Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings AMR

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	12	V
V _{id}	Differential input voltage (2)	±1	V
V _{in}	Input voltage (3)	V _{DD} -0.3 to V _{CC} +0.3	V
T _{stg}	Storage temperature range	-65 to +150	
Tj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁴⁾ SOT23-5 DFN8 SO-8 SO-14 TSSOP8 TSSOP14	250 40 125 105 120 100	°C/W
R _{thjc}	Thermal resistance junction to case ⁽⁴⁾ SOT23-5 DFN8 SO-8 SO-14 TSSOP8 TSSOP14	81 5.2 40 31 37 32	°C/W
	HBM: human body model ⁽⁵⁾	2	kV
ESD	MM: machine model ⁽⁶⁾	200	V
	CDM: charged device model ⁽⁷⁾	1.5	kV
	Lead temperature (soldering, 10sec)	260	°C

- 1. All voltage values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of input and output voltages must never exceed V_{CC} +0.3 V.
- 4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a $1.5 \mathrm{k}\Omega$ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground through only one pin. This is done for all pins.
 - No value specified for CDM on SOT23-5 package.

Downloaded from Arrow.com.

Doc ID 6031 Rev 7 2/16

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.7 to 10	V
V _{icm}	Common mode input voltage range	V _{DD} +1.15 to V _{CC} -1.15	V
T _{oper}	Operating free air temperature range	-40 to +125	°C

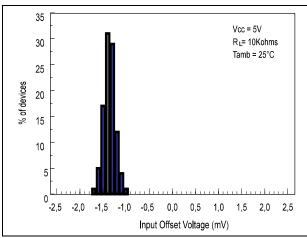

2 Electrical characteristics

Table 3. V_{CC} = +2.5 V, V_{DD} = -2.5 V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage	T _{min} ≤T _{amb} ≤T _{max}		1	5 7	mV
DV _{io}	Input offset voltage drift	$V_{icm} = 0 \text{ V}, V_o = 0 \text{ V}$		5		μV/°C
I _{io}	Input offset current	$V_{icm} = 0 \text{ V}, V_o = 0 \text{ V}$		10	150	nA
I _{ib}	Input bias current	$V_{icm} = 0 \text{ V}, V_o = 0 \text{ V}$ $T_{min} \le T_{amb} \le T_{max}$		200 200	750 1000	nA
V _{icm}	Common mode input voltage range		-1.35		1.35	V
CMR	Common mode rejection ratio	$V_{icm} = \pm 1.35 \text{ V}$	60	85		dB
SVR	Supply voltage rejection ratio	$V_{CC} = \pm 2 \text{ V to } \pm 3 \text{ V}$	60	70		dB
A _{vd}	Large signal voltage gain	$R_L = 2 k\Omega$	70	80		dB
V _{OH}	High level output voltage	$R_L = 2 k\Omega$	2	2.4		V
V _{OL}	Low level output voltage	$R_L = 2 k\Omega$		-2.4	-2	V
I _{source}	Output source current			1.5		mA
I _{sink}	Output sink current			100		mA
I _{CC}	Supply current per amplifier	Unity gain - no load		2	2.8	mA
GBP	Gain bandwidth product	$f = 100 \text{ kHz}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}$	8.5	12		MHz
SR	Slew rate	$A_{V} = 1, V_{in} = \pm 1 V$	2.8	4		V/µs
Øm	Phase margin at unit gain	$R_L = 2 \text{ k}\Omega, \ C_L = 100 \text{ pF}$		60		Degrees
Gm	Gain margin	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		10		dB
e _n	Equivalent input noise voltage	f = 100 kHz	_	4	_	nV/√Hz
THD	Total harmonic distortion	$f = 1 \text{ kHz}, A_V = -1, R_L = 10 \text{ k}\Omega$		0.003		%

