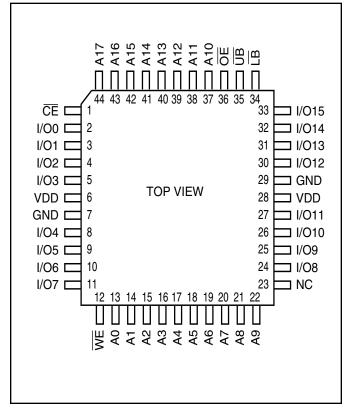

IS61LV25616AL

TRUTH TABLE

	I/O PIN				PIN			
Mode	WE	CE	ŌĒ	ĹΒ	ŪΒ	I/00-I/07	I/O8-I/O15	VDD Current
Not Selected	Х	Н	Х	Х	Х	High-Z	High-Z	ISB1, ISB2
Output Disabled	H X	L L	H X	X H	X H	High-Z High-Z	High-Z High-Z	lcc
Read	H H H	L L L	L L L	L H L	H L L	Douт High-Z Douт	High-Z Douт Douт	lcc
Write	L L L	L L L	X X X	L H L	H L L	Dın High-Z Dın	High-Z Dın Dın	lcc

PIN CONFIGURATIONS

44-Pin TSOP (Type II) and SOJ



PIN DESCRIPTIONS

A0-A17	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
UB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
Vdd	Power
GND	Ground

PIN CONFIGURATIONS

44-Pin LQFP

48-Pin mini BGA

PIN DESCRIPTIONS

A0-A17	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
UB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
VDD	Power
GND	Ground

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	–0.5 to VDD+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

		VDD		
Range	Ambient Temperature	10ns	12ns	
Commercial	0°C to +70°C	3.3V +10%, -5%	3.3V <u>+</u> 10%	
Industrial	–40°C to +85°C	3.3V +10%, -5%	3.3V <u>+</u> 10%	

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., IOH = -4.0 mA$		2.4	—	V
Vol	Output LOW Voltage	$V_{DD} = Min., I_{OL} = 8.0 mA$		—	0.4	V
Vін	Input HIGH Voltage			2.0	VDD + 0.3	V
VIL	Input LOW Voltage ⁽¹⁾			-0.3	0.8	V
LI	Input Leakage	$GND \leq V \text{in} \leq V \text{dd}$	Com.	-2	2	μA
			Ind.	-5	5	
Ilo	Output Leakage	$GND \le VOUT \le VDD$	Com.	-2	2	μA
	_	Outputs Disabled	Ind.	-5	5	

Notes:

1. VIL (min.) = -2.0V for pulse width less than 10 ns.

Symbol	Parameter	Test Conditions		-1 Min.	0 Max.	-12 Min.	2 Max.	Unit
lcc	VDD Dynamic Operating Supply Current	VDD = Max., lout = 0 mA, f = fmax	Com. Ind.	_	100 110	_	90 100	mA
ISB	TTL Standby Current (TTL Inputs)	$\label{eq:VDD} \begin{split} &V\text{DD} = Max.,\\ &V\text{IN} = V\text{IH or }V\text{IL}\\ &\overline{CE} \geq V\text{IH}, f = f\text{MAX}. \end{split}$	Com. Ind.		50 55	_	45 50	mA
ISB1	TTL Standby Current (TTL Inputs)	$\label{eq:VDD} \begin{split} V_{DD} &= Max.,\\ V_{IN} &= V_{IH} \text{ or } V_{IL}\\ \overline{CE} &\geq V_{IH}, \ f = 0 \end{split}$	Com. Ind.		20 25	_	20 25	mA
ISB2	CMOS Standby Current (CMOS Inputs)	eq:def-def-def-def-def-def-def-def-def-def-	Com. Ind.		15 20	_	15 20	mA

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Note:

1. At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change. Shaded area product in development

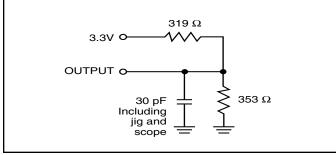
CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	6	pF
Соит	Input/Output Capacitance	Vout = 0V	8	pF

Note:

1. Tested initially and after any design or process changes that may affect these parameters.

		-1()	-12		
Symbol	Parameter	Min.		Min.		Unit
trc	Read Cycle Time	10	_	12		ns
taa	Address Access Time		10		12	ns
tона	Output Hold Time	2	_	2	_	ns
t ACE	CE Access Time	_	10	_	12	ns
t DOE	OE Access Time	_	4	_	5	ns
tHZOE ⁽²⁾	OE to High-Z Output	_	4	_	5	ns
tLZOE ⁽²⁾	OE to Low-Z Output	0	_	0	_	ns
tHZCE ⁽²	CE to High-Z Output	0	4	0	6	ns
tLZCE ⁽²⁾	CE to Low-Z Output	3	_	3	_	ns
tва	LB, UB Access Time	_	4	_	5	ns
tHZB ⁽²⁾	LB, UB to High-Z Output	0	3	0	4	ns
tLZB ⁽²⁾	LB, UB to Low-Z Output	0	_	0	_	ns
t PU	Power Up Time	0	_	0	_	ns
t PD	Power Down Time		10	_	12	ns


READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.

2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage.

AC TEST LOADS

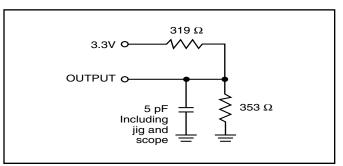
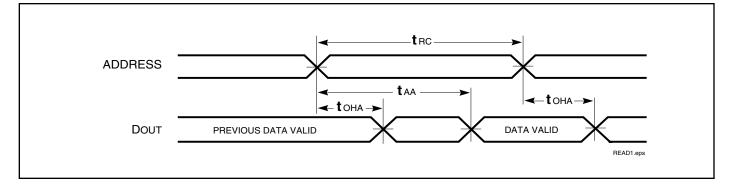
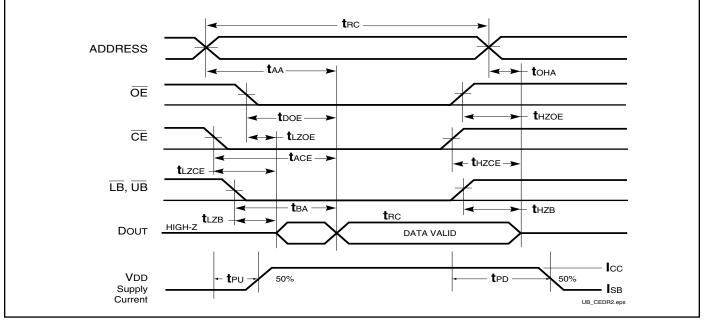


Figure 1


Figure 2

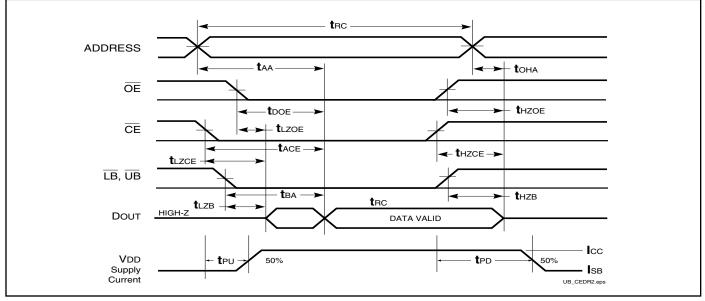
AC TEST CONDITIONS


Parameter	Unit	
Input Pulse Level	0V to 3.0V	
Input Rise and Fall Times	3 ns	
Input and Output Timing and Reference Level	1.5V	
Output Load	See Figures 1 and 2	

AC WAVEFORMS

READ CYCLE NO. 1^(1,2) (Address Controlled) ($\overline{CE} = \overline{OE} = V_{IL}$, \overline{UB} or $\overline{LB} = V_{IL}$)

READ CYCLE NO. 2^(1,3)



Notes:

- 1. $\overline{\text{WE}}$ is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , \overline{CE} , \overline{UB} , or $\overline{LB} = V_{IL}$.
- 3. Address is valid prior to or coincident with \overline{CE} LOW transition.

