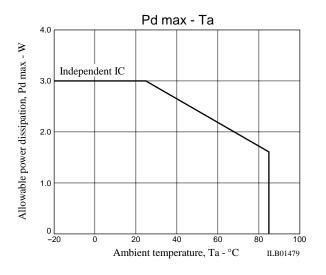
D		Sumbol		Ratings				
Parameter	Symbol Conditions		min	typ	max	unit		
Output Block								
Output stage supply current	IBB ON		1.6	2.4	3.5	mA		
	IBB OFF		1.3	1.9	2.5	mA		
Output saturation voltage 1	V _O sat1	I _O =+1.0A (sink)		1.3	1.7	V		
Output saturation voltage 2	V _O sat2	I _O =+1.5 A (sink)		1.6	2.0	V		
Output saturation voltage 3	V _O sat3	I _O =-1.0 A (source)		1.9	2.2	V		
Output saturation voltage 4	V _O sat4	I _O =-1.5 A (source)		2.2	2.4	V		
Output leakage current	I _O 1 (leak)	V _O =VBB (sink)			50	μΑ		
	I _O 2 (leak)	V _O =0V (source)	-50			μA		
Output sustain voltage	V _O sus	L=15mH I _O =-1.5A *	45			V		

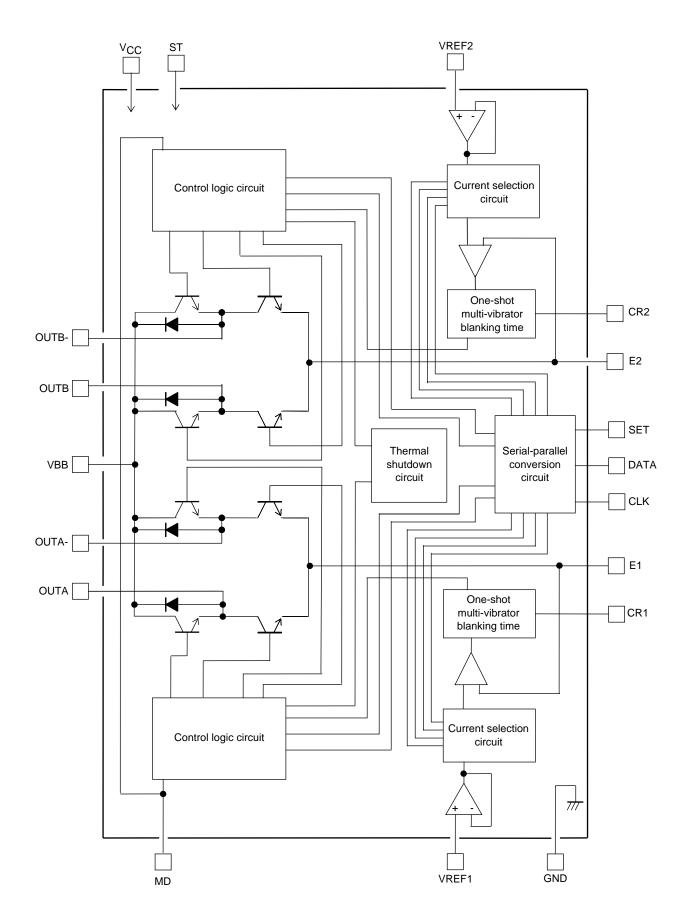

*Design guaranteed value

Continued on next page.