Figure 1. Input offset voltage distribution

Figure 2. Voltage gain & phase vs. frequency $V_{CC} = 5 \text{ V}$

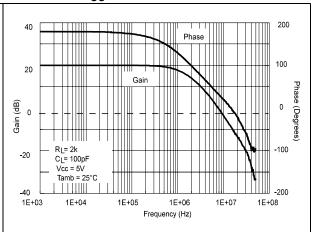
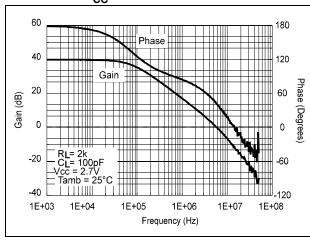



Figure 3. Voltage gain & phase vs. frequency Figure 4. THS vs. V_{out} , V_{CC} = 5 V V_{CC} = 2.7 V

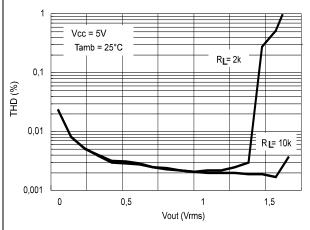
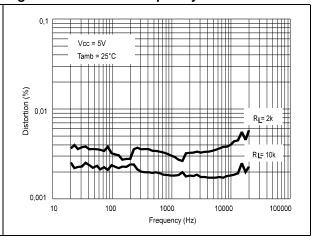



Figure 5. THD vs. Vout, $V_{CC} = 2.7 \text{ V}$

0,01 0,0

Figure 6. THD vs. frequency

577

Figure 7. Noise voltage vs. frequency

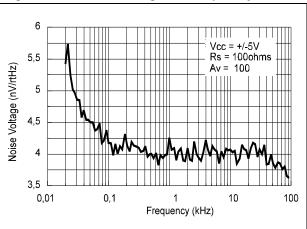


Figure 8. Gain bandwidth product vs. I_{out}

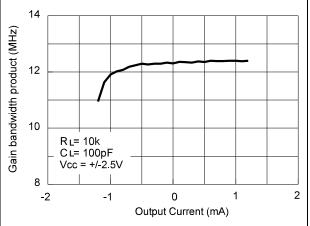


Figure 9. Phase margin vs. Iout

Figure 10. Phase margin vs. V_{CC} $R_L = 10 \text{ k}, C_L = 30 \text{ pF}$

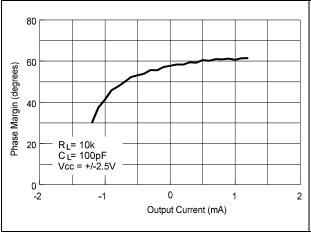
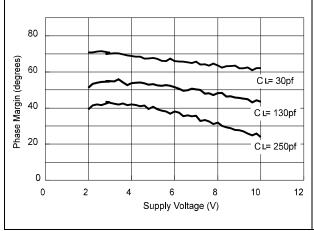
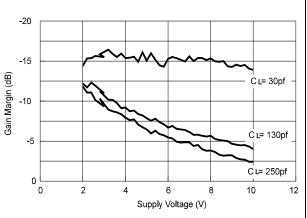




Figure 11. Phase margin vs. V_{CC} $C_L = 30, 130$ and 250 pF

Figure 12. Gain margin vs. V_{CC}

6/16 Doc ID 6031 Rev 7

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

3.1 SOT23-5 package information

Figure 13. SOT23-5 package mechanical drawing

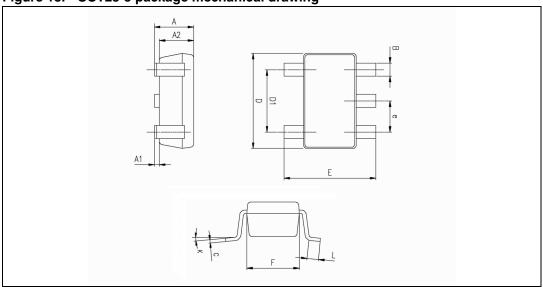


Table 4. SOT23-5 package mechanical data

ыс т.	00120 0 pac	mage meen	armour dutu				
	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.013	0.015	0.019	
С	0.09	0.15	0.20	0.003	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
E	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.013	0.023	
K	0 degrees		10 degrees				

