

100mA REGULATED CHARGE PUMP

AP3602A/B

Pin Configuration

K Package

Figure 2. Pin Configuration of AP3602A/B (Top View)

Pin Description

Pin Number	Pin Name	Function
1	V _{OUT}	Regulated Output Voltage. V_{OUT} should be bypassed with a 1µF to 22µF low ESR ceramic capacitor which is placed as close to the pin as possible for best performance
2	GND	Ground. GND should be tied to a ground plane for best performance. The $C_{\rm OUT}$ and $C_{\rm IN}$ should be placed as close to this pin as possible
3	SHDN	Active Low Shutdown Input. A low signal on SHDN disables the AP3602A/B, while a high signal enables the AP3602A/B. SHDN pin must not be allowed to float
4	C-	Flying Capacitor Negative Terminal. The flying capacitor should be placed as close to this pin as possible
5	V _{IN}	Input Supply Voltage. V_{IN} should be bypassed with a 1µF to 22µF low ESR ceramic capacitor which is placed as close to the pin as possible for best performance
6	C+	Flying Capacitor Positive Terminal. The flying capacitor should be placed as close to this pin as possible

100mA REGULATED CHARGE PUMP

AP3602A/B

Functional Block Diagram

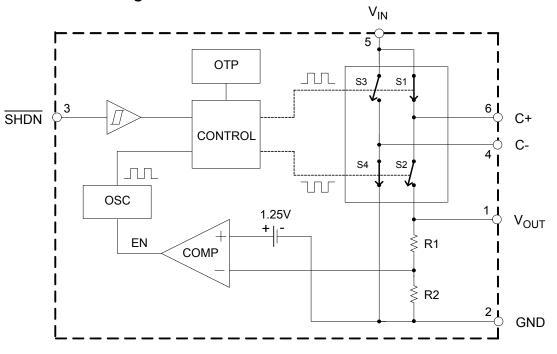
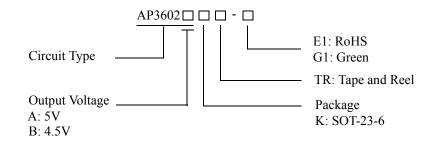



Figure 3. Functional Block Diagram of AP3602A/B

Ordering Information

Package	Temperature Range	Part N	Number	Marki	Packing Type	
		RoHS	Green	RoHS	Green	Tacking Type
SOT-23-6	6 -40 to 85°C	AP3602AKTR-E1	AP3602AKTR-G1	E7T	G7T	Tape & Reel
		AP3602BKTR-E1	AP3602BKTR-G1	E8T	G8T	Tape & Reel

BCD Semiconductor's products as designated with "E1" suffix in the part number are RoHS compliant. Products with "G1" suffix are available in green packages.

100mA REGULATED CHARGE PUMP

AP3602A/B

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Input Voltage	V _{IN}	7	V
Output Voltage	V _O	7	V
SHDN Pin Voltage	V _{SHDN}	7	V
Thermal Resistance (Junction to Ambient, no Heat sink)	R _{θJA}	300	°C/W
Operating Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	T _{LEAD}	260	°C
ESD (Human Body Model)		2000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol		Min	Max	Unit
Input Voltage	Var	AP3602A	2.7	5	V
input voltage	v _{IN}	AP3602B	2.7	4.5	v
Operating Temperature	T _A		-40	85	°C

100mA REGULATED CHARGE PUMP

AP3602A/B

Electrical Characteristics

(C_{FLY}=1 μ F, C_{IN}=C_{OUT}=10 μ F, T_A=25°C, unless otherwise specified.)