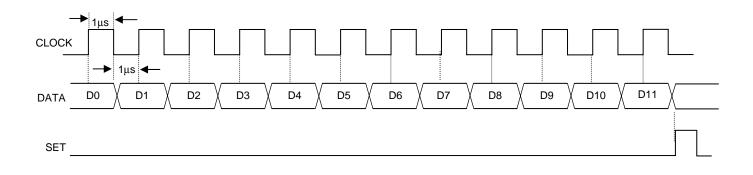
Deservator	Ourseland.	Quantitiana		Ratings			
Parameter	Symbol	Conditions	min	typ	max	unit	
Logic Block							
Logic system supply current	ICC ON	D0=1,D1=1,D2=1,D3=1 When these data values are set	23.5	34	44.5	mA	
	I _{CC} OFF1	D0=0,D1=0,D2=0,D3=0	16	23	30	mA	
	I _{CC} OFF2	ST=0.8V	0.005	0.03	0.1	mA	
Input voltage	VIH		2			V	
	VIL				0.8	V	
Input current	Чн	V _{IH} =2V			35	μΑ	
	۱ _{IL}	V _{IL} =0.8V	6			μA	
Sense voltages	VE	D0=1,D1=1,D2=1,D3=1 When these data values are set	0.303	0.330	0.356	V	
		D0=1,D1=1,D2=1,D3=0	0.290	0.315	0.341	V	
		D0=1,D1=1,D2=0,D3=1	0.276	0.300	0.324	V	
		D0=1,D1=1,D2=0,D3=0	0.263	0.286	0.309	V	
		D0=1,D1=0,D2=1,D3=1	0.250	0.272	0.294	V	
		D0=1,D1=0,D2=1,D3=0	0.236	0.257	0.278	V	
		D0=1,D1=0,D2=0,D3=1	0.223	0.243	0.263	V	
		D0=1,D1=0,D2=0,D3=0	0.209	0.228	0.247	V	
		D0=0,D1=1,D2=1,D3=1	0.183	0.200	0.217	V	
		D0=0,D1=1,D2=1,D3=0	0.155	0.170	0.185	V	
		D0=0,D1=1,D2=0,D3=1	0.128	0.143	0.158	V	
		D0=0,D1=1,D2=0,D3=0	0.102	0.114	0.126	V	
		D0=0,D1=0,D2=1,D3=1	0.074	0.085	0.096	V	
		D0=0,D1=0,D2=1,D3=0	0.047	0.057	0.067	V	
Reference current	IREF	VREF=1.5V	-0.5			μA	
CR pin current	ICR	CR=1.0V	-0.91	-0.7	-0.49	mA	
MD pin current	IMD	MD=1.0V, CR=4.0V	-5.0			μA	
Logic system on voltage	VLSDON		2.6	2.8	3.0	V	
Logic system off voltage	VLSDOFF		2.45	2.65	2.85	V	
LVSD hysteresis	VLHIS		0.03	0.15	0.35	V	
Thermal shutdown temperature	Ts			170		°C	


AC Electrical Characteristics at $V_{CC}\,{=}\,3.3V$


Parameter	Sumbol	Symbol Conditions		Ratings			
Parameter	Symbol	Conditions	min	typ	max	unit	
Clock frequency	f _{clk}	V _{CC} =3.3V		200	550	kHz	
Data setup time	^t DS	V _{CC} =3.3V	0.9	2.5		μs	
Data hold time	^t DH	V _{CC} =3.3V	0.9	2.5		μs	
Minimum clock high-level pulse width	^t SCH	V _{CC} =3.3V	0.9	2.5		μs	
Minimum clock low-level pulse width	^t SCL	V _{CC} =3.3V	0.9	2.5		μs	
SET pin stipulated time	^t lat	V _{CC} =3.3V	0.9	2.5		μs	
SET pin signal pulse width	^t latw	V _{CC} =3.3V	1.9	5.0		μs	


Package Dimensions

unit:mm (typ)


