
Contents

1	Diagram
2	Pin configuration
3	Maximum ratings
4	Schematic application
5	Electrical characteristics7
6	Typical application
7	LD1117A adjustable: application note
8	Package mechanical data 16
9	Order codes
10	Revision history

1 Diagram

2 Pin configuration

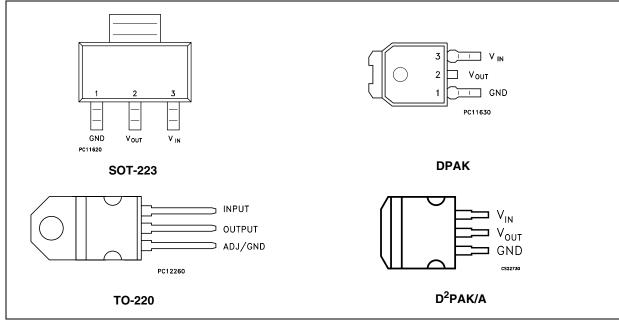


Figure 2. Pin connections (top view)

Note: The TAB is connected to the V_{OUT}.

3 Maximum ratings

Table 2.	Absolute maximum ratings
----------	--------------------------

Symbol	Parameter	Value	Unit
V _{IN}	DC input voltage	15	V
PD	Power dissipation	12	W
T _{STG}	Storage temperature range	-40 to +150	°C
T _{OP}	Operating junction temperature range	0 to +125	°C

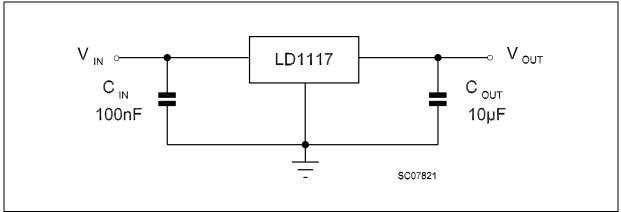

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. Over the above suggested max power dissipation a short circuit could definitively damage the device.

Table 3. Thermal data

Symbol	Parameter	SOT-223	D ² PAK/A	DPAK	TO-220	Unit
R _{thJC}	Thermal resistance junction-case	15	3	8	3	°C/W
R _{thJA}	Thermal resistance junction-ambient				50	°C/W

4 Schematic application

Figure 3. Application circuit (for other fixed output voltages)

5 Electrical characteristics

Table 4. Electrical characteristics of LD1117A#12

(refer to the test circuits, $T_J = 0$ to 125 °C, $C_O = 10 \ \mu$ F, $C_I = 10 \ \mu$ F, $R = 120 \ \Omega$ between OUT-GND, unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$V_{I} = 5.3V, I_{O} = 10mA, T_{J} = 25^{\circ}C$	1.176	1.2	1.224	V
Vo	Output voltage	$I_{O} = 0$ to 1A, $V_{I} = 2.75$ to 10V	1.152	1.2	1.248	V
ΔV_{O}	Line regulation	$V_{I} = 2.75$ to 8V, $I_{O} = 0$ mA		1	6	mV
ΔV_{O}	Load regulation	$V_{\rm I} = 2.75 V$, $I_{\rm O} = 0$ to 1A		1	10	mV
ΔV_O	Temperature stability			0.5		%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125°C		0.3		%
VI	Operating input voltage	I _O = 100mA			10	V
l _d	Quiescent current	$V_{I} \leq 8V, I_{O} = 0mA$		5	10	mA
Ι _Ο	Output current	$V_{I} - V_{O} = 5V, T_{J} = 25^{\circ}C$	1000	1200		mA
eN	Output noise voltage	B =10Hz to 10kHz, $T_J = 25^{\circ}C$		100		μV
SVR	Supply voltage rejection	$I_O = 40$ mA, f = 120Hz V _I - V _O = 3V, V _{ripple} = 1V _{PP}	60	80		dB
		I _O = 100mA		1	1.10	
V_{D}	Dropout voltage	I _O = 500mA		1.05	1.15	V
		I _O = 1A		1.15	1.30	
$\Delta V_{O(pwr)}$	Thermal regulation	$T_a = 25^{\circ}C$, 30ms Pulse		0.08	0.2	%/W

