

Connection Diagrams and Ordering Information

Ambient Temperature	Туре	Package	Part Number	Packaging Type	Connection Diagram
0°C to 70°C			SG3842M		COM 1 8 VREF V _{FB} 2 7 V _{CC}
	М	8-PIN PLASTIC	SG3843M		$I_{SENSE} \square 3$ 6 \square OUTPUT $R_T/C_T \square 4$ 5 \square GND
-25°C to 85°C	IVI	DUAL INLINE PACKAGE	SG2842M	Plastic DIP	M PACKAGE (Top View)
			SG2843M		M Package: RoHS / Pb-free 100% Matte Tin Lead Finish
000 to 7000			SG3842Y		
0°C to 70°C			SG3843Y		
-25°C to 85°C			SG2842Y		COM 1 8 V _{REF}
-25 C to 65 C			SG2843Y		V _{FB} 2 7 V _{CC}
-55°C to		8-PIN CERAMIC	SG1842Y		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
125°C	Y	DUAL INLINE	SG1843Y	CERDIP	Kinor 4. J
MIL OTD/000		PACKAGE	SG1842Y-883B		Y PACKAGE (Top View)
MIL-STD/883			SG1843Y-883B		PbSn Tin Lead Finish
DECC			SG1842Y-DESC		
DESC			SG1843Y-DESC		
0°C to 70°C			SG3842DM		COM
0 0 10 70 0	DM	8-PIN SMALL OUTLINE	SG3843DM	SOIC	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
-25°C to 85°C		INTEGRATED CIRCUIT	SG2842DM		DM PACKAGE
			SG2843DM		(Top View) RoHS / Pb-free 100% Matte Tin Lead Finish
0°C to 70°C			SG3842D		COM
0 0 10 70 0	D	14-PIN SMALL OUTLINE	SG3843D	SOIC	N.C. \Box 4 11 \Box V_{C} I_{SENSE} \Box 5 10 \Box OUTPUT
-25°C to 85°C		INTEGRATED CIRCUIT	SG2842D		N.C. 6 9 GND R _T /C _T 8 PWR GND
-23 0 10 03 0			SG2843D		D PACKAGE (Top View) RoHS / Pb-free 100% Matte Tin Lead Finish
0°C to 70°C			SG3842N		COM 1 14 V _{REF}
0 0 10 70 0		14-PIN DUAL	SG3843N		N.C. 2 13 N.C. V _{FB} 3 12 V _{CC}
	N	INLINE PLASTIC	SG2842N	PLASTIC DIP	N.C.
-25°C to 85°C		PACKAGE	SG2843N		R _T /C _T 7 8 POWER GND N PACKAGE (Top View) N Package: RoHS / Pb-free 100% Matte Tin Lead Finish

Connection Diagrams and Ordering Information (continued)

Ambient Temperature	Туре	Package	Part Number	Packaging Type	Connection Diagram		
-55°C to			SG1842J		COM 1 14 V _{REF}		
125°C			SG1843J		N.C. 2 13 N.C. V _{FB} 3 12 V _{CC}		
MIL-STD/883	J	14-PIN CERAMIC	SG1842J-883B	CERDIP	N.C.		
WII 21 B7 8 8 8	J	DUAL INLINE PACKAGE	SG1843J-883B	CERDIP	N.C. \square 6 9 \square GND R_T/C_T \square 7 8 \square PWR GND		
DECO			SG1842J-DESC		J PACKAGE (Top View)		
DESC			SG1843J-DESC		PbSn Lead Finish		
-55°C to			SG1842F				
125°C			SG1843F		COM 1 10 VREF VCC		
MIL OTD/000		10-PIN	SG1842F-883B	FLAT	Isense		
MIL-STD/883	F	CERAMIC FLAT PACK	SG1843F-883B	PACK	GND F PACKAGE		
DECO		PACKAGE	SG1842F-DESC		(Top View) PbSn Lead Finish		
DESC			SG1843F-DESC				
-55°C to			SG1842L		3 2 1 20 19 1. N.C. 11. N.C. 2. COMP 12. GROUND		
125°C			SG1843L		(18 3. N.C. 13. N.C. 15. OUTPUT		
MIL-STD/883		OO DIN	SG1842L-883B	Ceramic Leadless	6)		
IVIIL-3 D/083	L	20-PIN CERAMIC	SG1843L-883B	Chip Carrier	8 14 9. N.C. 19. N.C. 10. R _T /C _T 20. V _{REF} 9 10 11 12 13		
DESC			SG1842L-DESC	(LCC)	L PACKAGE (Top View)		
DESC			SG1843L-DESC		PbSn Lead Finish		

Notes:

- 1. Contact factory for JAN and DESC part availability.
- 2. All parts are viewed from the top.
- 3. Available in Tape & Reel. Append the letters "TR" to the part number (SG3842N-TR).