For AP3602A

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Input Voltage	V _{IN}	V _O =5V	2.7		V _O	V	
Quiescent Current	I _Q	V_{IN} =2.7V to 5.0V, I_O =0mA, $V_{\overline{SHDN}}$ = V_{IN} , Not Switching		13	30	μΑ	
Output Voltage	Vo	2.7V <v<sub>IN<5V, I_O≤50mA</v<sub>	4.8	5.0	5.2	- V	
Sulput Voluge	.0	3.0V <v<sub>IN<5V, I_O≤100mA</v<sub>	4.8	5.0	5.2		
Shutdown Supply Current	I _{SHDN}	$2.7V < V_{IN} < 3.6V, I_{O} = 0, V_{SHDN} = 0V$		0.01	1	- μΑ	
Shudown Suppry Current	SHDN	$3.6V < V_{IN} < 5.0V, I_{O} = 0, V_{\overline{SHDN}} = 0V$			2.5		
Ripple Voltage	V _{RIPPLE}	V _{IN} =2.7V, I _O =50mA		25		mV _{PP}	
Ripple voluge	' KIPPLE	V _{IN} =3V, I _O =100mA		30		III V PP	
Efficiency	η	V _{IN} =2.7V, I _O =50mA		92		%	
Frequency	f _{OSC}	Oscillator free running		1.2		MHz	
SHDN Input Threshold High	V _{IH}		1.4			V	
SHDN Input Threshold Low	V _{IL}				0.3	V	
SHDN Input Current High	I _{IH}	$V_{\overline{SHDN}} = V_{IN}$	-1		1	μA	
SHDN Input Current Low	I _{IL}	V _{SHDN} =GND	-1		1	μΑ	
V _{OUT} Turn-on Time	t _{ON}	V _{IN} =3V, I _O =0mA		0.2		ms	
Short-Circuit Current	I _{SC}	$V_{IN}=3V, V_O=GND, V_{\overline{SHDN}}=3V$		300		mA	

100mA REGULATED CHARGE PUMP

AP3602A/B

Electrical Characteristics (Continued)

(C_{FLY}=1 μ F, C_{IN}=C_{OUT}=10 μ F, T_A=25°C, unless otherwise specified.)

For AP3602B

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Input Voltage	V _{IN}	V ₀ =4.5V	2.7		Vo	V	
Quiescent Current	IQ	V_{IN} =2.7V to 4.5V, I_O =0mA, $V_{\overline{SHDN}}$ =V _{IN} , Not Switching		13	30	μΑ	
Output Voltage	Vo	2.7V <v<sub>IN<4.5V, I_O<50mA</v<sub>	4.32	4.5	4.68	- V	
Sulput Voltage	,0	3.0V <v<sub>IN<4.5V, I_O<100mA</v<sub>	4.32	4.5	4.68		
Shutdown Supply Current	I _{SHDN}	$2.7V < V_{IN} < 3.6V, I_{O} = 0, V_{\overline{SHDN}} = 0V$		0.01	1	- μΑ	
Shutdown Suppry Current	SHDN	$3.6V < V_{IN} < 4.5V, I_O = 0, V_{SHDN} = 0V$			2.5		
Ripple Voltage	V _{RIPPLE}	V _{IN} =2.7V, I _O =50mA		25		mV _{PP}	
Ripple voluge	' KIPPLE	V _{IN} =3V, I _O =100mA		30		III. t pp	
Efficiency	η	V _{IN} =2.7V, I _O =50mA		83		%	
Frequency	f _{OSC}	Oscillator free running		1.2		MHz	
SHDN Input Threshold High	V _{IH}		1.4			V	
SHDN Input Threshold Low	V _{IL}				0.3	v	
SHDN Input Current High	I _{IH}	$V_{\overline{SHDN}} = V_{IN}$	-1		1	μA	
SHDN Input Current Low	I _{IL}	$V_{\overline{SHDN}} = 0V$	-1		1	μΑ	
V _{OUT} Turn-on Time	t _{ON}	V _{IN} =3V, I _O =0mA		0.2		ms	
Short-Circuit Current	I _{SC}	$V_{IN}=3V, V_O=GND, V_{\overline{SHDN}}=3V$		300		mA	

Application Information

Operating Principles

The AP3602A/B use a switched capacitor charge pump to boost the input voltage to a regulated output voltage. Regulation is achieved by sensing the chip output voltage through an internal resistor divider network. Controlled by an internal comparator (refer to the functional block diagram), the charge pump circuit is enabled when the divided output voltage is below a preset trip point.