Block Diagram

Pin Assignment

Timing Chart

Na	IA4	IA3	IA2	IA1	DE1	PH1	IB4	IB3	IB2	IB1	DE2	PH2		Outpu	t mode		I/O	DEC
No.	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	OUTA	OUTA-	OUTB	OUTB-	ratio	MODE
0	1	1	1	1	1	1	1	1	1	1	1	1	н	L	Н	L	100%	SLOW
1	1	1	1	0	1	1	1	1	1	0	1	1	н	L	Н	L	96	SLOW
2	1	1	0	1	1	1	1	1	0	1	1	1	Н	L	Н	L	91	SLOW
3	1	1	0	0	1	1	1	1	0	0	1	1	Н	L	Н	L	87	SLOW
4	1	0	1	1	1	1	1	0	1	1	1	1	н	L	Н	L	83	SLOV
5	1	0	1	0	1	1	1	0	1	0	1	1	н	L	Н	L	78	SLOV
6	1	0	0	1	1	1	1	0	0	1	1	1	н	L	Н	L	74	SLOV
7	1	0	0	0	1	1	1	0	0	0	1	1	н	L	Н	L	70	SLOV
8	0	1	1	1	1	1	0	1	1	1	1	1	н	L	Н	L	61	SLOV
9	0	1	1	0	1	1	0	1	1	0	1	1	н	L	Н	L	52	SLOV
10	0	1	0	1	1	1	0	1	0	1	1	1	н	L	Н	L	44	SLOV
11	0	1	0	0	1	1	0	1	0	0	1	1	н	L	Н	L	35	SLOV
12	0	0	1	1	1	1	0	0	1	1	1	1	Н	L	Н	L	26	SLOV
13	0	0	1	0	1	1	0	0	1	0	1	1	Н	L	Н	L	17	SLOV
14	1	1	1	1	0	0	1	1	1	1	0	0	L	Н	L	Н	100	FAS
15	1	1	1	0	0	0	1	1	1	0	0	0	L	Н	L	Н	96	FAS
16	1	1	0	1	0	0	1	1	0	1	0	0	L	Н	L	Н	91	FAS
17	1	1	0	0	0	0	1	1	0	0	0	0	L	н	L	н	87	FAS
18	1	0	1	1	0	0	1	0	1	1	0	0	L	н	L	Н	83	FAS
19	1	0	1	0	0	0	1	0	1	0	0	0	L	н	L	Н	78	FAS
20	1	0	0	1	0	0	1	0	0	1	0	0	L	н	L	Н	74	FAS
21	1	0	0	0	0	0	1	0	0	0	0	0	L	н	L	Н	70	FAS
22	0	1	1	1	0	0	0	1	1	1	0	0	L	н	L	Н	61	FAS
23	0	1	1	0	0	0	0	1	1	0	0	0	L	н	L	Н	52	FAS
24	0	1	0	1	0	0	0	1	0	1	0	0	L	Н	L	н	44	FAS
25	0	1	0	0	0	0	0	1	0	0	0	0	L	Н	L	н	35	FAS
26	0	0	1	1	0	0	0	0	1	1	0	0	L	Н	L	н	26	FAS
27	0	0	1	0	0	0	0	0	1	0	0	0	L	н	L	н	17	FAS
28	0	0	0	0	*	*	0	0	0	0	*	*	OFF	OFF	OFF	OFF	0	-

Serial Transmission Data Definitions

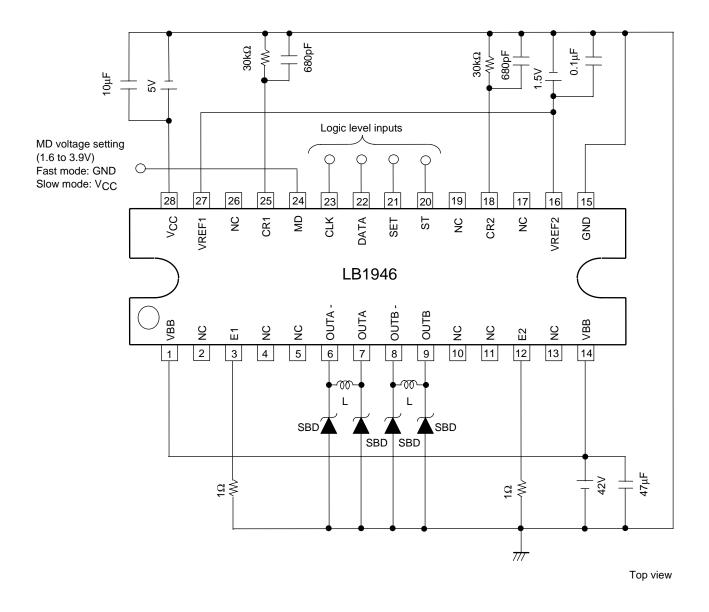
Note *: Don't care (0 or 1)

Note 1: In the mixed decay mode, set D4 and D10 to 0 and set the MD pin to a level shown below.