Absolute Maximum Ratings¹⁻²

Parameter	Value	Units
Supply Voltage (I _{CC} < 30mA)	Self-limiting	V
Supply Voltage (Low Impedance Source)	30	V
Output Current (Peak)	±1	А
Output Current (Continuous)	350	mA
Output Energy (Capacitive Load)	5	μJ
Analog Inputs (V _{FB} , I _{SENSE})	-0.3 to +6.3	V
Error Amplifier Output Sink Current	10	mA
Power Dissipation at T _A = 25°C (DIL-8)	1	W
Operating Junction Temperature	·	
Hermetic (J, Y, F, L Packages)	150	°C
Plastic (N, M, D, DM Packages)	150	°C
Storage Temperature Range	-65 to +150	°C
Lead Temperature (Soldering, 10 Seconds)	300	°C
RoHS / Pb-free Peak Package Solder Reflow Temp. (40 second max. exposure)	260 (+0, -5)	°C
Notes:	<u>. </u>	

Notes:

- 1. Exceeding these ratings could cause damage to the device.
- 2. All voltages are with respect to Pin 5. All currents are positive into the specified terminal.

Thermal Data

Parameter	Value	Units
M Package:		
Thermal Resistance-Junction to Ambient, θ _{JA}	95	°C/W
N Package:		
Thermal Resistance-Junction to Ambient, θ_{JA}	65	°C/W
DM Package:		
Thermal Resistance-Junction to Ambient, θ_{JA}	165	°C/W
D Package:	<u>, </u>	
Thermal Resistance-Junction to Ambient, θ_{JA}	120	°C/W
Y Package:		
Thermal Resistance-Junction to Ambient, θ_{JA}	130	°C/W
J Package		
Thermal Resistance-Junction to Ambient, θ_{JA}	80	°C/W
F Package		
Thermal Resistance-Junction to Case, θ _{JC}	80	°C/W
Thermal Resistance-Junction to Ambient, θ_{JA}	145	°C/W
L Package		
Thermal Resistance-Junction to Case, θ_{JC}	35	°C/W
Thermal Resistance-Junction to Ambient, θ_{JA}	120	°C/W
Noton	1	

Notes:

- 1. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$.
- 2. The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

Recommended Operating Conditions

Parameter	Recommende	Recommended Operating Conditions				
raiametei	Min	Тур	Max	Units		
Supply Voltage Range		30		V		
Output Current (Peak)		±1		Α		
Output Current (Continuous)		200		mA		
Analog Inputs (V _{FB} , I _{SENSE})	0		2.6	V		
Error Amp Output Sink Current		5		mA		
Oscillator Frequency Range	0.1		500	kHz		
Oscillator Timing Resistor	0.52		150	kΩ		
Oscillator Timing Capacitor	0.001		1.0	μF		
pient Temperature Range						
SG1842/43	-55		125	°C		
SG2842/43	-25		85	°C		
SG3842/43	0		70	°C		
	Output Current (Peak) Output Current (Continuous) Analog Inputs (V _{FB} , I _{SENSE}) Error Amp Output Sink Current Oscillator Frequency Range Oscillator Timing Resistor Oscillator Timing Capacitor Dient Temperature Range SG1842/43 SG2842/43	Supply Voltage Range Output Current (Peak) Output Current (Continuous) Analog Inputs (V _{FB} , I _{SENSE}) Error Amp Output Sink Current Oscillator Frequency Range Oscillator Timing Resistor Oscillator Timing Capacitor Oscillator Temperature Range SG1842/43 SG2842/43 -55 SG2842/43 -25	Supply Voltage Range 30 Output Current (Peak) ±1 Output Current (Continuous) 200 Analog Inputs (V _{FB} , I _{SENSE}) 0 Error Amp Output Sink Current 5 Oscillator Frequency Range 0.1 Oscillator Timing Resistor 0.52 Oscillator Timing Capacitor 0.001 Dient Temperature Range SG1842/43 SG2842/43 -55 SG2842/43 -25	Supply Voltage Range 30 Output Current (Peak) ±1 Output Current (Continuous) 200 Analog Inputs (VFB, ISENSE) 0 2.6 Error Amp Output Sink Current 5 5 Oscillator Frequency Range 0.1 500 Oscillator Timing Resistor 0.52 150 Oscillator Timing Capacitor 0.001 1.0 vient Temperature Range SG1842/43 -55 125 SG2842/43 -25 85		

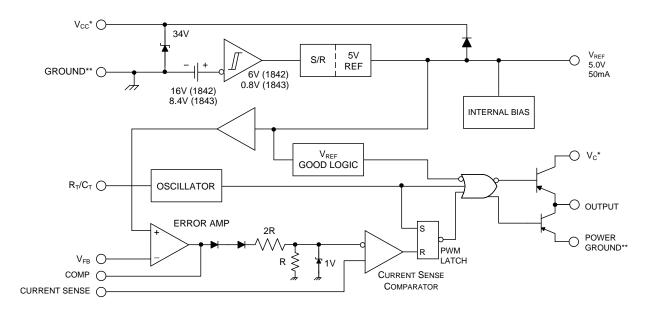
Electrical Characteristics

Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG1842/SG1843 with -55°C \leq $T_A \leq$ 125°C, SG2842/SG2843 with -25°C \leq $T_A \leq$ 85°C, SG3842/SG3843 with 0°C \leq $T_A \leq$ 70°C, $V_{CC} =$ 15V, $R_T =$ 10k Ω , and $C_T =$ 3.3nF. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

