Edition 2013-07-29

Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

#### Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in guestion, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.



#### BFP450, Linear Low Noise Silicon Bipolar RF Transistor

| Page | Subjects (changes since previous revision)                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|      | This datasheet replaces the revision from 2012-09-11.<br>The product itself has not been changed and the device characteristics remain unchanged.<br>Only the product description and information available in the datasheet have been expanded<br>and updated. |  |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |

### Revision History: 2013-07-29, Revision 1.2

#### Trademarks of Infineon Technologies AG

AURIX<sup>™</sup>, C166<sup>™</sup>, CanPAK<sup>™</sup>, CIPOS<sup>™</sup>, CIPURSE<sup>™</sup>, EconoPACK<sup>™</sup>, CoolMOS<sup>™</sup>, CoolSET<sup>™</sup>, CORECONTROL<sup>™</sup>, CROSSAVE<sup>™</sup>, DAVE<sup>™</sup>, DI-POL<sup>™</sup>, EasyPIM<sup>™</sup>, EconoBRIDGE<sup>™</sup>, EconoDUAL<sup>™</sup>, EconoPIM<sup>™</sup>, EconoPACK<sup>™</sup>, EiceDRIVER<sup>™</sup>, eupec<sup>™</sup>, FCOS<sup>™</sup>, HITFET<sup>™</sup>, HybridPACK<sup>™</sup>, I<sup>2</sup>RF<sup>™</sup>, ISOFACE<sup>™</sup>, IsoPACK<sup>™</sup>, MIPAQ<sup>™</sup>, ModSTACK<sup>™</sup>, my-d<sup>™</sup>, NovalithIC<sup>™</sup>, OptiMOS<sup>™</sup>, ORIGA<sup>™</sup>, POWERCODE<sup>™</sup>; PRIMARION<sup>™</sup>, PrimePACK<sup>™</sup>, PrimeSTACK<sup>™</sup>, PRO-SIL<sup>™</sup>, PROFET<sup>™</sup>, RASIC<sup>™</sup>, ReverSave<sup>™</sup>, SatRIC<sup>™</sup>, SIEGET<sup>™</sup>, SINDRION<sup>™</sup>, SIPMOS<sup>™</sup>, SmartLEWIS<sup>™</sup>, SOLID FLASH<sup>™</sup>, TEMPFET<sup>™</sup>, thinQ!<sup>™</sup>, TRENCHSTOP<sup>™</sup>, TriCore<sup>™</sup>.

#### **Other Trademarks**

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL<sup>™</sup>, REALVIEW<sup>™</sup>, THUMB<sup>™</sup>, µVision<sup>™</sup> of ARM Limited, UK. AUTOSAR<sup>™</sup> is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI<sup>™</sup> of MIPI Alliance, Inc. MIPS<sup>™</sup> of MIPS Technologies, Inc., USA. muRata<sup>™</sup> of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG<sup>™</sup>, PALLADIUM<sup>™</sup> of Cadence Design Systems, Inc. VLYNQ<sup>™</sup> of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11



#### **Table of Contents**

# **Table of Contents**

| 7   | Package Information SOT343 27             |
|-----|-------------------------------------------|
| 6   | Simulation Data                           |
| 5.5 | Characteristic AC Diagrams                |
| 5.4 | Characteristic DC Diagrams                |
| 5.3 | Frequency Dependent AC Characteristics 12 |
| 5.2 | General AC Characteristics                |
| 5.1 | DC Characteristics                        |
| 5   | Electrical Characteristics                |
| 4   | Thermal Characteristics    10             |
| 3   | Maximum Ratings                           |
| 2   | Features                                  |
| 1   | Product Brief                             |
|     | List of Tables                            |
|     | List of Figures                           |
|     | Table of Contents    4                    |



List of Figures

# List of Figures

| Figure 4-1  | Total Power Dissipation $P_{\text{tot}} = f(T_s)$                                                             | 10 |
|-------------|---------------------------------------------------------------------------------------------------------------|----|
| Figure 5-1  | BFP450 Testing Circuit.                                                                                       |    |
| Figure 5-2  | Collector Current vs. Collector Emitter Voltage $I_{\rm C}$ = $f(V_{\rm CE})$ , $I_{\rm B}$ = Parameter in mA | 16 |
| Figure 5-3  | DC Current Gain $h_{\text{FE}} = f(I_{\text{C}}), V_{\text{CE}} = 3 \text{ V}$                                | 16 |
| Figure 5-4  | Collector Current vs. Base Emitter Voltage $I_{\rm C} = f(V_{\rm BE})$ , $V_{\rm CE} = 2$ V                   | 17 |
| Figure 5-5  | Base Current vs. Base Emitter Forward Voltage $I_{B} = f(V_{BE})$ , $V_{CE} = 2 V$                            | 17 |
| Figure 5-6  | Base Current vs. Base Emitter Reverse Voltage $I_{\rm B}$ = $f(V_{\rm EB})$ , $V_{\rm CE}$ = 2 V              | 18 |
| Figure 5-7  | Transition Frequency $f_T = f(I_C)$ , $f = 1$ GHz, $V_{CE}$ = Parameter in V                                  | 19 |
| Figure 5-8  | 3rd Order Intercept Point $OIP3 = f(I_C)$ , $Z_S = Z_L = 50 \Omega$ , $V_{CE}$ , $f = Parameters \dots$       |    |
| Figure 5-9  | Collector Base Capacitance $C_{CB} = f(V_{CB}), f = 1 \text{ MHz}$                                            |    |
|             | Gain $G_{ma}$ , $G_{ms}$ , $ S_{21} ^2 = f(f)$ , $V_{CE} = 3 \text{ V}$ , $I_C = 90 \text{ mA}$               |    |
| Figure 5-11 | Maximum Power Gain $G_{\text{max}} = f(I_{\text{C}}), V_{\text{CE}} = 3 \text{ V}, = \text{Parameter in GHz}$ | 21 |
| Figure 5-12 | Maximum Power Gain $G_{\text{max}} = f(V_{\text{CE}})$ , $I_{\text{C}} = 90$ mA, = Parameter in GHz           | 21 |
| Figure 5-13 | Input Matching $S_{11} = f(f)$ , $V_{CE} = 3 \text{ V}$ , $I_C = 50 / 90 \text{ mA}$                          | 22 |
| Figure 5-14 | Source Impedance for Minimum Noise Figure = $f(f)$ , $V_{CE}$ = 3 V, $I_C$ = 50 / 90 mA                       | 22 |
| Figure 5-15 | Output Matching $S_{22} = f(f)$ , $V_{CE} = 3 \text{ V}$ , $I_C = 50 / 90 \text{ mA}$                         | 23 |
| Figure 5-16 | Noise Figure $NF_{min} = f(f)$ , $V_{CE} = 3 \text{ V}$ , $I_C = 50 / 90 \text{ mA}$ , $Z_S = Z_{opt}$        | 23 |
| Figure 5-17 | Noise Figure $NF_{min} = f(I_C)$ , $V_{CE} = 3 \text{ V}$ , $Z_S = Z_{opt} = \text{Parameter in GHz}$ .       | 24 |
| Figure 5-18 | Noise Figure $NF_{50} = f(I_C)$ , $V_{CE} = 3 \text{ V}$ , $Z_S = 50 \Omega$ = Parameter in GHz               | 24 |
| Figure 5-19 | Comparison Noise Figure $NF_{50}$ / $NF_{min}$ = $f(I_C)$ , $V_{CE}$ = 3 V, $f$ = 1.9 GHz                     | 25 |
| Figure 7-1  | Package Outline                                                                                               |    |
| Figure 7-2  | Package Footprint.                                                                                            | 27 |
| Figure 7-3  | Marking Description (Marking BFP450: ANs)                                                                     |    |
| Figure 7-4  | Tape Dimensions                                                                                               | 27 |