Table 5. Electrical characteristics of LD1117A#18

(refer to the test circuits, $T_J = 0$ to 125 °C, $C_O = 10 \ \mu$ F, $C_I = 10 \ \mu$ F unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$V_{I} = 3.8V, I_{O} = 10mA, T_{J} = 25^{\circ}C$	1.764	1.8	1.836	V
Vo	Output voltage	$I_{O} = 0$ to 1A, $V_{I} = 3.3$ to 8V	1.728		1.872	V
ΔV _O	Line regulation	$V_{I} = 3.3$ to 8V, $I_{O} = 0$ mA		1	6	mV
ΔV _O	Load regulation	$V_{I} = 3.3V, I_{O} = 0$ to 1A		1	10	mV
ΔV _O	Temperature stability			0.5		%
ΔV _O	Long term stability	1000 hrs, T _J = 125°C		0.3		%
VI	Operating input voltage	I _O = 100mA			10	V
I _d	Quiescent current	$V_{I} \leq 8V, I_{O} = 0mA$		5	10	mA
Ι _Ο	Output current	$V_{\rm I} - V_{\rm O} = 5V, T_{\rm J} = 25^{\circ}{\rm C}$	1000			mA
eN	Output noise voltage	B =10Hz to 10kHz, $T_J = 25^{\circ}C$		100		μV
SVR	Supply voltage rejection	$\label{eq:loss} \begin{array}{l} I_O = 40 \text{mA}, \mbox{ f} = 120 \text{Hz} \\ V_I - V_O = 3 \text{V}, \mbox{ V}_{ripple} = 1 \text{V}_{PP} \end{array}$	60	80		dB
		I _O = 100mA		1	1.10	
V _D	Dropout voltage	I _O = 500mA		1.05	1.15	V
		I _O = 1A		1.15	1.30	
ΔV _{O(pwr)}	Thermal regulation	T _a = 25°C, 30ms Pulse		0.08	0.2	%/W

Table 6. **Electrical characteristics of LD1117A#25**

(refer to the test circuits, $T_J = 0$ to 125 °C, $C_O = 10 \ \mu\text{F}$, $C_I = 10 \ \mu\text{F}$ unless otherwise specified).

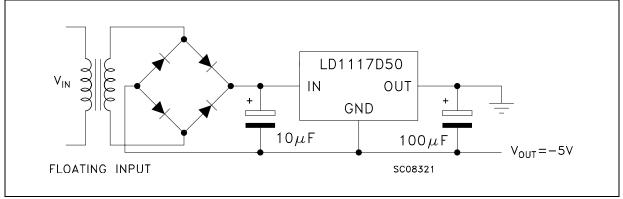
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$V_{I} = 4.5V, I_{O} = 10mA, T_{J} = 25^{\circ}C$	2.45	2.5	2.55	V
Vo	Output voltage	$I_{O} = 0$ to 1A, $V_{I} = 3.9$ to 8V	2.4		2.6	V
ΔV _O	Line regulation	$V_{I} = 3.9$ to 8V, $I_{O} = 0$ mA		1	6	mV
ΔV _O	Load regulation	$V_{I} = 3.9V, I_{O} = 0 \text{ to } 1A$		1	10	mV
ΔV _O	Temperature stability			0.5		%
ΔV _O	Long term stability	1000 hrs, T _J = 125°C		0.3		%
VI	Operating input voltage	I _O = 100mA			10	V
۱ _d	Quiescent current	$V_{I} \le 10V, I_{O} = 0mA$		5	10	mA
Ι _Ο	Output current	$V_{I} - V_{O} = 5V, T_{J} = 25^{\circ}C$	1000	1200		mA
eN	Output noise voltage	B =10Hz to 10kHz, $T_J = 25^{\circ}C$		100		μV
SVR	Supply voltage rejection	$I_{O} = 40mA, f = 120Hz$ V _I - V _O = 3V, V _{ripple} = 1V _{PP}	60	80		dB
		I _O = 100mA		1	1.10	
V _D	Dropout voltage	I _O = 500mA		1.05	1.15	V
		I _O = 1A		1.15	1.30	
ΔV _{O(pwr)}	Thermal regulation	T _a = 25°C, 30ms Pulse		0.08	0.2	%/W