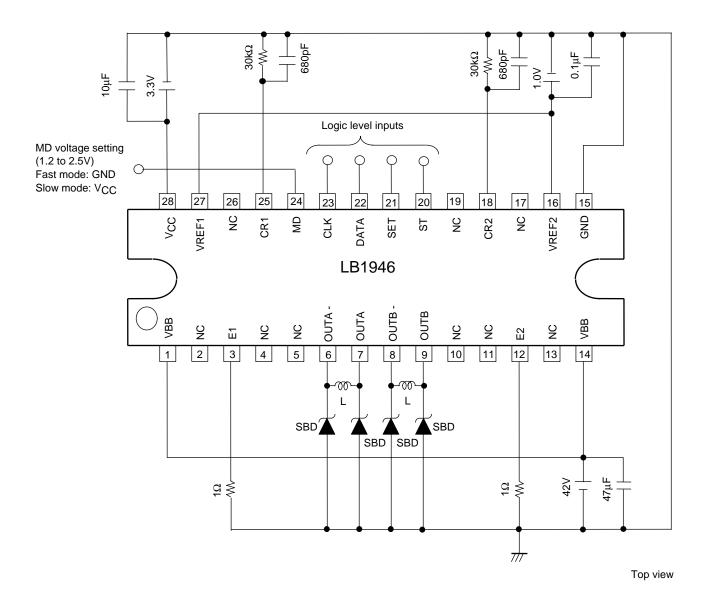
Programmable MD voltage range

V_{CC}=5V specifications: 1.6 to 3.9V

V_{CC}=3.3V specifications: 1.2 to 2.5V


Current Settings Truth Table

* Items in parentheses are defined by the serial data.


IA4 (D0)	IA3 (D1)	IA2 (D2)	IA1 (D3)	Set Current IOUT	Current Ratio (%)
1	1	1	1	11.5/11.5×VREF/3.04RE=I _{OUT}	100
1	1	1	0	11.0/11.5×VREF/3.04RE=I _{OUT}	95.65
1	1	0	1	10.5/11.5×VREF/3.04RE=I _{OUT}	91.30
1	1	0	0	10.0/11.5×VREF/3.04RE=I _{OUT}	86.95
1	0	1	1	9.5/11.5×VREF/3.04RE=I _{OUT}	82.61
1	0	1	0	9.0/11.5×VREF/3.04RE=I _{OUT}	78.26
1	0	0	1	8.5/11.5×VREF/3.04RE=I _{OUT}	73.91
1	0	0	0	8.0/11.5×VREF/3.04RE=I _{OUT}	69.56
0	1	1	1	7.0/11.5×VREF/3.04RE=I _{OUT}	60.87
0	1	1	0	6.0/11.5×VREF/3.04RE=I _{OUT}	52.17
0	1	0	1	5.0/11.5×VREF/3.04RE=I _{OUT}	43.48
0	1	0	0	4.0/11.5×VREF/3.04RE=I _{OUT}	34.78
0	0	1	1	3.0/11.5×VREF/3.04RE=I _{OUT}	26.08
0	0	1	0	2.0/11.5×VREF/3.04RE=I _{OUT}	17.39

Note 1: The current ratios shown are calculated values.