		T O	S	G1842/4	43	S	G2842/	43	S	G3842/	43	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Referen	ce Section											
V_{REF}	Output Voltage	$T_J = 25$ °C, $I_O = 1$ mA	4.95	5.00	5.05	4.95	5.00	5.05	4.90	5.00	5.10	V
V_{REG}	Line Regulation	$12V \le V_{IN} \le 25V$		6	20		6	20		6	20	mV
I _{REG}	Load Regulation	1 ≤ I _O ≤ 20mA		6	25		6	25		6	25	mV
	Temperature Stability ¹			0.2	0.4		0.2	0.4		0.2	0.4	mV/°C
	Total Output Variation ¹	Line, Load, Temperature	4.90		5.10	4.90		5.10	4.82		5.18	V
V _N	Output Noise Voltage ¹	10Hz ≤ f ≤ 10kHz, T _J = 25°C		50			50			50		μV
	Long Term Stability ¹	T _A = 125°C, 1000hrs		5	25		5	25		5	25	mV
V _{REFOSC}	Output Short Circuit		-30	-100	-180	-30	-100	-180	-30	-100	-180	mA
Oscillate	or Section ³		1	ı		1						
f	Initial Accuracy ⁵	T _J = 25°C	47	52	57	47	52	57	47	52	57	kHz
f _{REG}	Voltage Stability	12V ≤ V _{CC} ≤ 25V		0.2	1		0.2	1		0.2	1	%
	Temperature Stability ¹	$T_{MIN} \le T_A \le T_{MAX}$		5			5			5		%
OSCPP	Amplitude	V _{RT/CT} (Peak to Peak)		1.7			1.7			1.7		V
	Diacharga Current	T _J = 25°C	7.8	8.3	8.8	7.5	8.4	9.3	7.5	8.4	9.3	mA
I _{DSG}	Discharge Current	$T_{MIN} \le T_A \le T_{MAX}$	7.0		9.0	7.2		9.5	7.2		9.5	mA
Error Ar	mp Section											
EA _{IN}	Input Voltage	$V_{COMP} = 2.5V$	2.45	2.50	2.55	2.45	2.50	2.55	2.42	2.50	2.58	V
EA _{IB}	Input Bias Current			-0.3	-1		-0.3	1		-0.3	-2	μA
A_{VOL}	Open Loop Gain	$2V \le V_O \le 4V$	65	90		65	90		65	90		dB
EA _{BW}	Unity Gain Bandwidth ¹	$T_J = 25^{\circ}C$	0.7	1		0.7	1		0.7	1		MHz
PSRR	Power Supply Rejection Ratio	12V ≤ V _{CC} ≤ 25V	60	70		60	70		60	70		dB
EAsınk	Output Sink Current	$V_{VFB} = 2.7V,$ $V_{COMP} = 1.1V$	2	6		2	6		2	6		mA
EA _{SRC}	Output Source Current	$V_{VFB} = 2.3V$, $V_{COMP} = 5V$	-0.5	-0.8		-0.5	-0.8		-0.5	-0.8		mA
EA _{VOH}	V _{OUT} High	$V_{VFB} = 2.3V$, R _L = 15k to GND	5	6		5	6		5	6		٧
EA _{VOL}	V _{OUT} Low	$V_{VFB} = 2.7V$, $R_L = 15k$ to V_{REF}		0.7	1.1		0.7	1.1		0.7	1.1	V

Electrical Characteristics (continued)

		T O !!!!	S	G1842/	43	SG2842/43			SG3842/43		Units	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Current	Sense Section											
CS _{AVOL}	Gain ^{2, 3}		2.85	3	3.15	2.85	3	3.15	2.85	3	3.15	V/V
		V _{COMP} = 5V	0.9	1	1.1	0.9	1	1.1	0.9	1	1.1	V
PSRR	Power Supply Rejection Ratio ²	12V ≤ V _{CC} ≤ 25V		70			70			70		dB
CSIB	Input Bias Current			-2	-10		-2	-10		-2	-10	μΑ
CS _{DELAY}	Delay to Output ¹			150	300		150	300		150	300	ns
Output	Section		•		,		·	ı				
V _{OL}	Output Low Level	I _{SINK} = 20mA		0.1	0.4		0.1	0.4		0.1	0.4	V
		I _{SINK} = 200mA		1.5	2.2		1.5	2.2		1.5	2.2	V
V _{OH}	Output High Level	I _{SOURCE} = 20mA	13	13.5		13	13.5		13	13.5		V
		I _{SOURCE} = 200mA	12	13.5		12	13.5		12	13.5		V
Rs	Rise Time	$T_J = 25^{\circ}C, C_L = 1nF$		50	150		50	150		50	150	ns
F _T	Fall Time	$T_J = 25^{\circ}C, C_L = 1nF$		50	150		50	150		50	150	ns
Under-V	oltage Lockout Section	1										
UVLO	Start Threshold	1842/2842/3842	15	16	17	15	16	17	14.5	16	17.5	V
UVLO	Start Threshold	1843/2843/3843	7.8	8.4	9.0	7.8	8.4	9.0	7.8	8.4	9.0	V
V	Min. Operation Voltage	1842/2842/3842	9	10	11	9	10	11	8.5	10	11.5	V
V_{SMIN}	After Turn-On	1843/2843/3843	7.0	7.6	8.3	7.0	7.6	8.2	7.0	7.6	8.2	V
PWM Se	ection											
DC_{MAX}	Maximum Duty Cycle		93	95	100	90	95	100	90	95	100	%
DC_{MIN}	Minimum Duty Cycle				0			0			0	%
Power C	Consumption Section											
Is	Start-Up Current			0.5	1		0.5	1		0.5	1	mA
I	Operating Supply Current	V _{FB} = V _{ISENSE} = 0V		11	17		11	17		11	17	mA
Z	V _{CC} Zener Voltage	$I_{CC} = 25 \text{mA}$		34			34			34		V
Notes:	, -	1		l .		1	l .	ll-		l .		


