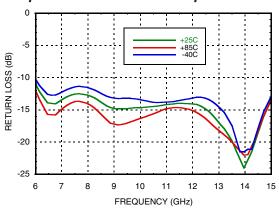
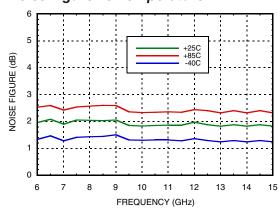
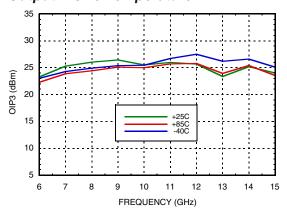
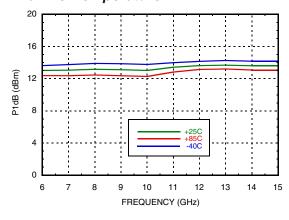

Broadband Gain & Return Loss

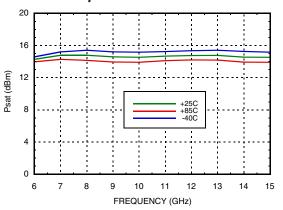

Gain vs. Temperature

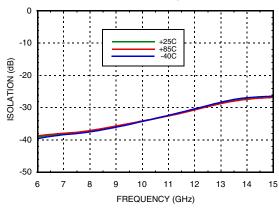

Input Return Loss vs. Temperature

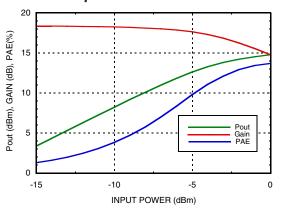

Output Return Loss vs. Temperature

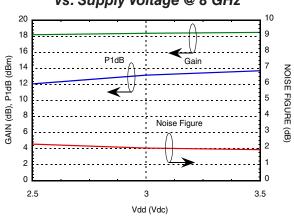
Noise Figure vs. Temperature

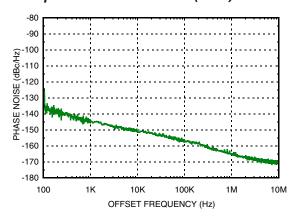

Output IP3 vs. Temperature



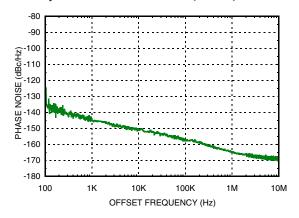

P1dB vs. Temperature


Psat vs. Temperature


Reverse Isolation vs. Temperature


Power Compression @ 8 GHz

Gain, Power & Noise Figure vs. Supply Voltage @ 8 GHz

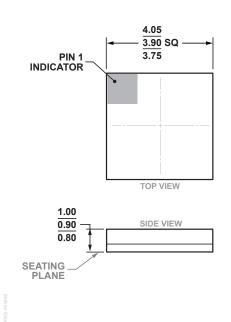

Additive Phase Noise Vs Offset Frequency, RF Frequency = 11 GHz, RF Input Power = 2.5 dBm (Psat)

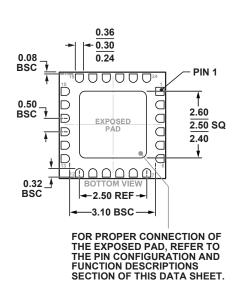
Additive Phase Noise Vs Offset Frequency, RF Frequency = 11 GHz, RF Input Power = -4 dBm (P1dB)

Notes:

Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, Vdd2)	+3.5 Vdc	
RF Input Power (RFIN) (Vdd = +3.0 Vdc)	+20 dBm	
Channel Temperature	175 °C	
Continuous Pdiss (T= 85 °C) (derate 12.9 mW/°C above 85 °C)	1.16 W	
Thermal Resistance (channel to ground paddle)	77.5 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	


Typical Supply Current vs. Vdd


Vdd (V)	ldd (mA)
2.5	49
3.0	51
3.5	53

Note: Amplifier will operate over full voltage ranges shown above.

Outline Drawing

24-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-24-1)
Dimensions shown in millimeters.

Package Information

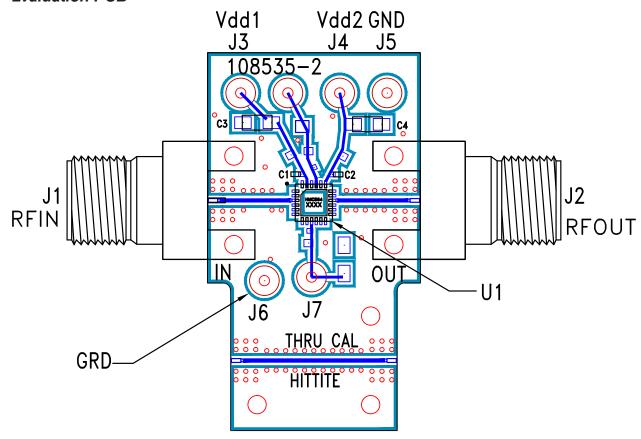
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC564LC4	Alumina, White	Gold over Nickel	MSL3 ^[1]	H564 XXXX
HMC564LC4TR	Alumina, White	Gold over Nickel	MSL3 [1]	H564 XXXX
HMC564LC4TR-R5	Alumina, White	Gold over Nickel	MSL3 [1]	H564 XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 5 -14, 18, 20, 21, 22, 24	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
2, 4, 15, 17	GND	These pins and package bottom must be connected to RF/DC ground.	GND
3	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN ○── ├──
16	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT
19, 23	Vdd1, Vdd2	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, and 2.2 μF are required.	OVdd1,2


Application Circuit

Component	Value		Vdd1	Vdd2	
C1, C2	100 pF				
C3, C4	2.2 µF	+ C3	C1	C2	C4+
			=	<u> </u>	=
			23	19	
		RFIN 3		16	RFOUT

Evaluation PCB

List of Material for Evaluation PCB 116156-HMC564LC4 [1]

Item	Description	
J1, J2	PCB Mount K Connectorbvv	
J3 - J7	DC Pin	
C1 - C2	100 pF capacitor, 0402 Pkg	
C3 - C4	2.2µF Capacitor, Tantalum	
U1	HMC564LC4 Amplifier	
PCB [2]	108535 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices upon request.

^[2] Circuit Board Material: Rogers 4350.