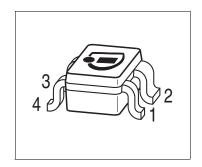
#### List of Tables

# List of Tables

| Table 3-1 | Maximum Ratings                                   | 9  |
|-----------|---------------------------------------------------|----|
| Table 4-1 | Thermal Resistance                                | 10 |
| Table 5-1 | DC Characteristics at $T_A$ = 25 °C               | 11 |
| Table 5-2 | General AC Characteristics at $T_A$ = 25 °C       | 11 |
| Table 5-3 | AC Characteristics, $V_{CE}$ = 3 V, $f$ = 150 MHz | 12 |
| Table 5-4 | AC Characteristics, $V_{CE}$ = 3 V, $f$ = 450 MHz | 13 |
| Table 5-5 | AC Characteristics, $V_{CE}$ = 3 V, $f$ = 900 MHz | 13 |
| Table 5-6 | AC Characteristics, $V_{CE}$ = 3 V, $f$ = 1.5 GHz | 14 |
| Table 5-7 | AC Characteristics, $V_{CE}$ = 3 V, $f$ = 1.9 GHz | 14 |
| Table 5-8 | AC Characteristics, $V_{CE}$ = 3 V, $f$ = 2.4 GHz | 15 |
| Table 5-9 | AC Characteristics, $V_{CE}$ = 3 V, $f$ = 3.5 GHz | 15 |



**Product Brief** 


# 1 Product Brief

The BFP450 is a high linearity wideband NPN bipolar RF transistor. The collector design supports voltages up to  $V_{CEO}$  = 4.5 V and currents up to  $I_{C}$  = 170 mA. With its high linearity at currents as low as 50 mA the device supports energy efficient designs. The typical transition frequency is approximately 24 GHz, hence the device offers high power gain at frequencies up to 3 GHz in amplifier applications. The device is housed in an easy to use plastic package with visible leads.



## 2 Features

- Highly linear low noise driver amplifier for all RF frontends up to 3 GHz
- Based on Infineon's reliable high volume 25 GHz silicon bipolar technology
- Output compression point OP<sub>1dB</sub> = 19 dBm at 90 mA, 3 V, 1.9 GHz, 50 Ω system
- Output 3rd order intermodulation point *OIP3* = 31 dBm at 90 mA, 3 V, 1.9 GHz, 50 Ω system
- Maximum available gain  $G_{ma}$  = 15.5 dB at 50 mA, 3 V, 1.9 GHz
- Minimum noise figure  $NF_{min}$  = 1.7 dB at 50 mA, 3 V, 1.9 GHz
- Pb-free (RoHS compliant) and halogen-free package with visible leads
- Qualification report according to AEC-Q101 available





#### **Applications Examples**

Driver amplifier

- ISM bands 434 and 868 MHz
- 1.9 GHz cordless phones
- CATV LNA

Transmitter driver amplifier

• 2.4 GHz WLAN and Bluetooth

Output stage LNA for active antennas

• TV, GPS, SDARS, 2.4 GHz WLAN, etc

Suitable for 3 - 5.5 GHz oscillators

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

| Product Name | Package |       | Marking |       |       |     |
|--------------|---------|-------|---------|-------|-------|-----|
| BFP450       | SOT343  | 1 = B | 2 = E   | 3 = C | 4 = E | ANs |



**Maximum Ratings** 

# 3 Maximum Ratings

#### Table 3-1 Maximum Ratings

| Parameter                             | Symbol           | Values |      | Unit | Note / Test Condition          |  |
|---------------------------------------|------------------|--------|------|------|--------------------------------|--|
|                                       |                  | Min.   | Max. |      |                                |  |
| Collector emitter voltage             | $V_{CEO}$        |        |      |      | Open base                      |  |
|                                       |                  | -      | 4.5  | V    | <i>T</i> <sub>A</sub> = 25 °C  |  |
|                                       |                  | _      | 4.1  | V    | <i>T</i> <sub>A</sub> = -55 °C |  |
| Collector emitter voltage             | $V_{CES}$        | -      | 15   | V    | E-B short circuited            |  |
| Collector base voltage                | V <sub>CBO</sub> | -      | 15   | V    | Open emitter                   |  |
| Emitter base voltage                  | $V_{EBO}$        | -      | 1.5  | V    | Open collector                 |  |
| Collector current                     | I <sub>C</sub>   | -      | 170  | mA   | -                              |  |
| Base current                          | IB               | -      | 10   | mA   | -                              |  |
| Total power dissipation <sup>1)</sup> | P <sub>tot</sub> | -      | 500  | mW   | <i>T</i> <sub>S</sub> ≤ 90 °C  |  |
| Junction temperature                  | TJ               | -      | 150  | °C   | -                              |  |
| Storage temperature                   | T <sub>Stg</sub> | -55    | 150  | °C   | -                              |  |

1)  $T_{\rm S}$  is the soldering point temperature.  $T_{\rm S}$  is measured on the emitter lead at the soldering point of the pcb.

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.