Notes:

These parameters, although guaranteed, are not 100% tested in production.

Parameter measured at trip point of latch with $V_{VFB} = 0$. Gain defined as: $A = \Delta V_{COMP} / \Delta V_{ISENSE}$; $0 \le V_{ISENSE} \le 0.8V$ Adjust V_{CC} above the start threshold before setting at 15V.

Block Diagram

- * V_{CC} and V_{C} are internally connected for 8-pin packages. ** POWER GROUND and GROUND are internally connected for 8-pin packages.

Figure 2 · Block Diagram

Characteristic Curves

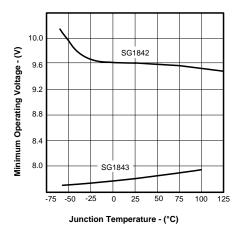
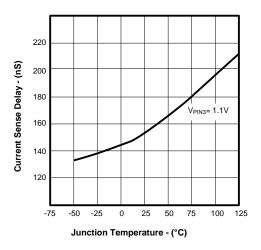



Figure 3 · Dropout Voltage vs. Temperature

Figure 5 • Current Sense to Output Delay vs. Temperature

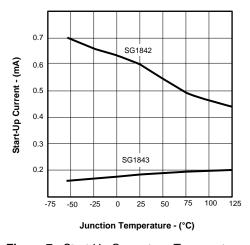


Figure 7 - Start-Up Current vs. Temperature

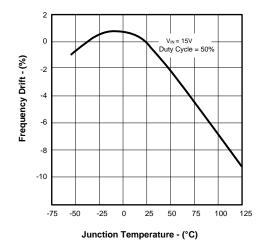


Figure 4 - Oscillator Temperature Stability

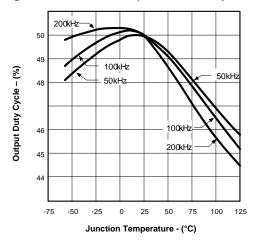


Figure 6 · Output Duty Cycle vs. Temperature

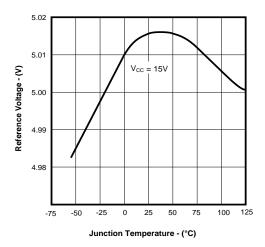


Figure 8 - Reference Voltage vs. Temperature

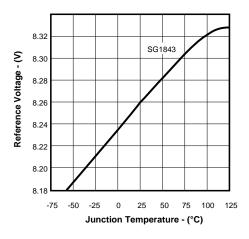
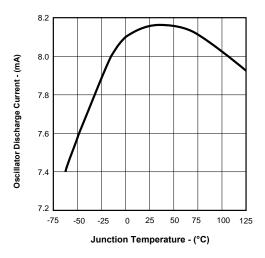
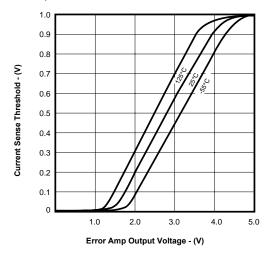




Figure 9 - Start-Up Voltage Threshold vs. Temperature

Figure 11 · Oscillator Discharge Current vs. Temperature

Figure 13 · Current Sense Threshold vs. Error Amplifier Output

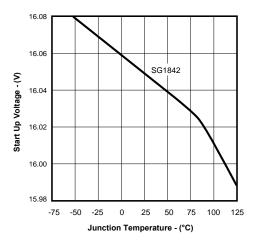


Figure 10 - Start-Up Voltage Threshold vs. Temperature

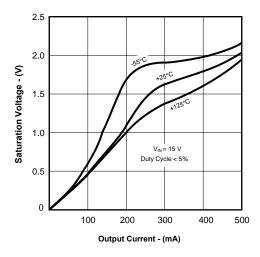
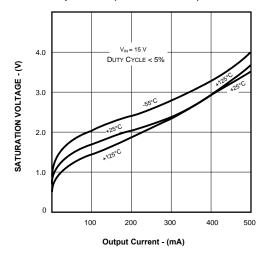



Figure 12 · Output Saturation Voltage vs. Output Current and Temperature (Sink Transistor)

Figure 14 • Output Saturation Voltage vs. Output Current and Temperature

Application Information

The oscillator of the 1842/43 family of PWM's is designed such that many values of R_T and C_T will give the same oscillator frequency, but only one combination will yield a specific duty cycle at a given frequency.