Sample Application Circuit at $V_{\mbox{CC}} = 5 V$

Sample Application Circuit at V_{CC} =3.3V

Current Path in Slow Decay Mode

Regenerative current during upper-side transistor switching operation

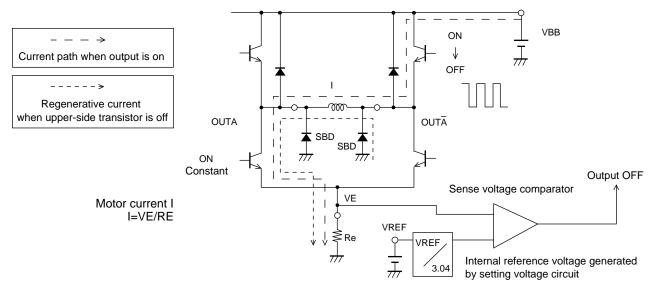
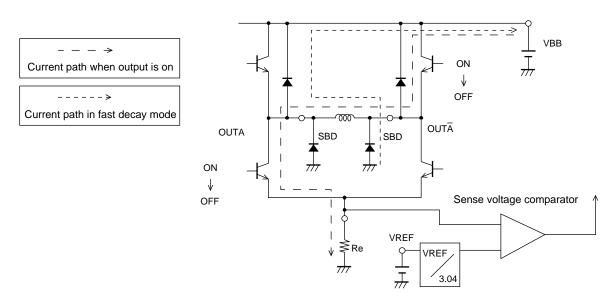
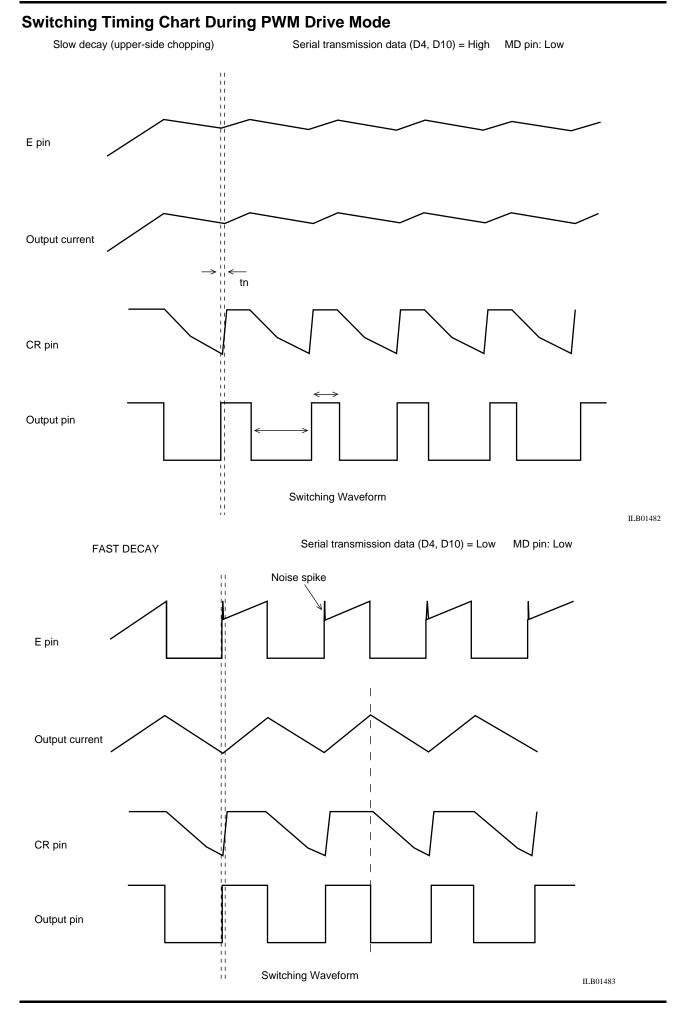
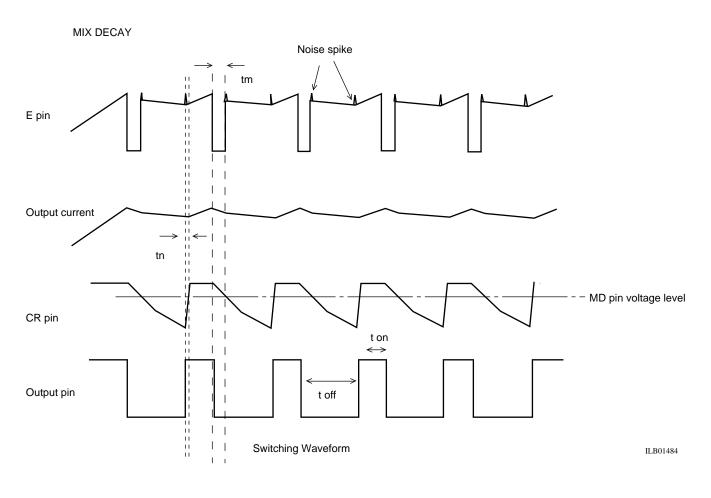