READ CYCLE NO. 2(1,3)

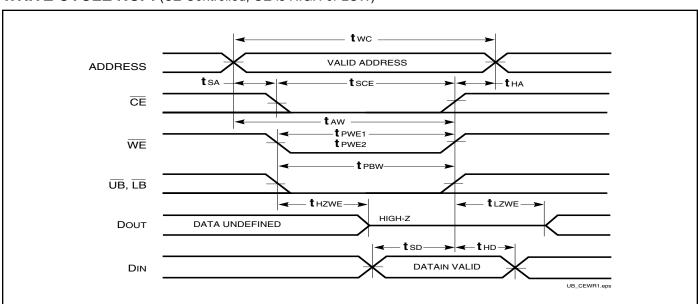
Notes:

1. WE is HIGH for a Read Cycle.

2. The device is continuously selected. \overline{OE} , \overline{CE} , \overline{UB} , or $\overline{LB} = V_{IL}$. 3. Address is valid prior to or coincident with \overline{CE} LOW transition.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,3) (Over Operating Range)

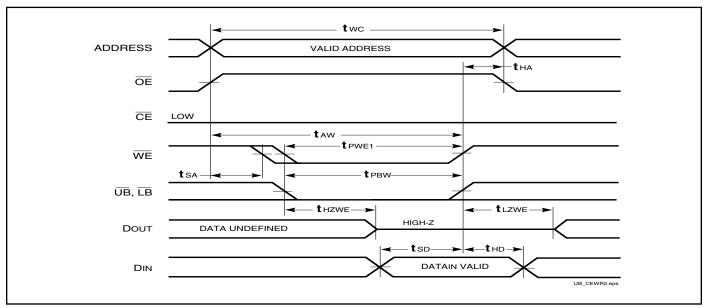
		-1	-	-1:	_	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	10	—	12	—	ns
tsce	CE to Write End	8	—	8	—	ns
taw	Address Setup Time to Write End	8	—	8	—	ns
tha	Address Hold from Write End	0	—	0	—	ns
tsa	Address Setup Time	0	—	0	_	ns
tрwв	LB, UB Valid to End of Write	8	—	8	—	ns
tpwe1	WE Pulse Width	8	—	8	—	ns
tPWE2	$\overline{\text{WE}}$ Pulse Width ($\overline{\text{OE}}$ = LOW)	10	—	12	_	ns
tsp	Data Setup to Write End	6	_	6	_	ns
thd	Data Hold from Write End	0	_	0	_	ns
tHZWE ⁽²⁾	WE LOW to High-Z Output	_	5	_	6	ns
tlzwe ⁽²⁾	WE HIGH to Low-Z Output	2	_	2	_	ns


Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.

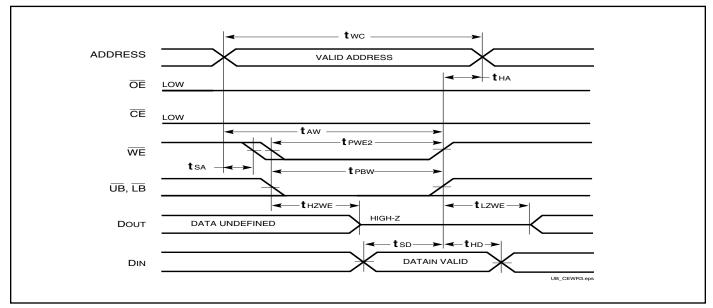
2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

3. The internal write time is defined by the overlap of CE LOW and UB or LB and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

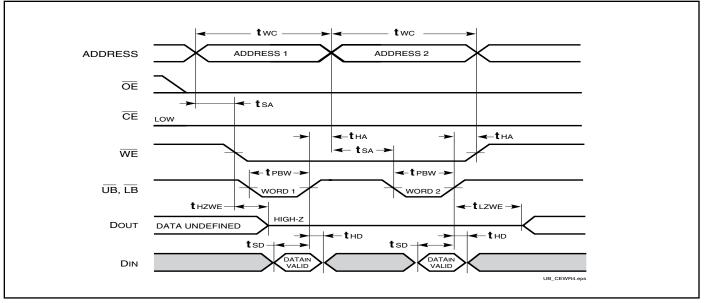

AC WAVEFORMS

WRITE CYCLE NO. 1 (CE Controlled, OE is HIGH or LOW) (1)