# 4 Thermal Characteristics

#### Table 4-1 Thermal Resistance

| Parameter                                | Symbol            | Values |      |      | Unit | Note / Test Condition |  |
|------------------------------------------|-------------------|--------|------|------|------|-----------------------|--|
|                                          |                   | Min.   | Тур. | Max. |      |                       |  |
| Junction - soldering point <sup>1)</sup> | R <sub>thJS</sub> | _      | 120  | _    | K/W  | -                     |  |

1) For the definition of  $R_{\text{thJS}}$  please refer to Application Note AN077 (Thermal Resistance Calculation)

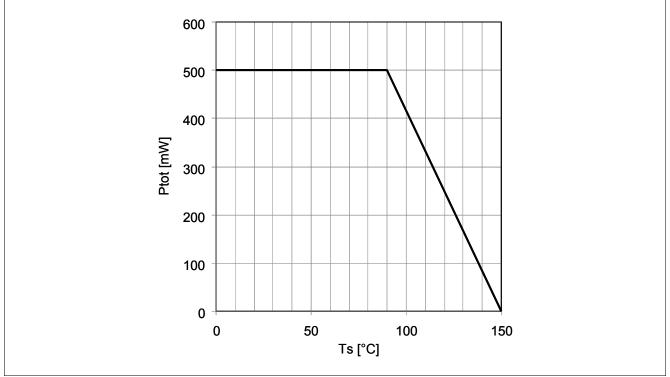



Figure 4-1 Total Power Dissipation  $P_{tot} = f(T_s)$ 



# 5 Electrical Characteristics

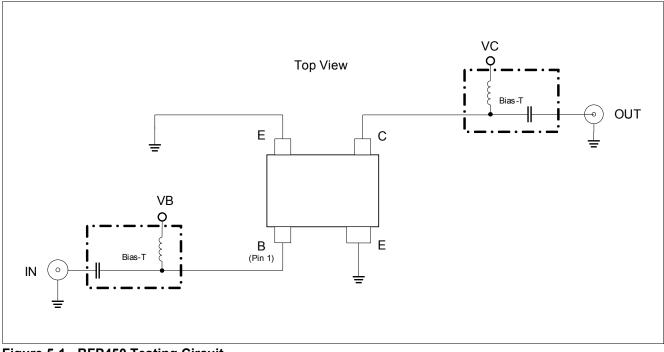
## 5.1 DC Characteristics

### Table 5-1 DC Characteristics at $T_A = 25 \text{ °C}$

| Parameter                           | Symbol            | Values |      |                  | Unit | Note / Test Condition                   |
|-------------------------------------|-------------------|--------|------|------------------|------|-----------------------------------------|
|                                     |                   | Min.   | Тур. | Max.             |      |                                         |
| Collector emitter breakdown voltage | $V_{\rm (BR)CEO}$ | 4.5    | 5    | -                | V    | $I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 0     |
|                                     |                   |        |      |                  |      | Open base                               |
| Collector emitter leakage current   | I <sub>CES</sub>  | -      | -    | 1 <sup>1)</sup>  | μA   | $V_{\rm CE}$ = 15 V, $V_{\rm BE}$ = 0   |
|                                     |                   | -      | 1    | 30 <sup>1)</sup> | nA   | $V_{\rm CE}$ = 3 V, $V_{\rm BE}$ = 0    |
|                                     |                   |        |      |                  |      | E-B short circuited                     |
| Collector base leakage current      | I <sub>CBO</sub>  | -      | 1    | 30 <sup>1)</sup> | nA   | $V_{\rm CB}$ = 3 V, $I_{\rm E}$ = 0     |
|                                     |                   |        |      |                  |      | Open emitter                            |
| Emitter base leakage current        | I <sub>EBO</sub>  | -      | 0.05 | 3 <sup>1)</sup>  | μA   | $V_{\rm EB}$ = 0.5 V, $I_{\rm C}$ = 0   |
|                                     |                   |        |      |                  |      | Open collector                          |
| DC current gain                     | $h_{FE}$          | 60     | 95   | 130              |      | $V_{\rm CE}$ = 4 V, $I_{\rm C}$ = 50 mA |
|                                     |                   | 50     | 85   | 120              |      | $V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 90 mA |
|                                     |                   |        |      |                  |      | Pulse measured                          |

1) Maximum values not limited by the device but the short cycle time of the 100% test

## 5.2 General AC Characteristics


## Table 5-2 General AC Characteristics at $T_A$ = 25 °C

| Parameter                     | Symbol          | Values    |      |      | Unit | Note / Test Condition                                                       |  |
|-------------------------------|-----------------|-----------|------|------|------|-----------------------------------------------------------------------------|--|
|                               |                 | Min. Typ. |      | Max. |      |                                                                             |  |
| Transition frequency          | f <sub>T</sub>  | 18        | 24   | -    | GHz  | $V_{CE}$ = 3 V, $I_C$ = 90 mA,<br>f = 1 GHz                                 |  |
| Collector base capacitance    | C <sub>CB</sub> | -         | 0.48 | 0.8  | pF   | $V_{CB}$ = 3 V, $V_{BE}$ = 0 V<br>f = 1 MHz<br>Emitter grounded             |  |
| Collector emitter capacitance | C <sub>CE</sub> | -         | 1.2  | -    | pF   | $V_{CE}$ = 3 V, $V_{BE}$ = 0 V<br>f = 1 MHz<br>Base grounded                |  |
| Emitter base capacitance      | C <sub>EB</sub> | -         | 1.7  | -    | pF   | $V_{\rm EB}$ = 0.5 V, $V_{\rm CB}$ = 0 V<br>f = 1 MHz<br>Collector grounded |  |



## 5.3 Frequency Dependent AC Characteristics

Measurement setup is a test fixture with Bias T's in a 50  $\Omega$  system,  $T_{\rm A}$  = 25 °C