Figure 1


ILB01480


Current Path in Fast Decay Mode

ILB01481

LB1946

Mix decay logic setting

When serial transmission data (D4, D10) is Low

MD pin setting:

5V V_{CC} type: 1.6 to 3.9V 3.3V V_{CC} type: 1.2 to 2.5V

CR voltage and MD pin voltage are compared to select dual-side chopping or upper-side chopping.

CR voltage > MD pin voltage: dual-side chopping

CR voltage < MD pin voltage: upper-side chopping

t on: Output on time t off: Output off time tm: Fast decay time in mix decay mode tn: Noise cancellation time

LB1946

1. Switching OFF time and noise cancellation time calculations Notes on the CR pin setting (switching off time and noise canceller time)

The noise canceller time (Tn) and the switching off time (Toff) are set using the following formulas.

• When V_{CC}=5V Noise canceller time (Tn) Tn ≈ C•R•ln {(1.5 - RI)/(4.0 - RI)} [s] CR pin charge current: 1.25mA

Switching off time (Toff) Toff \approx -C•R•ln (1.5/4.8) [s]

Component value ranges R: $5.6k\Omega$ to $100k\Omega$ C: 470pF to 2000pF

• When V_{CC}=3.3V

Noise canceller time (Tn) $Tn \approx C \cdot R \cdot ln \{(1.06 - RI)/(2.66 - RI)\} [s]$ CR pin charge current: 0.7mA

Switching off time (Toff) Toff \approx -C•R•ln (1.06/3.1) [s]

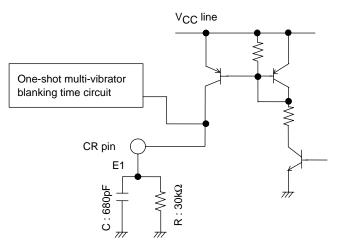


Figure 2 CR Pin Internal Circuit Structure

2. Notes on the MD pin

- If slow decay mode is set up by setting the D4 and D10 bits in the input serial data to 1, the MD pin must be shorted to GND.
- If the decay mode is set up by setting the D4 and D10 bits in the input serial data to 0, decay mode can be set with the MD pin.

When the V_{CC}=5V specifications are used, the setting voltage range for mixed decay mode is 1.6 to 3.9V. When the V_{CC}=3.3V specifications are used, the setting voltage range for mixed decay mode is 1.2 to 2.5V. If mixed decay mode will not be used with the fast decay mode setting, either: Short the MD pin to GND to select fast decay mode, or Short the MD pin to V_{CC} to select slow decay mode.

3. Usage Notes

• Notes on the VREF pin

Since the VREF pin inputs the reference voltage used to set the current, applications must be designed so that noise does not occur at this pin.

• Notes on the GND pins

Since this IC switches large currents, care is required with respect to the GND pins.

The PCB pattern in sections where large currents flow must be designed with low impedances and must be kept separate from the small-signal system.

In particular, the GND terminals of the E pin sense resistor (RE) and external Schottky barrier diode GND terminals must be located as close as possible to the IC GND. The capacitor between V_{CC} and ground and between VBB and GND must be as close as possible to the corresponding V_{CC} and VBB pin in the pattern.

• Power on sequence

When turning the power systems on

V_{CC}→logic level inputs (CLK, DATA, SET, and ST) →VREF→VBB

When turning the power systems off

VBB \rightarrow VREF \rightarrow logic level inputs (CLK, DATA, SET, and ST) \rightarrow V_{CC}

Note that if the power supply for the logic level inputs is on when the V_{CC} power supply is off, a bias with an unstable state will be applied to the protection diodes at the V_{CC} pins, and this can cause incorrect operation.

LB1946

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright and so into for resale in any manner.