Given:

Frequency ≡ f

Maximum Duty Cycle ≡ D_m

$$\mbox{Calculate:} \quad R_T = 267 \left[\frac{(1.76)^{1/D} m - 1}{(1.76)^{(1-D_m)/D} m - 1} \right] \, (\Omega)$$

where
$$0.3 < D_m < 0.95$$

$$C_{T} = \frac{1.86 * D_{m}}{f * R_{T}} (\mu F)$$

For Duty-Cycles above 95% use:

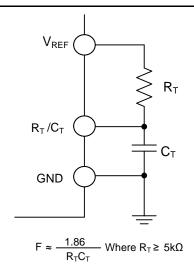


Figure 15 - Oscillator Timing Circuit

A set of formulas are given to determine the values of R_T and C_T for a given frequency and maximum duty cycle. (Note: These formulas are less accurate for smaller duty cycles or higher frequencies. This will require trimming of R_T or C_T to correct for this error.)

Example:

A Flyback power supply requires a maximum of 45% duty cycle at a switching frequency of 50 kHz. What are the values of R_T and C_T ?

Given:

f = 50kHz $D_m = 0.45$

Calculate:
$$R_T = 267 \left[\frac{(1.76)^{\frac{1}{.45}} - 1}{(1.76)^{\frac{.55}{.45}} - 1} \right] = 674 \Omega$$

$$C_{\rm T} = \frac{1.86 * 0.45}{50000 * 674} = .025 \,(\mu \text{F})$$

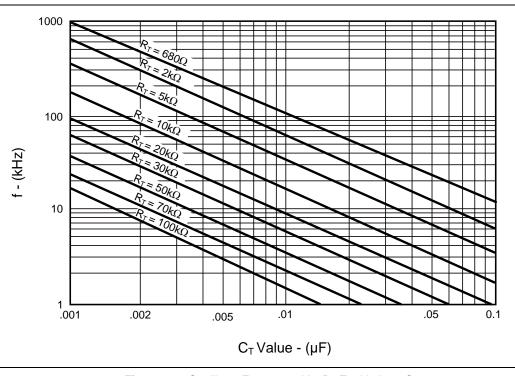


Figure 16 · Oscillator Frequency Vs. R_T For Various C_T

Typical Application Circuits

Pin numbers referenced are for 8-pin package and pin numbers in parenthesis are for 14-pin package.

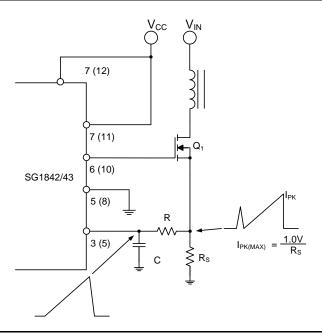


Figure 17 - Current Sense Spike Suppression

The RC low-pass filter eliminates the leading edge current spike caused by parasitic of Power MOSFET.

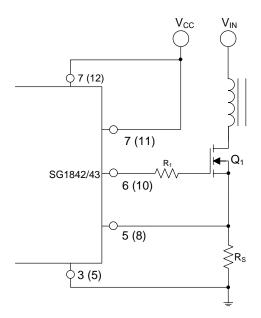


Figure 18 · MOSFET Parasitic Oscillations

A resistor (R1) in series with the MOSFET gate reduce overshoot and ringing caused by the MOSFET input capacitance and any inductance in series with the gate drive. (Note: It is very important to have a low inductance ground path to insure correct operation of the I.C. This can be done by making the ground paths as short and as wide as possible.)

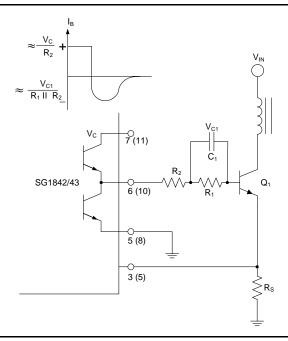


Figure 19 - Bipolar Transistor Drive

The 1842/43 output stage can provide negative base current to remove base charge of power transistor (Q_1) for faster turn off. This is accomplished by adding a capacitor (C_1) in parallel with a resistor (R_1) . The resistor (R_1) is to limit the base current during turn on.

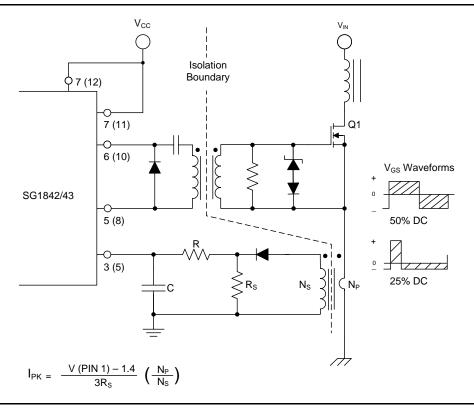


Figure 20 - Isolated MOSFET Drive

Current transformers can be used where isolation is required between PWM and Primary ground. A drive transformer is then necessary to interface the PWM output with the MOSFET.