The charge pump operates at 1.2MHz with 50% duty cycle. Conversion consists of a two-phase operation. In the first phase, switches S2 and S3 are opened and S1 and S4 are closed. During this time, C_{FLY} charges to the voltage on V_{IN} and load current is supplied by C_{OUT} . During the second phase, S2 and S3 are closed, and S1 and S4 are opened. This action connects C_{FLY} low side to V_{IN} , C_{FLY} high side to V_{OUT} , then a voltage about 2* V_{IN} is used to charge C_{OUT} and supply the load current. For each cycle, charges is transported from V_{IN} to V_{OUT} to maintain the output voltage in its nominal value.

This process breaks when the V_{OUT} is high enough for the reason of higher input voltage or lower load, then the divided voltage at the control comparator exceeds the internal trip point high level, which compels the charge pump circuit enter to the idle mode in which the switching cycle stops (pulse skipping) and the output voltage is continually decreased because it is maintained by the discharging of C_{OUT} only. In idle mode, the feedback circuit continues sensing V_{OUT} . If the divided voltage at the control comparator drops below the preset trip point, the comparator will start the switching cycle again.

In idle mode, the AP3602A/B's quiescent current is about 13 μ A. In shutdown mode, all internal circuitry is turned off and the AP3602A/B draw only leakage current from V_{IN}, which is less than 1 μ A. So, the shutdown power loss for AP3602A/B is very low, that is beneficial to the battery supplied systems.

Short Circuit and Thermal Protection

The AP3602A/B have a thermal protection and shutdown circuit that continuously monitors the IC junction temperature.

When output short circuit occurs, the short circuit current is about 300mA (Typical). Under this condition, the I_{IN} is about 2*Iout, which causes about 1.8W instant power dissipation on AP3602A/B, that will cause a rise in the internal IC junction temperature. If the thermal protection circuit senses the junction temperature exceeding approximately 160°C, the thermal shutdown circuit will disable the charge pump switching circuit. The thermal hysteresis is about 10°C, which means that the charge pump circuit can be active when the short circuit is removed and the junction temperature drops below 150°C.

The thermal shutdown protection will cycle on and off if an output short circuit condition persists. This will allow the AP3602A/B to operate on a short circuit condition without latch up or damage to the device.

Dec. 2012 Rev. 2. 0

AP3602A/B

Typical Performance Characteristics

Typical Performance Characteristics for AP3602A

(Unless otherwise noted, V_{IN}=3.0V, C_{IN}=C_{OUT}=10µF, C_{FLY}=1µF Ceramic Cap, T_A=25°C)

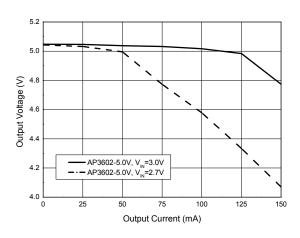


Figure 4. Output Voltage vs. Output Current

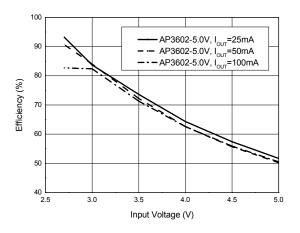


Figure 5. Efficiency vs. Input Voltage

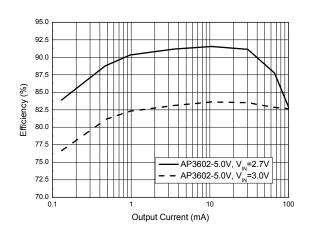
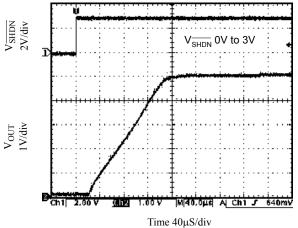



Figure 6. Efficiency vs. Output Current

AP3602A/B

Typical Performance Characteristics (Continued)