### Figure 5-1 BFP450 Testing Circuit

### Table 5-3 AC Characteristics, $V_{CE}$ = 3 V, f = 150 MHz

| Parameter                      | Symbol            | Symbol Values |      |      |     | Note / Test Condition                   |
|--------------------------------|-------------------|---------------|------|------|-----|-----------------------------------------|
|                                |                   | Min.          | Тур. | Max. |     |                                         |
| Maximum power gain             |                   |               |      |      | dB  |                                         |
| High linearity operation point | $G_{\sf ms}$      | _             | 34.5 | -    |     | <i>I</i> <sub>C</sub> = 50 mA           |
| Class A operation point        | $G_{\sf ms}$      | _             | 35.5 | -    |     | <i>I</i> <sub>C</sub> = 90 mA           |
| Transducer gain                |                   |               |      |      | dB  | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| High linearity operation point | S <sub>21</sub>   | _             | 33   | -    |     | <i>I</i> <sub>C</sub> = 50 mA           |
| Class A operation point        | S <sub>21</sub>   | _             | 33.5 | -    |     | <i>I</i> <sub>C</sub> = 90 mA           |
| Minimum noise figure           |                   |               |      |      | dB  | $Z_{\rm S} = Z_{\rm opt}$               |
| Minimum noise figure           | $NF_{\sf min}$    | _             | 1.55 | -    |     | $I_{\rm C} = 50 {\rm mA}$               |
| Associated gain                | $G_{ass}$         | _             | 32   | -    |     | <i>I</i> <sub>C</sub> = 50 mA           |
| Linearity                      |                   |               |      |      | dBm | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω        |
| 1 dB gain compression point    | OP <sub>1dB</sub> | _             | 19   | -    |     | <i>I</i> <sub>C</sub> = 90 mA           |
| 3rd order intercept point      | OIP3              | _             | 30.5 | -    |     | <i>I</i> <sub>C</sub> = 90 mA           |



#### **Electrical Characteristics**

## Table 5-4 AC Characteristics, $V_{CE}$ = 3 V, f = 450 MHz

| Parameter                      | Symbol            | Symbol Values |      |      | Unit | Note / Test Condition                   |
|--------------------------------|-------------------|---------------|------|------|------|-----------------------------------------|
|                                |                   | Min.          | Тур. | Max. |      |                                         |
| Maximum power gain             |                   |               |      |      | dB   |                                         |
| High linearity operation point | $G_{\sf ms}$      | _             | 28.5 | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | $G_{\sf ms}$      | _             | 29   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Transducer gain                |                   |               |      |      | dB   | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| High linearity operation point | S <sub>21</sub>   | _             | 25   | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | S <sub>21</sub>   | _             | 25   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Minimum noise figure           |                   |               |      |      | dB   | $Z_{\rm S} = Z_{\rm opt}$               |
| Minimum noise figure           | NF <sub>min</sub> | _             | 1.55 | _    |      | I <sub>C</sub> = 50 mA                  |
| Associated gain                | $G_{ass}$         | _             | 27.5 | _    |      | I <sub>C</sub> = 50 mA                  |
| Linearity                      |                   |               |      |      | dBm  | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| 1 dB gain compression point    | OP <sub>1dB</sub> | _             | 19   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| 3rd order intercept point      | OIP3              | _             | 30   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |

## Table 5-5 AC Characteristics, $V_{CE}$ = 3 V, f = 900 MHz

| Parameter                      | Symbol            | Values |      |      | Unit | Note / Test Condition                   |
|--------------------------------|-------------------|--------|------|------|------|-----------------------------------------|
|                                |                   | Min.   | Тур. | Max. |      |                                         |
| Maximum power gain             |                   |        |      |      | dB   |                                         |
| High linearity operation point | $G_{\sf ms}$      | _      | 23   | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | $G_{\sf ms}$      | _      | 23.5 | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Transducer gain                |                   |        |      |      | dB   | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| High linearity operation point | S <sub>21</sub>   | _      | 18.5 | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | S <sub>21</sub>   | _      | 19   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Minimum noise figure           |                   |        |      |      | dB   | $Z_{\rm S}$ = $Z_{\rm opt}$             |
| Minimum noise figure           | $NF_{\sf min}$    | _      | 1.6  | _    |      | I <sub>C</sub> = 50 mA                  |
| Associated gain                | $G_{ass}$         | _      | 23   | _    |      | I <sub>C</sub> = 50 mA                  |
| Linearity                      |                   |        |      |      | dBm  | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| 1 dB gain compression point    | OP <sub>1dB</sub> | -      | 19   | -    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| 3rd order intercept point      | OIP3              | _      | 30.5 | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |



#### **Electrical Characteristics**

## Table 5-6 AC Characteristics, $V_{CE}$ = 3 V, f = 1.5 GHz

| Parameter                      | Symbol            | Values |      |      | Unit | Note / Test Condition                   |
|--------------------------------|-------------------|--------|------|------|------|-----------------------------------------|
|                                |                   | Min.   | Тур. | Max. |      |                                         |
| Maximum power gain             |                   |        |      |      | dB   |                                         |
| High linearity operation point | $G_{ma}$          | _      | 18   | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | $G_{\sf ma}$      | _      | 18   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Transducer gain                |                   |        |      |      | dB   | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| High linearity operation point | S <sub>21</sub>   | _      | 14   | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | S <sub>21</sub>   | _      | 14   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Minimum noise figure           |                   |        |      |      | dB   | $Z_{\rm S} = Z_{\rm opt}$               |
| Minimum noise figure           | $NF_{min}$        | _      | 1.65 | _    |      | I <sub>C</sub> = 50 mA                  |
| Associated gain                | $G_{ass}$         | _      | 17   | _    |      | I <sub>C</sub> = 50 mA                  |
| Linearity                      |                   |        |      |      | dBm  | Z <sub>S</sub> = Z <sub>L</sub> = 50 Ω  |
| 1 dB gain compression point    | OP <sub>1dB</sub> | _      | 19   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| 3rd order intercept point      | OIP3              | _      | 31   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |

## Table 5-7 AC Characteristics, $V_{CE}$ = 3 V, f = 1.9 GHz

| Parameter                      | Symbol            | Values |      |      | Unit | Note / Test Condition                   |
|--------------------------------|-------------------|--------|------|------|------|-----------------------------------------|
|                                |                   | Min.   | Тур. | Max. |      |                                         |
| Maximum power gain             |                   |        |      |      | dB   |                                         |
| High linearity operation point | $G_{ma}$          | _      | 15.5 | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | $G_{\sf ma}$      | _      | 15.5 | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Transducer gain                |                   |        |      |      | dB   | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| High linearity operation point | S <sub>21</sub>   | 9.5    | 11.5 | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | S <sub>21</sub>   | _      | 11.5 | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Minimum noise figure           |                   |        |      |      | dB   | $Z_{\rm S}$ = $Z_{\rm opt}$             |
| Minimum noise figure           | $NF_{\sf min}$    | _      | 1.7  | _    |      | I <sub>C</sub> = 50 mA                  |
| Associated gain                | $G_{ass}$         | _      | 14   | _    |      | I <sub>C</sub> = 50 mA                  |
| Linearity                      |                   |        |      |      | dBm  | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| 1 dB gain compression point    | OP <sub>1dB</sub> | -      | 19   | -    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| 3rd order intercept point      | OIP3              | _      | 31   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |

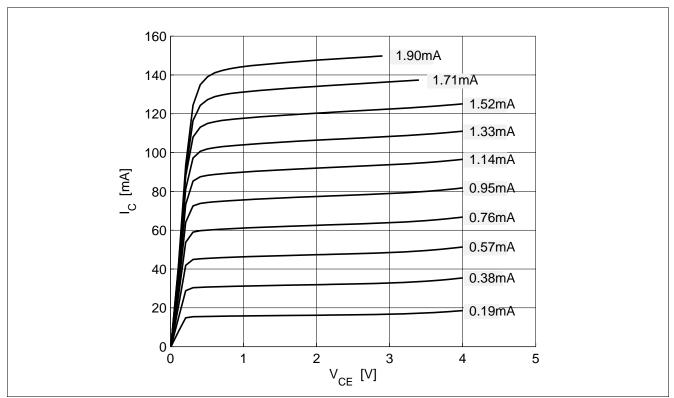


#### **Electrical Characteristics**

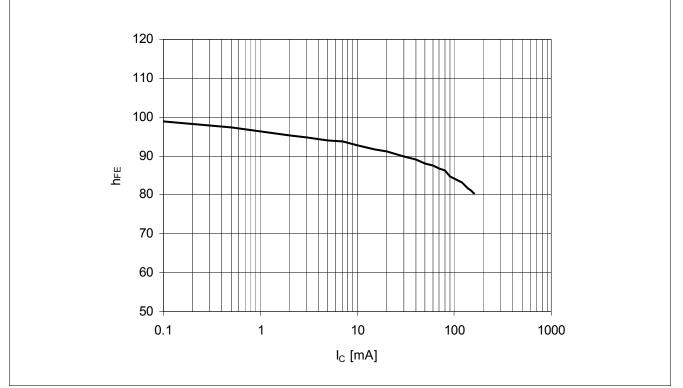
### Table 5-8 AC Characteristics, $V_{CE}$ = 3 V, f = 2.4 GHz

| Parameter                      | Symbol            | Values |      |      | Unit | Note / Test Condition                   |
|--------------------------------|-------------------|--------|------|------|------|-----------------------------------------|
|                                |                   | Min.   | Тур. | Max. |      |                                         |
| Maximum power gain             |                   |        |      |      | dB   |                                         |
| High linearity operation point | $G_{ma}$          | _      | 13.5 | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | $G_{\sf ma}$      | _      | 13.5 | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Transducer gain                |                   |        |      |      | dB   | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| High linearity operation point | S <sub>21</sub>   | _      | 9.5  | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | S <sub>21</sub>   | _      | 9.5  | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Minimum noise figure           |                   |        |      |      | dB   | $Z_{\rm S}$ = $Z_{\rm opt}$             |
| Minimum noise figure           | NF <sub>min</sub> | _      | 1.8  | _    |      | I <sub>C</sub> = 50 mA                  |
| Associated gain                | $G_{ass}$         | _      | 12   | _    |      | I <sub>C</sub> = 50 mA                  |
| Linearity                      |                   |        |      |      | dBm  | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| 1 dB gain compression point    | OP <sub>1dB</sub> | _      | 19   | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| 3rd order intercept point      | OIP3              | -      | 30   | -    |      | <i>I</i> <sub>C</sub> = 90 mA           |

#### Table 5-9 AC Characteristics, $V_{CE}$ = 3 V, f = 3.5 GHz


| Parameter                      | Symbol          | Values |      |      | Unit | Note / Test Condition                   |
|--------------------------------|-----------------|--------|------|------|------|-----------------------------------------|
|                                |                 | Min.   | Тур. | Max. |      |                                         |
| Maximum power gain             |                 |        |      |      | dB   |                                         |
| High linearity operation point | $G_{ma}$        | _      | 10   | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | $G_{ma}$        | _      | 10   | _    |      | I <sub>C</sub> = 90 mA                  |
| Transducer gain                |                 |        |      |      | dB   | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| High linearity operation point | S <sub>21</sub> | -      | 5.5  | _    |      | I <sub>C</sub> = 50 mA                  |
| Class A operation point        | S <sub>21</sub> | -      | 6    | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| Minimum noise figure           |                 |        |      |      | dB   | $Z_{\rm S} = Z_{\rm opt}$               |
| Minimum noise figure           | $NF_{min}$      | -      | 2.05 | _    |      | I <sub>C</sub> = 50 mA                  |
| Associated gain                | $G_{ass}$       | -      | 9    | _    |      | I <sub>C</sub> = 50 mA                  |
| Linearity                      |                 |        |      |      | dBm  | $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega$ |
| 1 dB gain compression point    | $OP_{1dB}$      | -      | 18.5 | _    |      | <i>I</i> <sub>C</sub> = 90 mA           |
| 3rd order intercept point      | OIP3            | -      | 29.5 | -    |      | <i>I</i> <sub>C</sub> = 90 mA           |

#### Notes


- 1. AC parameter limits verified by random sampling
- 2. In order to get the NF<sub>min</sub> values stated in this chapter the test fixture losses have been subtracted from all measured result
- 3. *OIP3* value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50  $\Omega$  from 0.2 MHz to 12 GHz.