Notes:


- 1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the $\overline{\text{CE}}$ and $\overline{\text{WE}}$ inputs and at least one of the $\overline{\text{LB}}$ and $\overline{\text{UB}}$ inputs being in the LOW state.
- 2. WRITE = $(\overline{CE}) [(\overline{LB}) = (\overline{UB})] (\overline{WE}).$

WRITE CYCLE NO. 2 (WE Controlled. OE is HIGH During Write Cycle) (1,2)

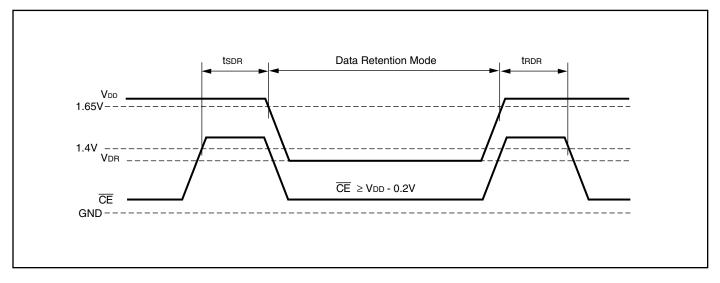


AC WAVEFORMS

WRITE CYCLE NO. 3 (WE Controlled. OE is LOW During Write Cycle) (1)

WRITE CYCLE NO. 4 (IB, UB Controlled, Back-to-Back Write) (1,3)

Notes:

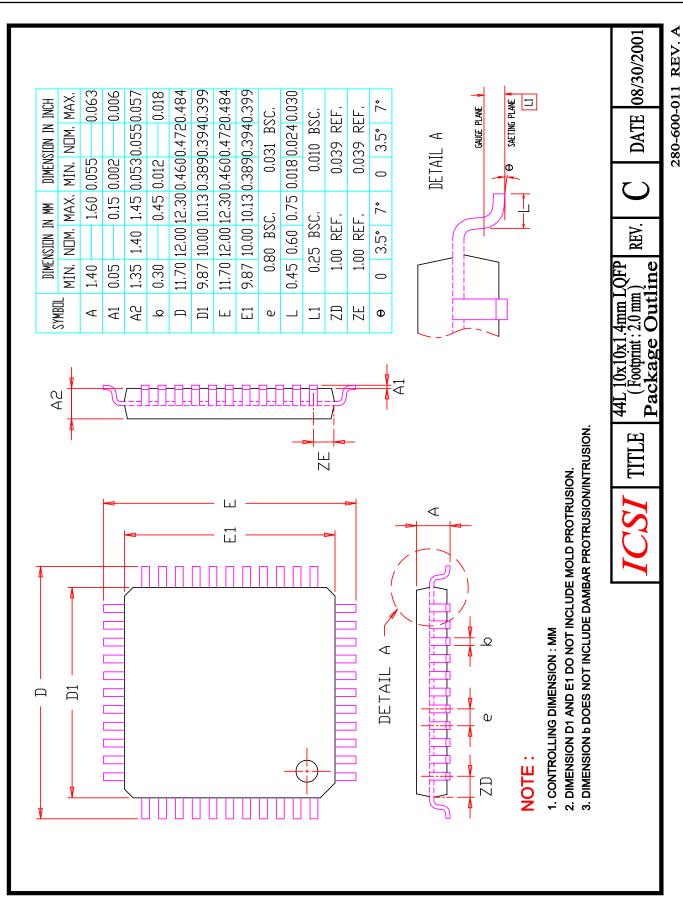

- 1. The internal Write time is defined by the overlap of $\overline{CE} = LOW$, \overline{UB} and/or $\overline{LB} = LOW$, and $\overline{WE} = LOW$. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The **t** sA, **t** HA, **t** sD, and **t** HD timing is referenced to the rising or falling edge of the signal that terminates the Write.
- 2. Tested with \overline{OE} HIGH for a minimum of 4 ns before $\overline{WE} = LOW$ to place the I/O in a HIGH-Z state.
- 3. WE may be held LOW across many address cycles and the LB, UB pins can be used to control the Write function.