Typical Performance Characteristics for AP3602A (Continued)

(Unless otherwise noted, V_{IN} =3.0V, C_{IN} = C_{OUT} =10µF, C_{FLY} =1µF Ceramic Cap, T_A =25°C)

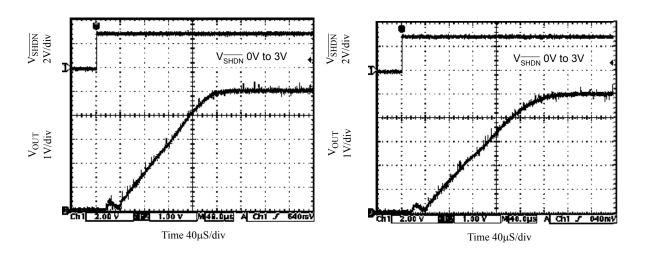


Figure 9. V_{OUT} Start Up Time, @ 100mA Load

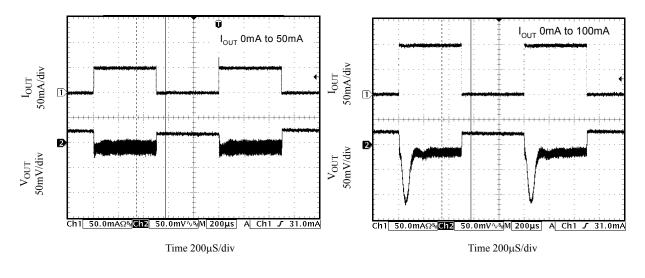
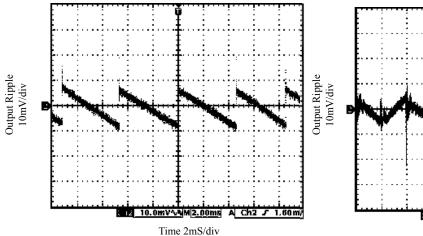


Figure 10. Load Transient Response

Figure 11. Load Transient Response



AP3602A/B

Typical Performance Characteristics (Continued)

Typical Performance Characteristics for AP3602A (Continued)

(Unless otherwise noted, V_{IN} =3.0V, C_{IN} = C_{OUT} =10µF, C_{FLY} =1µF Ceramic Cap, T_A =25°C)

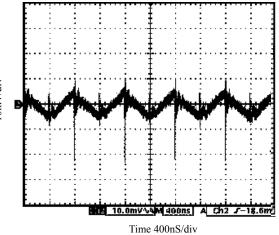


Figure 12. Output Ripple @ V_{IN} =2.7V, I_{OUT} =0mA

Figure 13. Output Ripple @ V_{IN} =2.7V, I_{OUT} =50mA

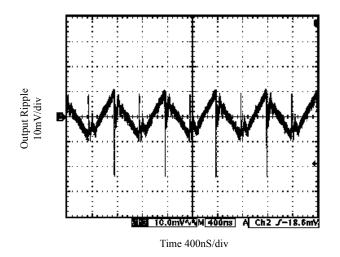
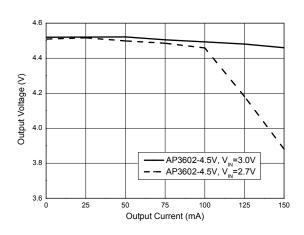


Figure 14. Output Ripple @ V_{IN} =2.7V, I_{OUT} =100mA

Dec. 2012 Rev. 2. 0

BCD Semiconductor Manufacturing Limited



AP3602A/B

Typical Performance Characteristics (Continued)

Typical Performance Characteristics for AP3602B

(Unless otherwise noted, V_{IN}=3.0V, C_{IN}=C_{OUT}=10µF, C_{FLY}=1µF Ceramic Cap, T_A=25°C)

