Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-40			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -40V, V_{GS} = 0V$			-1	μΑ
		$T_J = 55^\circ$	С		-5	
I_{GSS}	Gate-Body leakage current	$V_{DS} = 0V$, $V_{GS} = \pm 20V$			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS} I_D = -250\mu A$	-1.7	-1.9	-2.5	V
$I_{D(ON)}$	On state drain current	$V_{GS} = -10V, V_{DS} = -5V$	-120			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -10V, I_D = -10A$		12.5	15	
		T _J =125°	С	19	23	mΩ
		$V_{GS} = -4.5V, I_D = -8A$		16	20	
g FS	Forward Transconductance	$V_{DS} = -5V, I_{D} = -10A$		25		S
V_{SD}	Diode Forward Voltage	$I_S = -1A, V_{GS} = 0V$		-0.7	-1	V
I _S	Maximum Body-Diode Continuous Curre	ent			-3	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			2500	3000	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-20V, f=1MHz		260		pF
C_{rss}	Reverse Transfer Capacitance			180		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	2.5	4	6	Ω
SWITCHII	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			42	55	nC
Q _g (4.5V)	Total Gate Charge	V_{GS} =-10V, V_{DS} =-20V, I_{D} =-10A		18.6		nC
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -20V, I _D -10A		7		nC
Q_{gd}	Gate Drain Charge	1		8.6		nC
t _{D(on)}	Turn-On DelayTime			9.4		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-20V,		20		ns
t _{D(off)}	Turn-Off DelayTime	$R_L = 2\Omega$, $R_{GEN} = 3\Omega$		55		ns
t _f	Turn-Off Fall Time			30		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-10A, dI/dt=100A/μs		38	49	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =-10A, dI/dt=100A/μs		47		nC

A: The value of R $_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25$ °C. The value in any given application depends on the user's specific board design.

Rev1: Nov. 2010

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using t \le 300 μ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with $T_A=25$ °C. The SOA curve provides a single pulse rating.

F. The current rating is based on the $t \leqslant 10\text{s}$ thermal resistance rating.

G. E_{AR} and I_{AR} ratings are based on low frequency and duty cycles to keep T_j=25C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

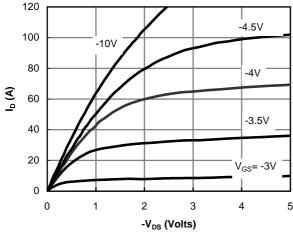


Figure 1: On-Region Characteristics

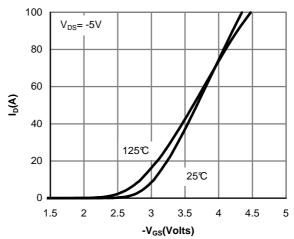


Figure 2: Transfer Characteristics

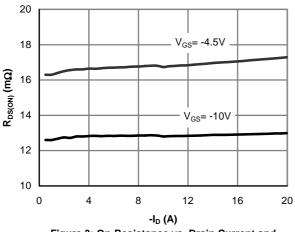


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

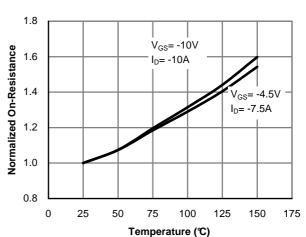


Figure 4: On-Resistance vs. Junction Temperature

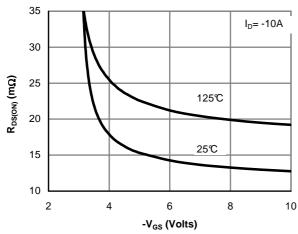


Figure 5: On-Resistance vs. Gate-Source Voltage

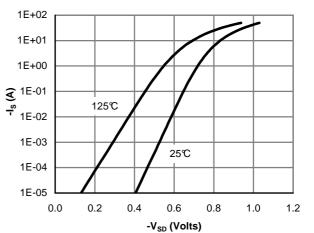


Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

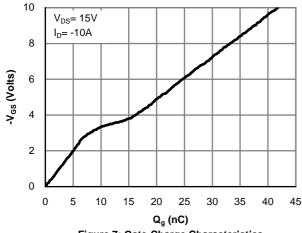


Figure 7: Gate-Charge Characteristics

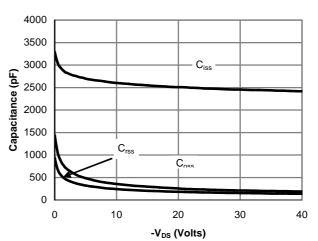


Figure 8: Capacitance Characteristics

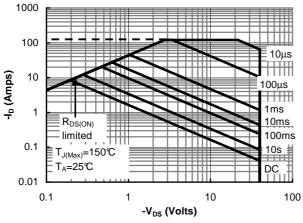


Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

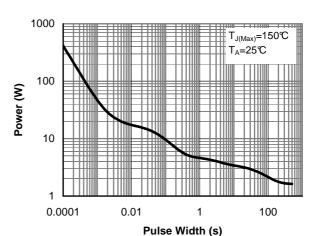


Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note E)

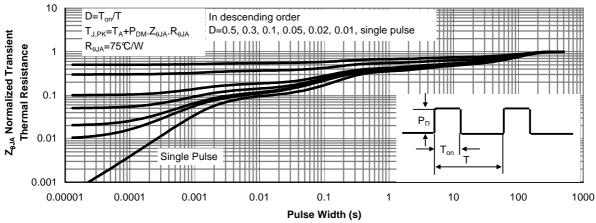


Figure 11: Normalized Maximum Transient Thermal Impedance(Note E)

Į(