Table 7. Electrical characteristics of LD1117A#33

(refer to the test circuits, $T_J = 0$ to 125 °C, $C_O = 10 \ \mu$ F, $C_I = 10 \ \mu$ F unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$V_{I} = 5.3V, I_{O} = 10mA, T_{J} = 25^{\circ}C$	3.234	3.3	3.366	V
Vo	Output voltage	$I_{O} = 0$ to 1A, $V_{I} = 4.75$ to 10V	3.168		3.432	V
ΔV _O	Line regulation	$V_{I} = 4.75$ to 8V, $I_{O} = 0$ mA		1	6	mV
ΔV _O	Load regulation	$V_{\rm I} = 4.75 V$, $I_{\rm O} = 0$ to 1A		1	10	mV
ΔV _O	Temperature stability			0.5		%
ΔV _O	Long term stability	1000 hrs, T _J = 125°C		0.3		%
VI	Operating input voltage	I _O = 100mA			10	V
I _d	Quiescent current	$V_{I} \leq 10V, I_{O} = 0mA$		5	10	mA
Ι _Ο	Output current	$V_{\rm I} - V_{\rm O} = 5V, T_{\rm J} = 25^{\circ}{\rm C}$	1000	1200		mA
eN	Output noise voltage	B =10Hz to 10kHz, $T_J = 25^{\circ}C$		100		μV
SVR	Supply voltage rejection	$I_O = 40mA$, f = 120Hz V _I - V _O = 3V, V _{ripple} = 1V _{PP}	60	75		dB
		I _O = 100mA		1	1.10	
V _D	Dropout voltage	I _O = 500mA		1.05	1.15	V
		I _O = 1A		1.15	1.30	
ΔV _{O(pwr)}	Thermal regulation	T _a = 25°C, 30ms Pulse		0.08	0.2	%/W

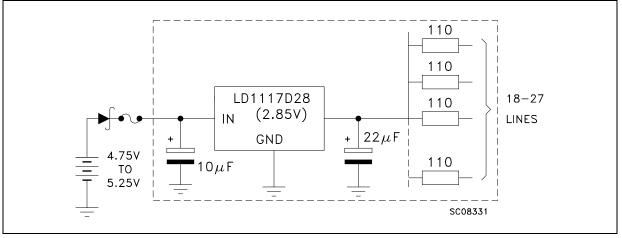
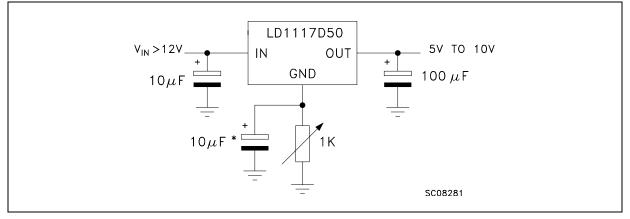
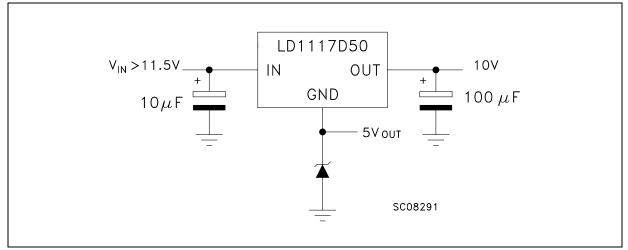
Table 8.