## 5.4 Characteristic DC Diagrams













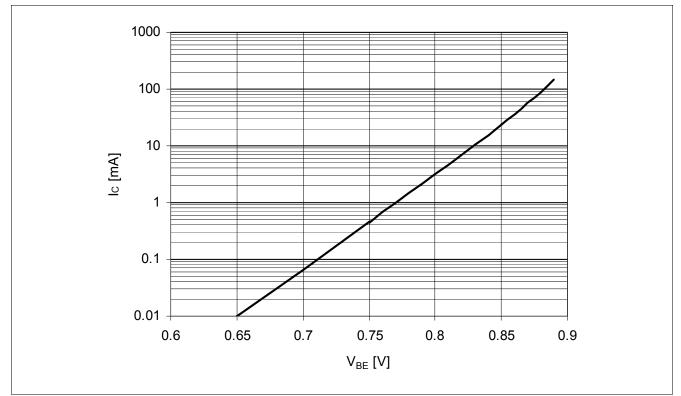



Figure 5-4 Collector Current vs. Base Emitter Voltage  $I_{c} = f(V_{BE}), V_{CE} = 2 V$ 

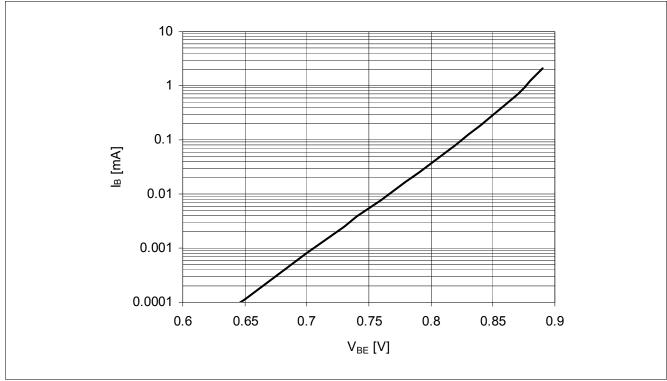



Figure 5-5 Base Current vs. Base Emitter Forward Voltage  $I_{\rm B}$  =  $f(V_{\rm BE})$ ,  $V_{\rm CE}$  = 2 V





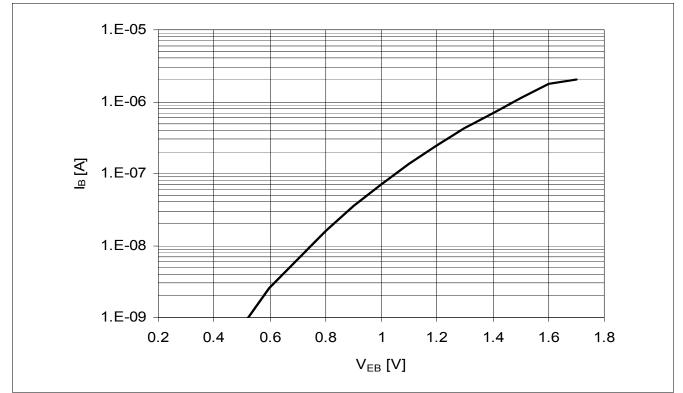



Figure 5-6 Base Current vs. Base Emitter Reverse Voltage  $I_{\rm B}$  =  $f(V_{\rm EB})$ ,  $V_{\rm CE}$  = 2 V



**Electrical Characteristics** 

## 5.5 Characteristic AC Diagrams

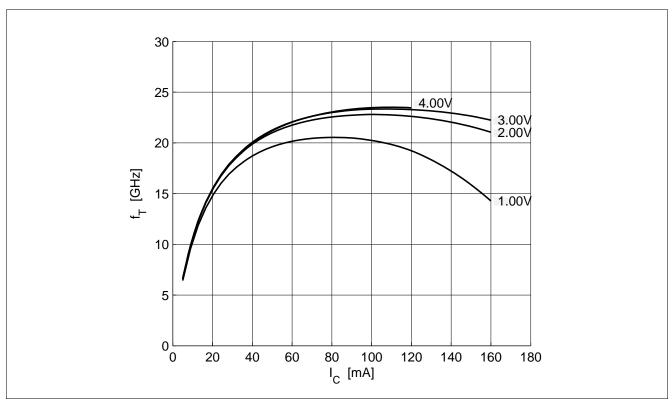
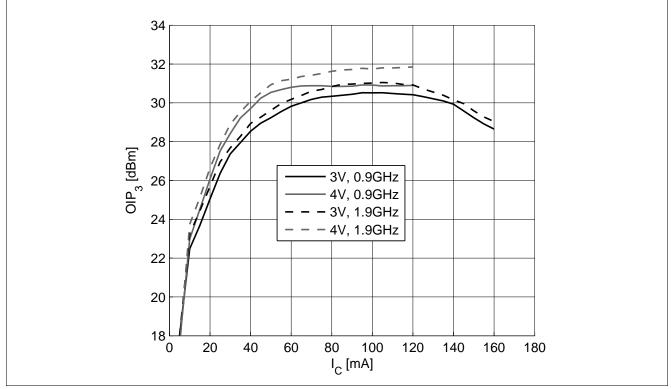
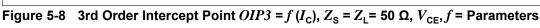
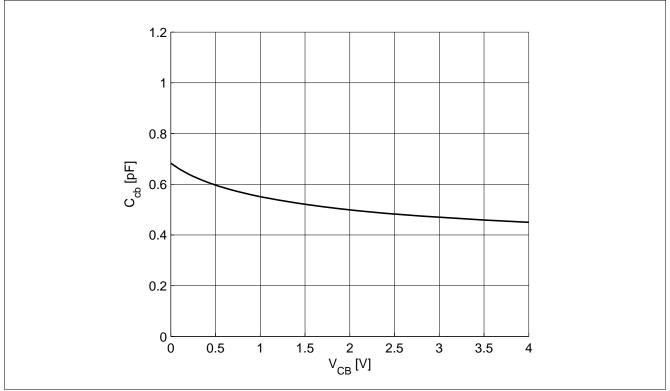







Figure 5-7 Transition Frequency  $f_{T} = f(I_{C}), f = 1$  GHz,  $V_{CE}$  = Parameter in V











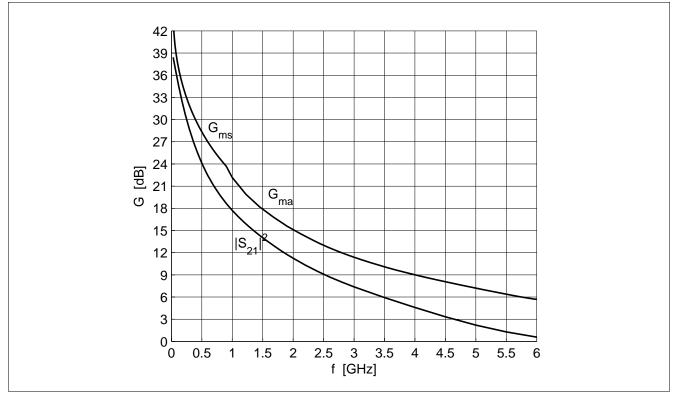



Figure 5-10 Gain  $G_{ma}$ ,  $G_{ms}$ ,  $IS_{21}I^2 = f(f)$ ,  $V_{CE} = 3 V$ ,  $I_C = 90 mA$ 