8/16 Doc ID 6031 Rev 7

3.2 SO-8 package information

Figure 14. SO-8 package mechanical drawing

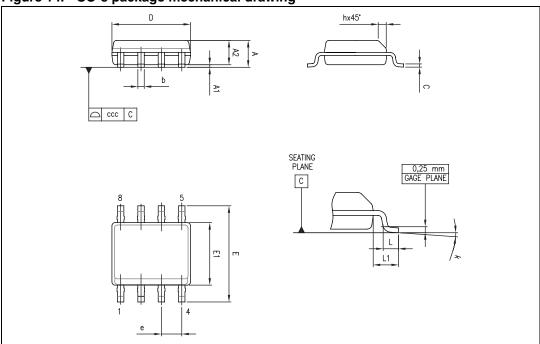


Table 5. SO-8 package mechanical data

			Dimer	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	0°		8°	1°		8°
ccc			0.10			0.004

3.3 TSSOP8 package information

Figure 15. TSSOP8 package mechanical drawing

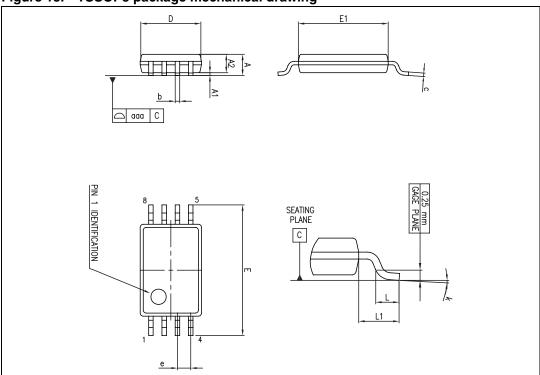


Table 6. TSSOP8 package mechanical data

			Dimer	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	2.90	3.00	3.10	0.114	0.118	0.122
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.0256	
k	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
aaa			0.10			0.004

Ay/

3.4 SO-14 package information

Figure 16. SO-14 package mechanical drawing

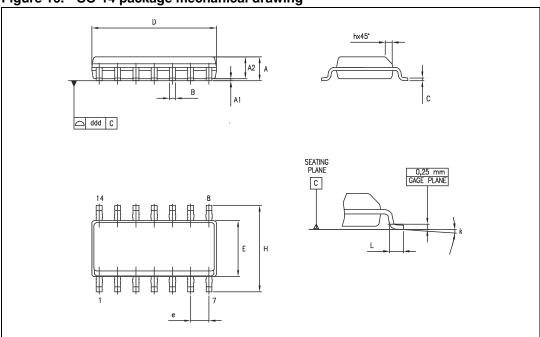


Table 7. SO-14 package mechanical data

	Dimensions					
Def		Millimeters		Inches		
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	1.35		1.75	0.05		0.068
A1	0.10		0.25	0.004		0.009
A2	1.10		1.65	0.04		0.06
В	0.33		0.51	0.01		0.02
С	0.19		0.25	0.007		0.009
D	8.55		8.75	0.33		0.34
E	3.80		4.0	0.15		0.15
е		1.27			0.05	
Н	5.80		6.20	0.22		0.24
h	0.25		0.50	0.009		0.02
L	0.40		1.27	0.015		0.05
k	8° (max.)					
ddd			0.10			0.004

3.5 TSSOP14 package information

Figure 17. TSSOP14 package mechanical drawing

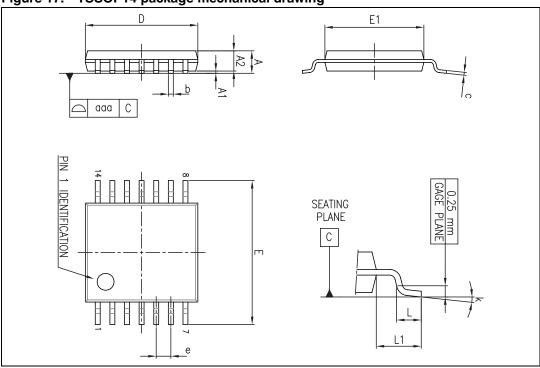


Table 8. TSSOP14 package mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.20			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.80	1.00	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	4.90	5.00	5.10	0.193	0.197	0.201		
E	6.20	6.40	6.60	0.244	0.252	0.260		
E1	4.30	4.40	4.50	0.169	0.173	0.176		
е		0.65			0.0256			
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1		1.00			0.039			
k	0°		8°	0°		8°		
aaa			0.10			0.004		