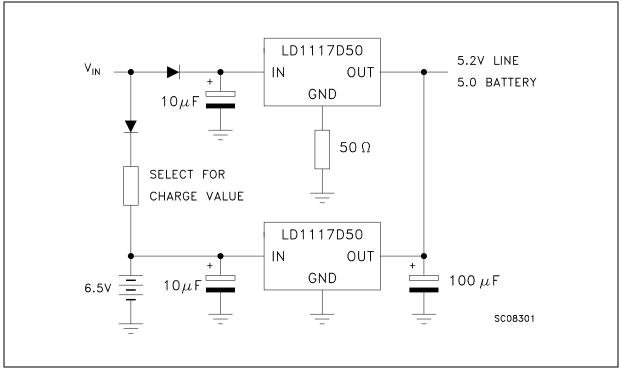

Electrical characteristics of LD1117A (Adjustable) (refer to the test circuits, $T_J = 0$ to 125 °C, $C_O = 10 \ \mu$ F, $C_I = 10 \ \mu$ F unless otherwise specified).

Symbol	Parameter	Test conditions	Test conditions Min.		Max.	Unit
Vo	Output voltage	$V_{I} = 5.3V, I_{O} = 10mA, T_{J} = 25^{\circ}C$	1.225	1.25	1.275	V
Vo	Output voltage	$I_{O} = 0$ to 1A, $V_{I} = 2.75$ to 10V	1.2		1.3	V
ΔV _O	Line regulation	$V_{I} = 2.75$ to 8V, $I_{O} = 0$ mA		1	6	mV
ΔV_O	Load regulation	$V_{I} = 2.75V, I_{O} = 0$ to 1A		1	10	mV
ΔV _O	Temperature stability			0.5		%
ΔV _O	Long term stability	1000 hrs, T _J = 125°C		0.3		%
VI	Operating input voltage	I _O = 100mA			10	V
I _{adj}	Adjustment pin current	$V_{in} \le 10 \text{ V}$		60	120	μA
ΔI_{adj}	Adjustment pin current change	$V_{in} - V_O = 1.4$ to 10 V, $I_O = 10$ mA to 1A		1	5	μA
I _{O(min)}	Minimum load current	V _{in} = 10 V		2	5	mA
Ι _Ο	Output current	$V_{\rm I} - V_{\rm O} = 5V$, $T_{\rm J} = 25^{\circ}{\rm C}$	1000	1200		mA
eN	Output noise voltage	B =10Hz to 10kHz, $T_J = 25^{\circ}C$		100		μV
SVR	Supply voltage rejection	$\label{eq:IO} \begin{array}{l} I_O = 40 \text{mA}, \ f = 120 \text{Hz} \\ V_I - V_O = 3 \text{V}, \ V_{ripple} = 1 \text{V}_{\text{PP}} \end{array}$	60	80		dB
		I _O = 100mA		1	1.10	
V _D	Dropout voltage	I _O = 500mA		1.05	1.15	V
		I _O = 1A		1.15	1.30	
ΔV _{O(pwr)}	Thermal regulation	$T_a = 25^{\circ}C$, 30ms Pulse		0.08	0.2	%/W