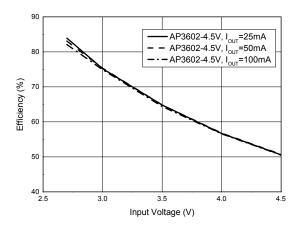
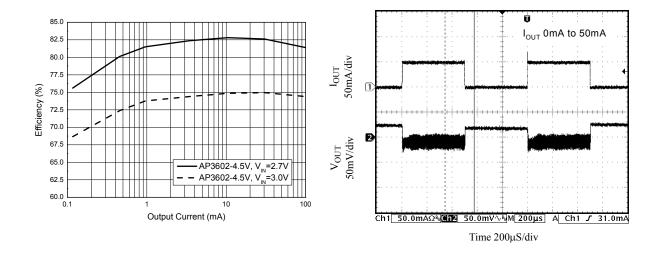



Figure 16. Efficiency vs. Input Voltage

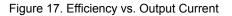
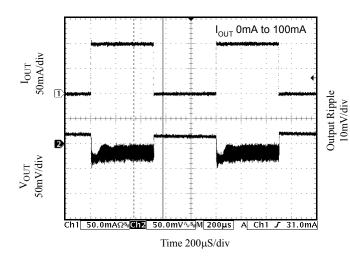


Figure 18. Load Transient Response



AP3602A/B

Typical Performance Characteristics (Continued)

Typical Performance Characteristics for AP3602B (Continued)

(Unless otherwise noted, V_{IN}=3.0V, C_{IN}=C_{OUT}=10µF, C_{FLY}=1µF Ceramic Cap, T_A=25°C)

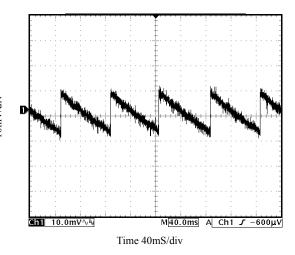


Figure 20. Output Ripple @ V_{IN}=2.7V, I_{OUT}=0mA

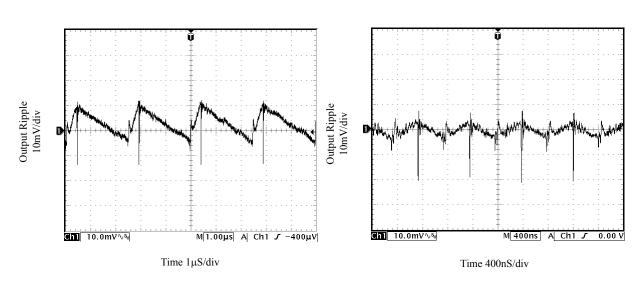


Figure 21. Output Ripple @ V_{IN}=2.7V, I_{OUT}=50mA

Figure 22. Output Ripple @ V_{IN}=2.7V, I_{OUT}=100mA

Dec. 2012 Rev. 2. 0

AP3602A/B

Typical Performance Characteristics (Continued)

Typical Performance Characteristics for AP3602A/B

(Unless otherwise noted, V_{IN}=3.0V, C_{IN}=C_{OUT}=10µF, C_{FLY}=1µF Ceramic Cap, T_A=25°C)

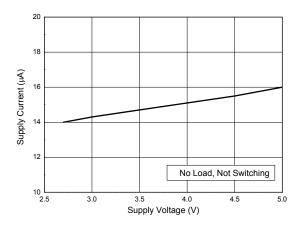


Figure 23. Supply Current vs. Supply Voltage

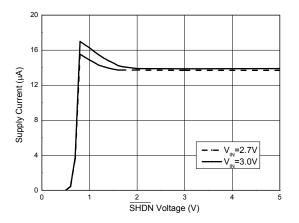


Figure 24. Supply Current vs. SHDN Voltage

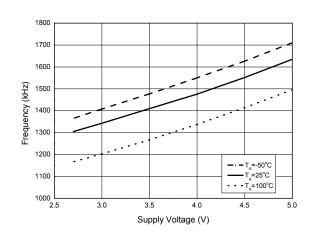


Figure 25. Oscillator Frequency vs. Supply Voltage

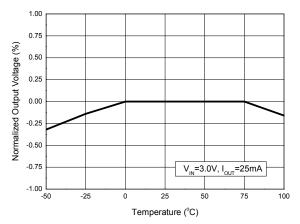


Figure 26. Normalized Output Voltage vs. Temperature

BCD Semiconductor Manufacturing Limited

Dec. 2012 Rev. 2. 0

100mA REGULATED CHARGE PUMP

AP3602A/B

Typical Performance Characteristics (Continued)