DATA RETENTION SWITCHING CHARACTERISTICS (LL)

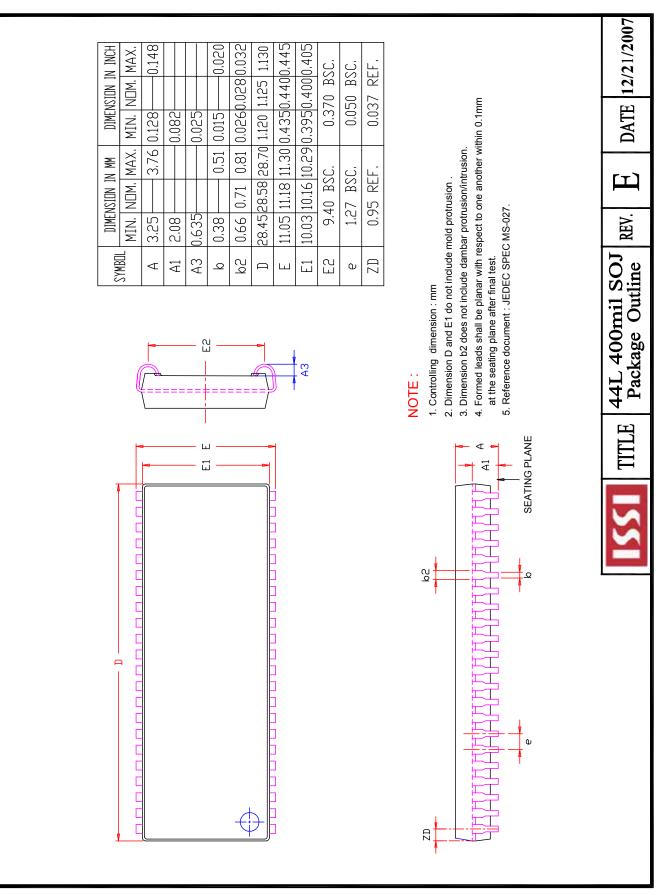
Symbol	Parameter	Test Condition	Options	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdr	VDD for Data Retention	See Data Retention Waveform		2.0	_	3.6	V
DR	Data Retention Current	$V_{DD} = 2.0V, \overline{CE} \ge V_{DD} - 0.2V$	Com.	_	5	10	mA
			Ind.	—	—	15	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	_	_	ns
t rdr	Recovery Time	See Data Retention Waveform		trc	—	_	ns

Note 1: Typical values are measured at VDD = 3.0V, TA = 25°C and not 100% tested.

DATA RETENTION WAVEFORM (CE Controlled)