6 Typical application

Figure 5. Active terminator for SCSI-2 bus


Figure 6. Circuit for increasing output voltage

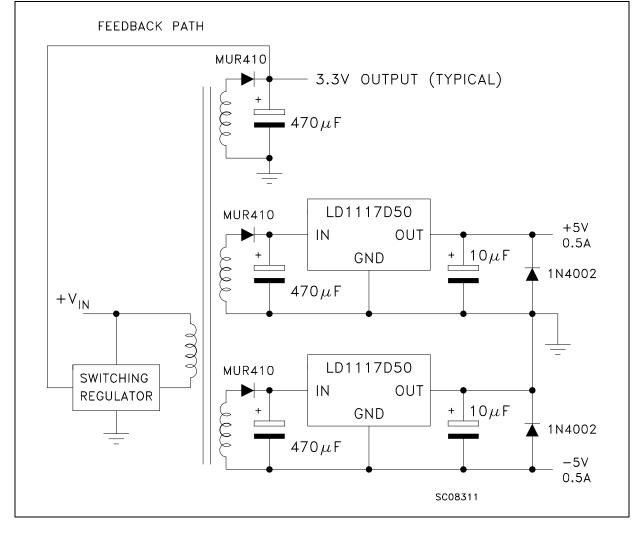
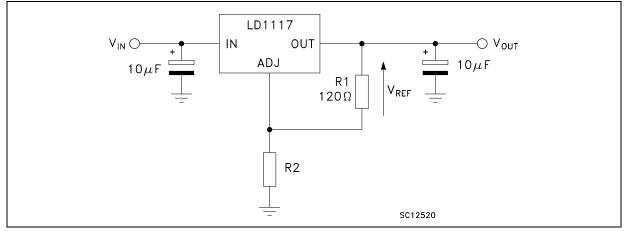


Figure 8. Battery backed-up regulated supply

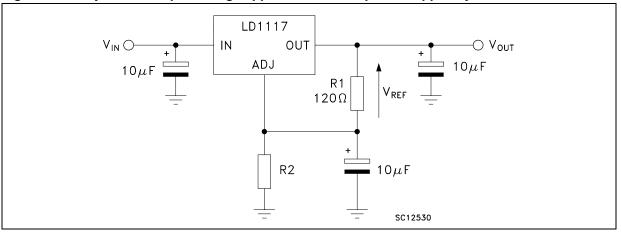
7 LD1117A adjustable: application note

The LD1117A adjustable has a thermal stabilized 1.25 \pm 0.012 V reference voltage between the OUT and ADJ pins. I_{ADJ} is 60 μ A typ. (120 μ A max.) and ΔI_{ADJ} is 1 μ A typ. (5 μ A max.).

R1 is normally fixed to 120 Ω . From *Figure 7* we obtain:


 $V_{OUT} = V_{REF} + R_2 (I_{ADJ} + I_{R1}) = V_{REF} + R_2 (I_{ADJ} + V_{REF} / R_1) = V_{REF} (1 + R_2 / R_1) + R_2 x I_{ADJ}.$

In normal application R_2 value is in the range of few k Ω , so the $R_2 \times I_{ADJ}$ product could not be considered in the V_{OUT} calculation; then the above expression becomes:


 $V_{OUT} = V_{REF} (1 + R_2 / R_1).$

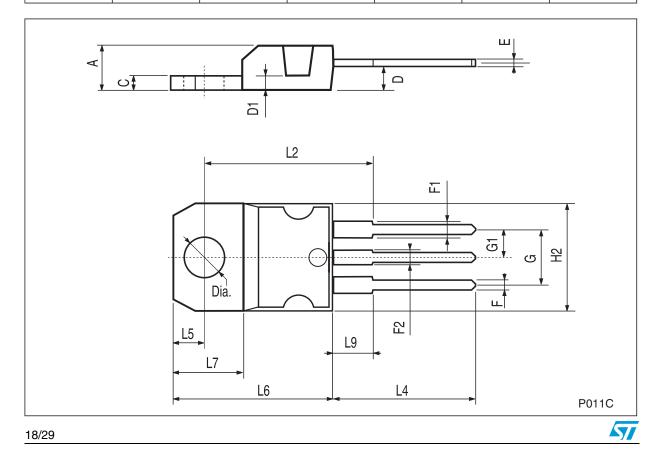
In order to have the better load regulation it is important to realize a good Kelvin connection of R₁ and R₂ resistors. In particular R₁ connection must be realized very close to OUT and ADJ pin, while R₂ ground connection must be placed as near as possible to the negative Load pin. Ripple rejection can be improved by introducing a 10 μ F electrolytic capacitor placed in parallel to the R₂ resistor (see *Figure 10*).