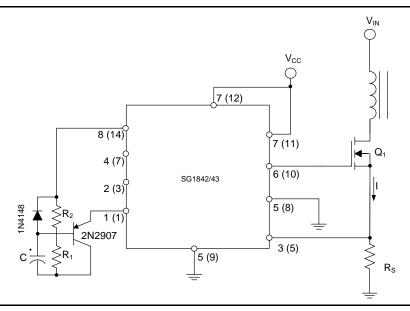


Figure 21 · Adjustable Buffered Reduction of Clamp Level with Softstart

$$I_{PK} = \frac{V_{CS}}{R_S}$$

Where, $\text{V}_{\text{CS}}\text{=}1.67\left(\frac{R_1}{R_1 + R_2}\right)$ and $\text{V}_{\text{C.S.MAX}} = \text{1V (Typ.)}$

$$t_{SOFTSTART} = -ln \left[1 - \frac{V_{EAO} - 1.3}{5 \left(\frac{R_1}{R_1 + R_2} \right)} \right] \left(\frac{R_1 R_2}{R_1 + R_2} \right) C$$

Where, $V_{EAO} \equiv$ voltage at the Error Amp Output under minimum line and maximum load conditions Softstart and adjustable peak current can be done with the external circuitry shown above.

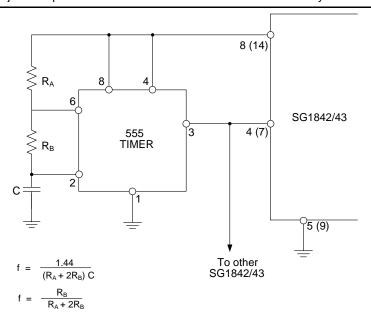


Figure 22 · External Duty Cycle Clamp and Multi-Unit Synchronization

Precision duty cycle limiting as well as synchronizing several 1842/1843's is possible with the above circuitry.

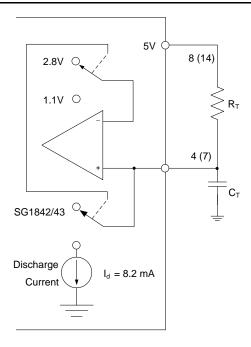


Figure 23 · Oscillator Connection

The oscillator is programmed by the values selected for the timing components R_T and C_T . Refer to application information for calculation of the component values.

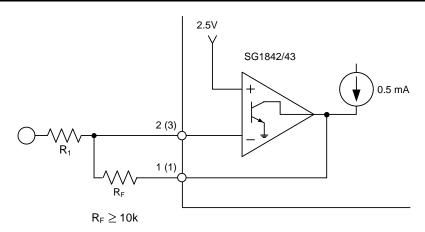


Figure 24 - Error Amplifier Connection

Error amplifier is capable of sourcing and sinking current up to 0.5mA.

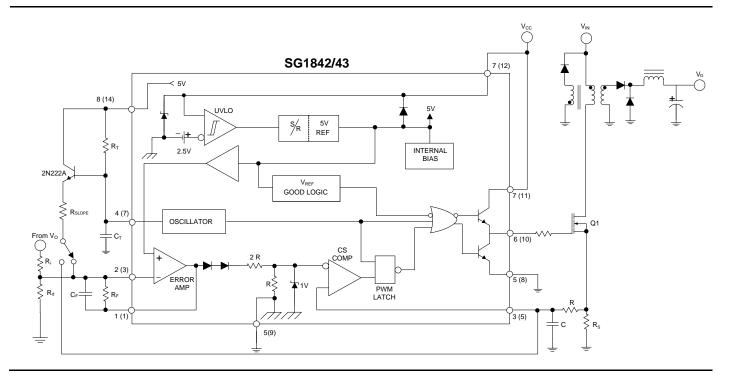


Figure 25 - Slope Compensation

Due to inherent instability of current mode converters running above 50% duty cycle, slope compensation should be added to either current sense pin or the error amplifier. Figure 25 shows a typical slope compensation technique.

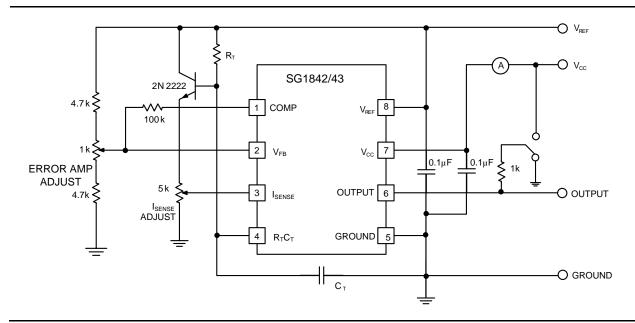


Figure 26 - Open Loop Laboratory Fixture

High-peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected to pin 5 in a single point ground.