3.6 DFN8 exposed pad package information

Figure 18. DFN8 3 x 3 exposed pad package mechanical drawing (pitch 0.5 mm)

SEATING PLANE

1 2 3 4

1 4 5 5

8 7 6 5

Table 9. DFN8 3 x 3 mm exposed pad package mechanical data (pitch 0.5 mm)

			Dimer	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.80	0.90	1.00	0.031	0.035	0.039
A1		0.02	0.05		0.0008	0.0019
A2	0.55	0.65	0.80	0.021	0.025	0.031
A3		0.20			0.008	
b	0.18	0.25	0.30	0.007	0.010	0.012
D	2.85	3.00	3.15	0.112	0.118	0.124
D2	2.20		2.70	0.087		0.106
E	2.85	3.00	3.15	0.112	0.118	0.124
E2	1.40		1.75	0.055		0.069
е		0.50			0.020	
L	0.30	0.40	0.50	0.012	0.016	0.020
ddd			0.08			0.003

4 Ordering information

Table 10. Order codes

Order code	Temperature range	Package	Packing	Marking
TS971ID TS971IDT		SO-8	Tube or Tape & reel	9711
TS971ILT		SOT23-5L		K120
TS971IYD ⁽¹⁾ TS971IYDT ⁽¹⁾		SO-8 (Automotive grade level)	Tape & reel	971IY
TS971IYLT ⁽²⁾		SOT23-5L (Automotive grade level)		K121
TS972ID TS972IDT	-40°C, +125°C	SO-8	Tube or Tape & reel	
TS972IPT		TSSOP8 (Thin shrink outline package)	Tape & Reel	9721
TS972IQT		DFN8 (Dual micro lead frame package)	Tape & Fleet	
TS972IYD ⁽¹⁾ TS972IYDT ⁽¹⁾		SO-8 (Automotive grade level)	Tube or Tape & reel	972IY
TS972IYPT ⁽²⁾		TSSOP8 (Automotive grade level)	Tape & reel	972IY
TS974ID TS974IDT		SO-14	Tube or Tape & reel	9741
TS974IPT		TSSOP14 (Thin shrink outline package)		3741
TS974IYD ⁽¹⁾ TS974IYDT ⁽¹⁾		SO-14 (Automotive grade level)	Tape & reel	974IY
TS974IYPT ⁽²⁾		TSSOP14 (Automotive grade level)		974IY

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

^{2.} Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

TS971, TS972, TS974 Revision history

5 Revision history

Table 11. Document revision history

Date	Revision	Changes
15-Nov- 2002	1	First release.
9-May- 2005	2	Modifications on AMR table (explanation of V _{id} and V _i limits)
31-Aug-2005	3	PPAP references inserted in the datasheet, see Table 1 on page 2.
9-Dec-2005	4	Thermal resistance junction to case data added in <i>Table 1. on page 2</i> Missing PPAP references inserted in the datasheet, see <i>Table 10:</i> Order codes.
3-Oct-2007	5	Added R _{thja} and R _{thjc} values for DIP8 and DIP14 packages in <i>Table 1</i> . ESD footnotes updated in <i>Table 1: Absolute maximum ratings AMR</i> . Description section updated on cover page. Markings for automotive grade parts corrected in <i>Table 10: Order codes</i> .
20-Dec-2007	6	Reformatted package information in <i>Section 3: Package information</i> . Footnotes for automotive grade parts corrected in <i>Table 10: Order codes</i> .
06-May-2010	7	Updated package information (drawings and data) in <i>Chapter 3</i> . Removed DIP package order codes from <i>Chapter 4: Ordering information</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16 Doc ID 6031 Rev 7