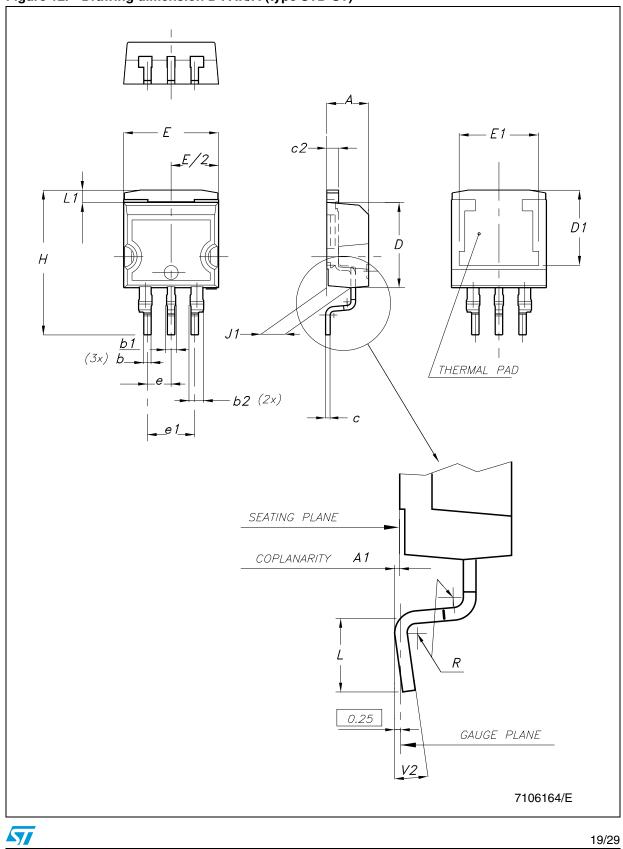
Figure 10. Adjustable output voltage application

Figure 11. Adjustable output voltage application with improved ripple rejection

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.




Γ

	SOT-223 mechanical data									
Dim.		mm. mils.								
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.				
A			1.8			70.9				
A1	0.02		0.1	0.8		3.9				
В	0.6	0.7	0.85	23.6	27.6	33.5				
B1	2.9	3	3.15	114.2	118.1	124.0				
с	0.24	0.26	0.35	9.4	10.2	13.8				
D	6.3	6.5	6.7	248.0	255.9	263.8				
е		2.3			90.6					
e1		4.6			181.1					
E	3.3	3.5	3.7	129.9	137.8	145.7				
н	6.7	7	7.3	263.8	275.7	287.5				
V			10°			10°				

TO-220 mechanical data							
Dim.		mm.			inch.		
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.051	
D	2.40		2.72	0.094		0.107	
D1		1.27			0.050		
E	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.203	
G1	2.4		2.7	0.094		0.106	
H2	10.0		10.40	0.393		0.409	
L2		16.4			0.645		
L4	13.0		14.0	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.2		6.6	0.244		0.260	
L9	3.5		3.93	0.137		0.154	
DIA.	3.75		3.85	0.147		0.151	