The transistor and $5k\Omega$ potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

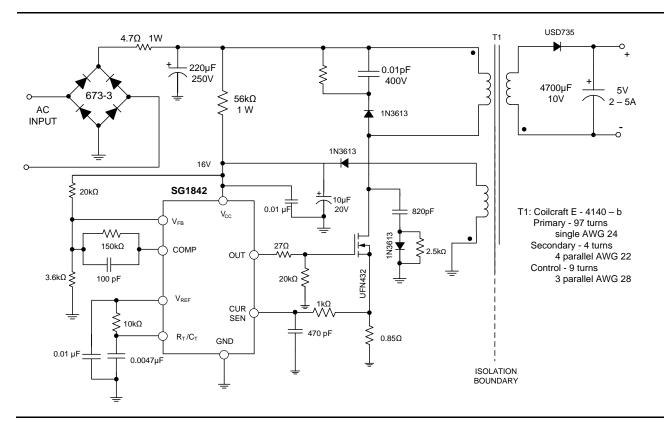


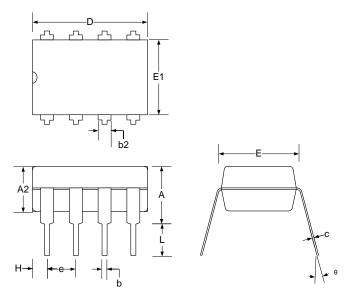
Figure 27 - Off-line Flyback Regulator

SPECIFICATIONS

Input line voltage: 90VAC to 130VAC

Input frequency: 50 or 60Hz
Switching frequency: 40kHz ±10%
Output power: 25W maximum

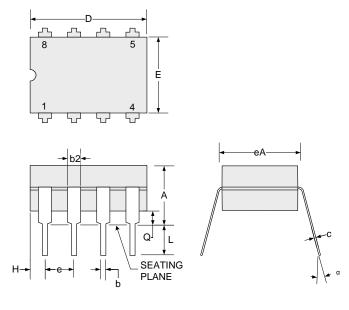
Output voltage: 5V + 5%Output current: 2 to 5ALine regulation: 0.01%/VLoad regulation: $8\%/A^*$


Efficiency @ 25 Watt: $V_{IN} = 90VAC: 70\%$ $V_{IN} = 130VAC: 65\%$

Output short-circuit current: 2.5 A average

*This circuit uses a low-cost feedback scheme in which the DC voltage developed from the primary-side control winding is sensed by the SG1842 error amplifier. Load regulation is therefore dependent on the coupling between secondary and control windings, and on transformer leakage inductance.

Controlling dimensions are in inches, metric equivalents are shown for general information.

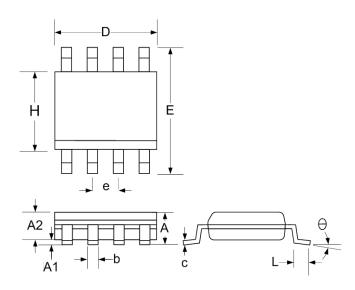


Dim	MILLIN	IETERS	INC	HES
Dilli	MIN	MAX	MIN	MAX
Α	-	5.08	-	0.200
A2	3.30	Тур.	1.30	Тур.
b	0.38	0.51	0.145	0.020
b2	0.76	1.65	0.030	0.065
С	0.20	0.38	0.008	0.015
D	-	10.16	-	0.400
Е	7.62	BSC	0.300	BSC
е	2.54	BSC	0.100	BSC
E1	6.10	6.86	0.240	0.270
L	3.05	-	0.120	-
θ	0°	15°	0°	15°

Note:

Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

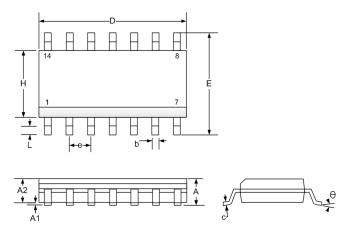
Figure 1 - M 8-Pin PDIP Package Dimensions


Dim	MILLIM	ETERS	INC	HES	
Dim	MIN	MIN MAX		MAX	
Α	4.32	5.08	0.170	0.200	
b	0.38	0.51	0.015	0.020	
b2	1.04	1.65	0.045	0.065	
С	0.20	0.38	0.008	0.015	
D	9.52	10.29	0.375	0.405	
E	5.59	7.11	0.220	0.280	
е	2.54	BSC	0.10	0 BSC	
eA	7.37	7.87	0.290	0.310	
Н	0.63	1.78	0.025	0.070	
L	3.18	4.06	0.125	0.160	
α	-	15°	-	15°	
Q	0.51	1.02	0.020	0.040	

Note:

Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 2 · Y 8-Pin CERDIP Package Dimensions


Dim	MILLIM	ETERS	INCHES		
Dilli	MIN	MAX MIN		MAX	
Α	1.35	1.75	0.053	0.069	
A1	0.10	0.25	0.004	0.010	
A2	1.25	1.52	0.049	0.060	
b	0.33	0.51	0.013	0.020	
С	0.19	0.25	0.007	0.010	
D	4.83	5.21	0.189	0.205	
Е	5.79	6.20	0.228	0.244	
е	1.27	BSC	0.050) BSC	
Н	3.81	4.01	0.150	0.158	
L	0.40	1.27	0.016	0.050	
θ	0°	8°	0°	8°	
*LC	-	.010	-	0.004	