Datasheet

BFP450



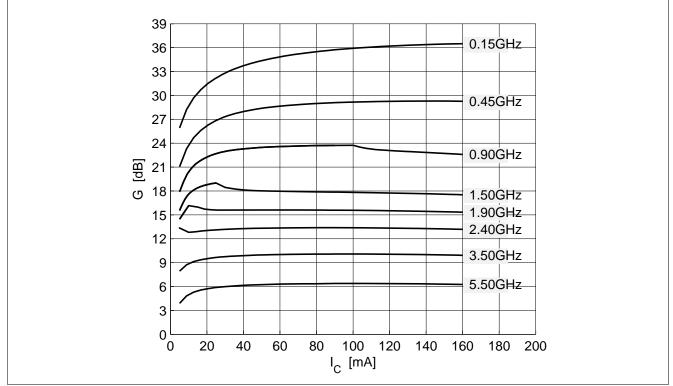



Figure 5-11 Maximum Power Gain  $G_{max} = f(I_c)$ ,  $V_{CE} = 3 V$ , = Parameter in GHz

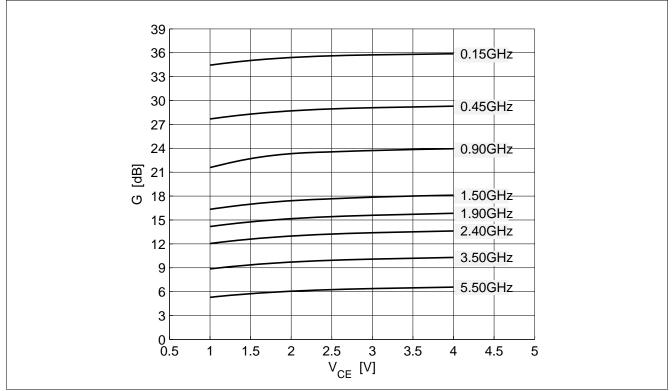



Figure 5-12 Maximum Power Gain  $G_{max} = f(V_{CE}), I_C = 90 \text{ mA}, = \text{Parameter in GHz}$ 



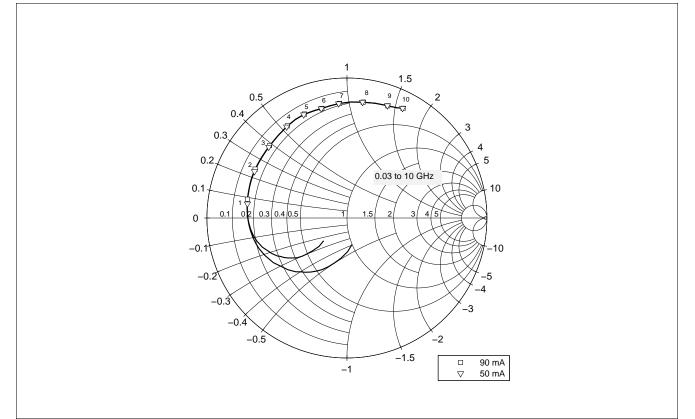



Figure 5-13 Input Matching  $S_{11} = f(f)$ ,  $V_{CE} = 3 \text{ V}$ ,  $I_{C} = 50 / 90 \text{ mA}$ 

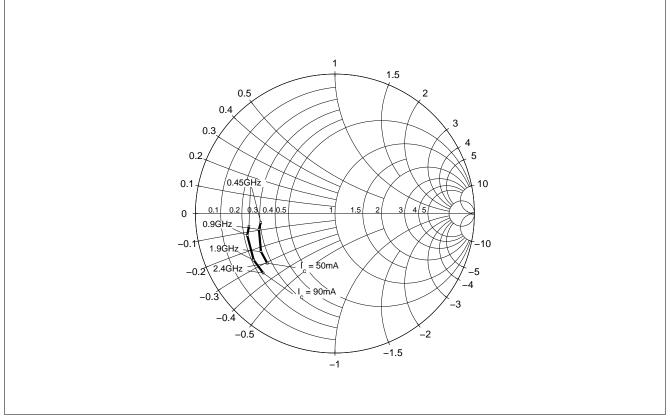



Figure 5-14 Source Impedance for Minimum Noise Figure = f(f),  $V_{CE}$  = 3 V,  $I_{C}$  = 50 / 90 mA



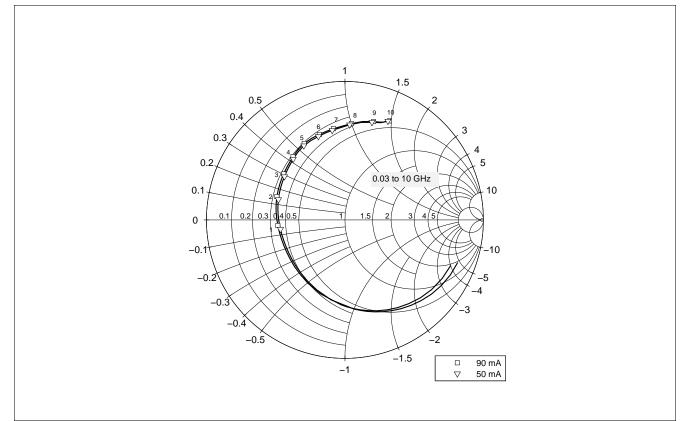



Figure 5-15 Output Matching  $S_{22} = f(f)$ ,  $V_{CE} = 3 V$ ,  $I_C = 50 / 90 mA$ 

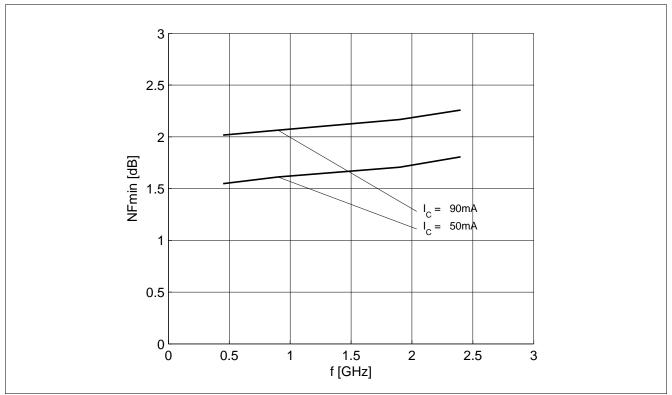



Figure 5-16 Noise Figure  $NF_{min} = f(f)$ ,  $V_{CE} = 3 V$ ,  $I_C = 50 / 90 mA$ ,  $Z_S = Z_{opt}$ 