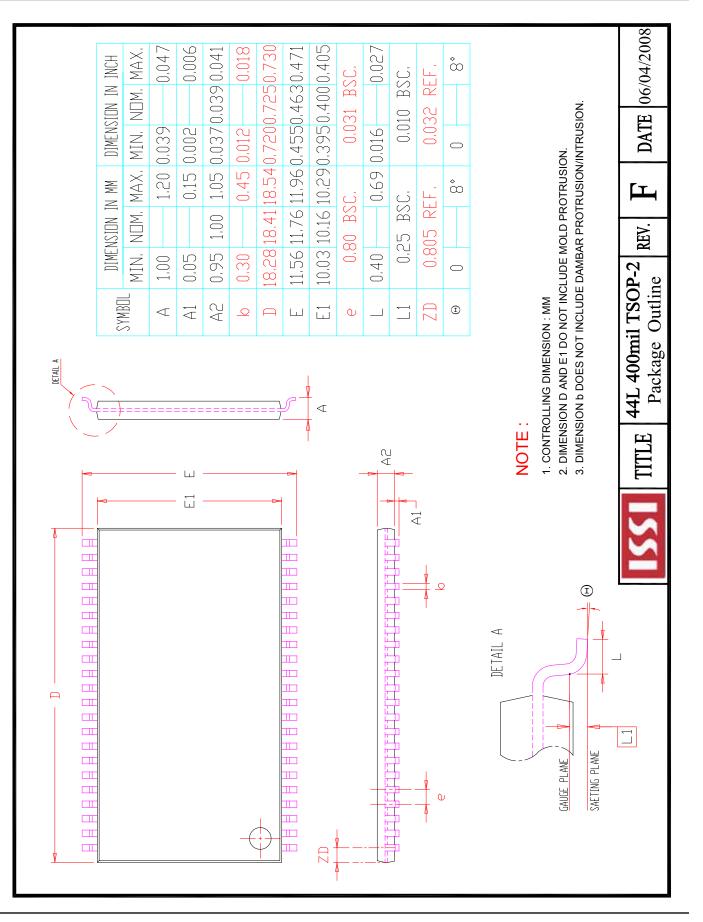

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

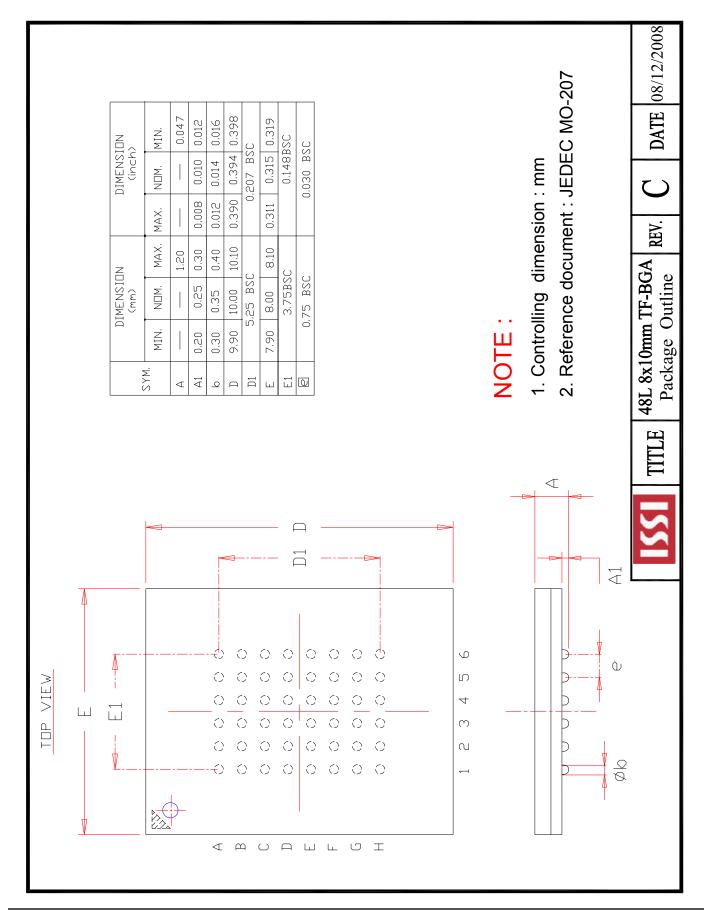

Speed (ns)	Order Part No.	Package
10	IS61LV25616AL-10T IS61LV25616AL-10TL	TSOP (Type II) TSOP (Type II), Lead-free
	IS61LV25616AL-10K	400-mil SOJ
12	IS61LV25616AL-12T	TSOP (Type II)

Industrial Range: -40°C to +85°C

Order Part No.	Package		
IS61LV25616AL-10TI	TSOP (Type II)		
IS61LV25616AL-10TLI	TSOP (Type II), Lead-free		
IS61LV25616AL-10KI	400-mil SOJ		
IS61LV25616AL-10KLI	400-mil SOJ, Lead-free		
IS61LV25616AL-10LQI	LQFP		
IS61LV25616AL-10LQLI	LQFP, Lead-free		
IS61LV25616AL-10BI	Mini BGA (8mm x 10mm)		
IS61LV25616AL-10BLI	Mini BGA (8mm x 10mm), Lead-free		
IS61LV25616AL-12TI	TSOP (Type II)		
	IS61LV25616AL-10TI IS61LV25616AL-10TLI IS61LV25616AL-10KI IS61LV25616AL-10KLI IS61LV25616AL-10LQI IS61LV25616AL-10LQLI IS61LV25616AL-10BI IS61LV25616AL-10BLI		


Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. F 12/15/2011

Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. F 12/15/2011


14

Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. F 12/15/2011

16