Typical Performance Characteristics for AP3602A/B (Continued)

(Unless otherwise noted, V_{IN}=3.0V, C_{IN}=C_{OUT}=10µF, C_{FLY}=1µF Ceramic Cap, T_A=25°C)

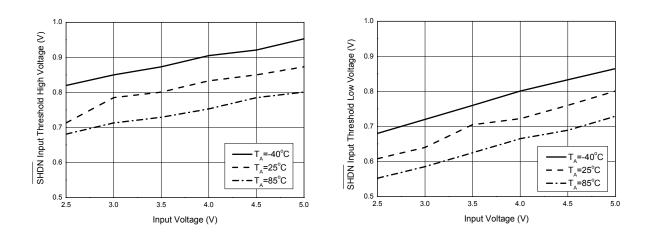


Figure 27. $\rm V_{IH}$ vs. $\rm V_{IN}$

Figure 28. V_{IL} vs. V_{IN}

100mA REGULATED CHARGE PUMP

AP3602A/B

Typical Application

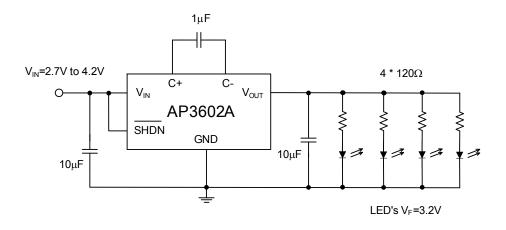


Figure 29. AP3602A Typical Application Circuit

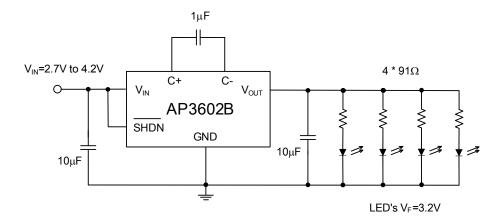
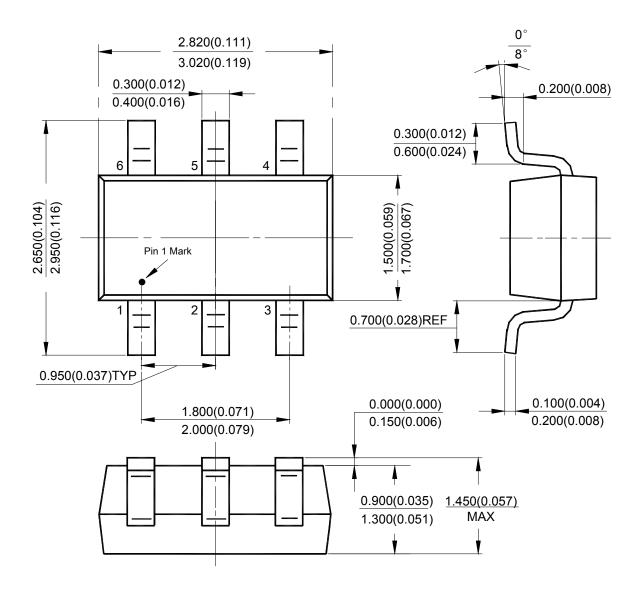


Figure 30. AP3602B Typical Application Circuit


AP3602A/B

100mA REGULATED CHARGE PUMP

Mechanical Dimensions

Unit: mm(inch)

Dec. 2012 Rev. 2. 0

BCD Semiconductor Manufacturing Limited

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan Tel: +886-2-2656 2808

Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel : +1-510-324-2988 Fax: +1-510-324-2788