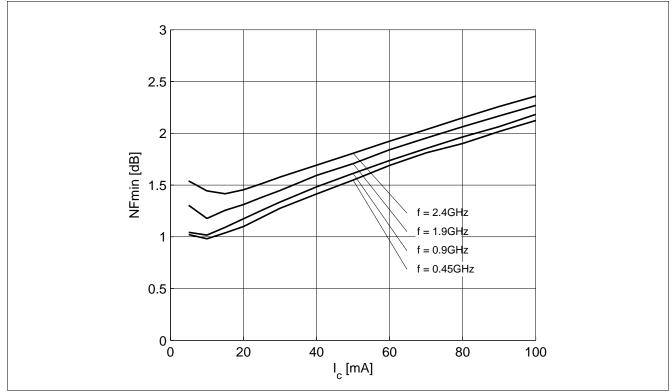



Figure 5-17 Noise Figure  $NF_{min} = f(I_{c}), V_{CE} = 3 V, Z_{s} = Z_{opt}$  = Parameter in GHz

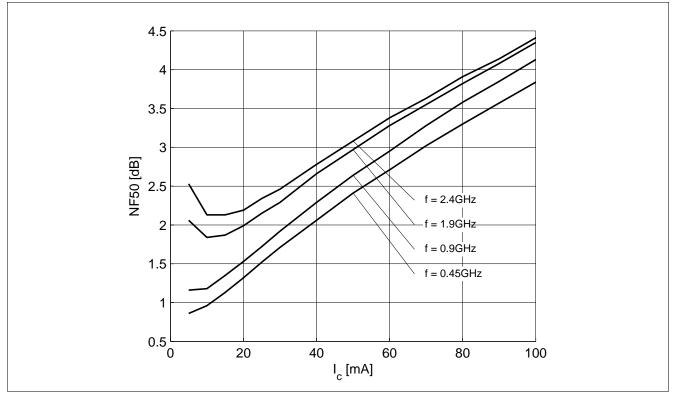



Figure 5-18 Noise Figure  $NF_{50}$  =  $f(I_{\rm C})$ ,  $V_{\rm CE}$  = 3 V,  $Z_{\rm S}$  = 50  $\Omega$ = Parameter in GHz





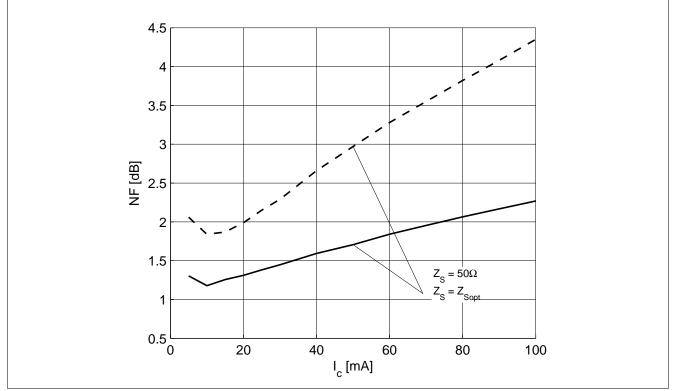


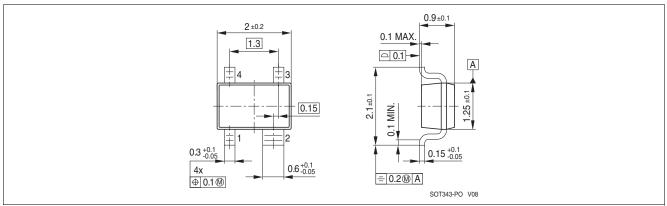

Figure 5-19 Comparison Noise Figure  $NF_{50}$  /  $NF_{min}$ =  $f(I_C)$ ,  $V_{CE}$  = 3 V, f = 1.9 GHz

Note: The curves shown in this chapter have been generated using typical devices but shall not be considered as a guarantee that all devices have identical characteristic curves.  $T_A = 25$  °C.



**Simulation Data** 

# 6 Simulation Data


For the SPICE Gummel Poon (GP) model as well as for the S-parameters (including noise parameters) please refer to our internet website: www.infineon.com/rf.models. Please consult our website and download the latest versions before actually starting your design.

You find the BFP450 SPICE GP model in the internet in MWO- and ADS-format, which you can import into these circuit simulation tools very quickly and conveniently. The model already contains the package parasitics and is ready to use for DC- and high frequency simulations. The terminals of the model circuit correspond to the pin configuration of the device.

The model parameters have been extracted and verified up to 10 GHz using typical devices. The BFP450 SPICE GP model reflects the typical DC- and RF-performance within the limitations which are given by the SPICE GP model itself.

Package Information SOT343

# 7 Package Information SOT343



### Figure 7-1 Package Outline

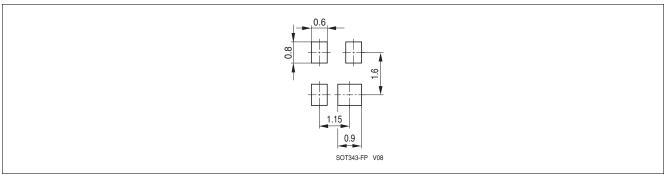



Figure 7-2 Package Footprint

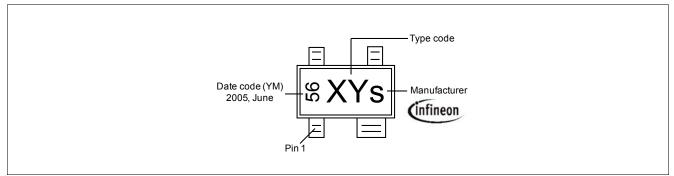



Figure 7-3 Marking Description (Marking BFP450: ANs)

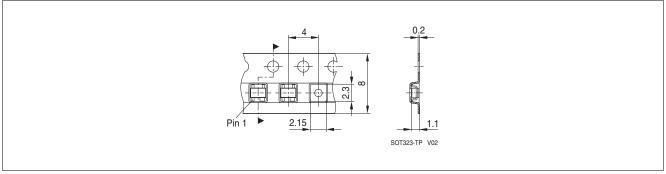



Figure 7-4 Tape Dimensions

www.infineon.com

Published by Infineon Technologies AG