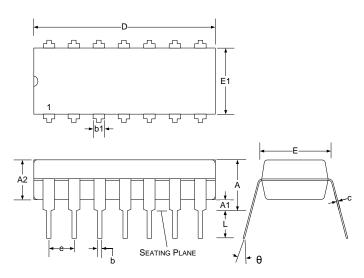
^{*}Lead Co-planarity

Note:

Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage

Figure 3 · DM 8-Pin SOIC Package Dimensions

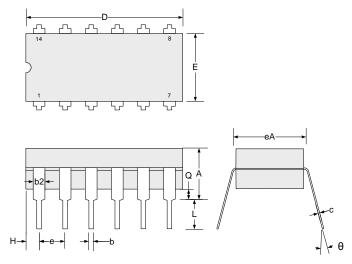
Dim	MILLIMI	ETERS	INC	HES
Dilli	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
A2	1.25	1.52	0.049	0.060
b	0.33	0.51	0.013	0.020
С	0.19	0.25	0.007	0.010
D	8.54	8.74	0.336	0.344
E	5.79	6.20	0.228	0.244
е	1.27	BSC	0.05) BSC
Н	3.81	4.01	0.150	0.158
L	0.40	1.27	0.016	0.050
θ	0°	8°	0°	8°
*LC	-	.010	-	0.004


^{*}Lead Co-planarity

Note:

Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage

Figure 4 - D 14-Pin SOIC Package Dimensions

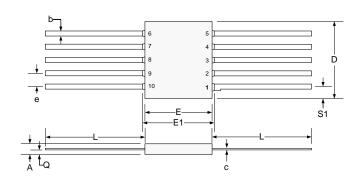


Dim	MILLIN	IETERS	Inc	HES
Dilli	MIN	MAX	MIN	MAX
Α	-	5.33	-	0.210
A1	0.38	-	0.015	1
A2	3.30	Тур.	0.130	Тур.
b	0.36	0.56	0.014	0.022
b1	1.14	1.78	0.045	0.070
С	0.20	0.36	0.008	0.014
D	18.54	20.57	0.730	0.810
е	2.54	BSC	0.100	BSC
Е	7.62	8.26	0.300	0.325
E1	6.10	7.11	0.240	0.280
L	2.92	3.81	0.115	0.150
θ	0°	15°	0°	15°

Note:

Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

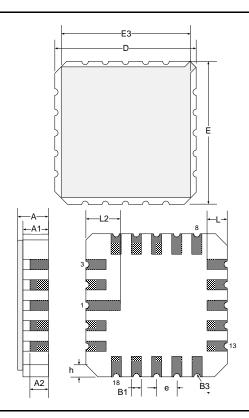
Figure 5 · N 14-Pin PDIP Package Dimensions


Dim	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
Α	4.32	5.08	0.170	0.200	
b	0.38	0.51	0.015	0.020	
b2	1.04	1.65	0.045	0.065	
С	0.20	0.38	0.008	0.015	
D	19.30	19.94	0.760	0.785	
Е	5.59	7.11	0.220	0.280	
е	2.54 BSC		0.100 BSC		
eA	7.37	7.87	0.290	0.310	
Н	0.63	1.78	0.025	0.070	
L	3.18	4.06	0.125	0.160	
α	-	15°	-	15°	
Q	0.51	1.02	0.020	0.040	

Note:

Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 6 · J 14-Pin CERDIP Package Dimensions



Dim	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
Α	1.45	1.70	0.057	0.067
b	0.25	0.483	0.010	0.019
С	0.102	0.152	0.004	0.006
D	-	7.37	-	0.290
Е	6.04	6.40	0.238	0.252
E1	-	6.91	ı	0.272
е	1.27 BSC		0.050 BSC	
L	6.35	9.40	0.250	0.370
Q	0.51	1.02	0.020	0.040
S1	0.20	0.38	0.008	0.015

Notes:

- 1. Lead No. 1 is identified by tab on lead or dot on cover. 2. Leads are within 0.13mm (.0005") radius of the true
- position (TP) at maximum material condition.
 3. Dimension "e" determines a zone within which all body and lead irregularities lie.

Figure 7 · F 10-Pin Ceramic Flatpack Package Dimensions

Dim	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
D/E	8.64	9.14	0.340	0.360
E3	-	8.128	1	0.320
е	1.270 BSC		0.050 BSC	
B1	0.635 TYP		0.025 TYP	
L	1.02	1.52	0.040	0.060
Α	1.626	2.286	0.064	0.090
h	1.016 TYP		0.040 TYP	
A1	1.372	1.68	0.054	0.066
A2	-	1.168	1	0.046
L2	1.91	2.41	0.075	0.95
В3	0.203R		0.008R	

Note:

All exposed metalized area shall be gold plated 60 microinch minimum thickness over nickel plated unless otherwise specified in purchase order.

Figure 8 - L 20-Pin Leadless Chip Carrier Package Dimensions

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at www.microsemi.com.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

SG1842/43-1/10.14