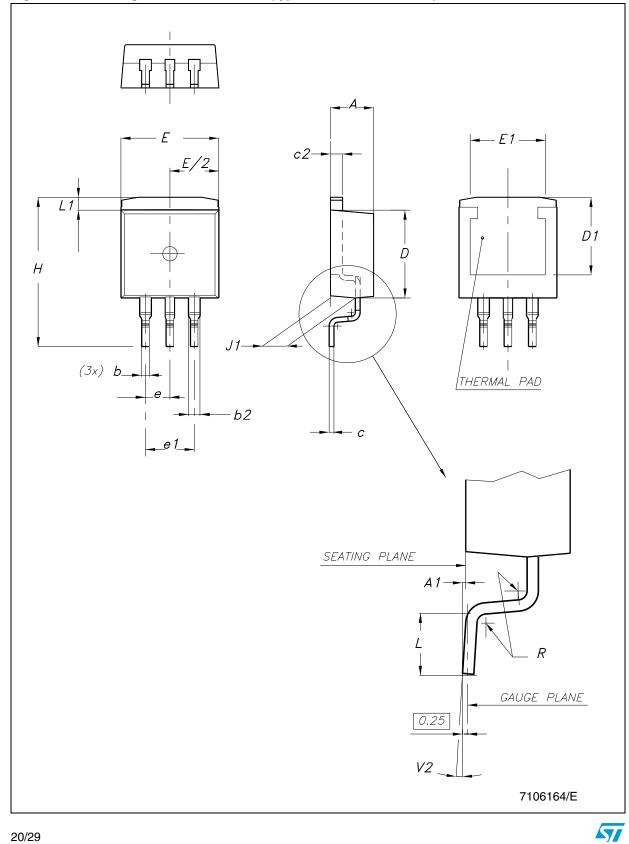


Figure 13. Drawing dimension D²PAK/A (type WOOSEOK-Subcon.)

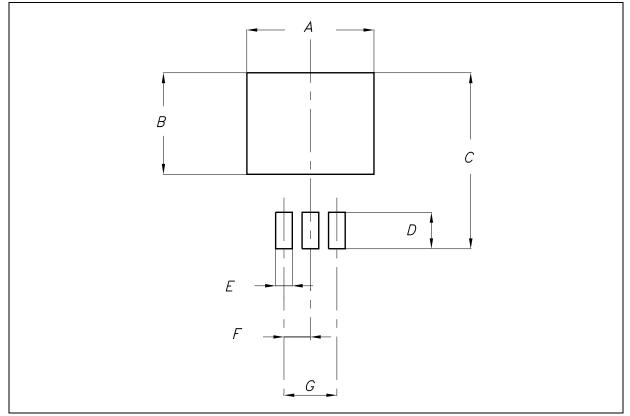

		Type STD-ST		Type WOOSEOK-Subcor			
Dim.		mm.			mm.		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	4.40		4.60	4.30		4.70	
A1	0.03		0.23	0		0.20	
b	0.70		0.93	0.70		0.90	
b1	0.80		1.30				
b2	1.14		1.70	1.17		1.37	
С	0.45		0.60	0.45	0.50	0.60	
c2	1.23		1.36	1.25	1.30	1.40	
D	8.95		9.35	9	9.20	9.40	
D1	7.50			7.50			
E	10		10.40	9.80		10.20	
E1	8.50			7.50			
е		2.54			2.54		
e1	4.88		5.28		5.08		
Н	15		15.85	15	15.30	15.60	
J1	2.49		2.69	2.20		2.60	
L	2.29		2.79	1.79		2.79	
L1	1.27		1.40	1		1.40	
R		0.4			0.30		
V2	0°		8°	0°		3°	

Table 9.D²PAK/A mechanical data

Note: The D²PAK/A package coming from the subcontractor Wooseok is fully compatible with the ST's package suggested footprint.

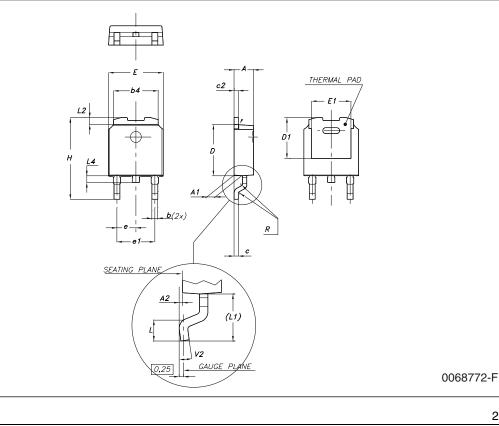
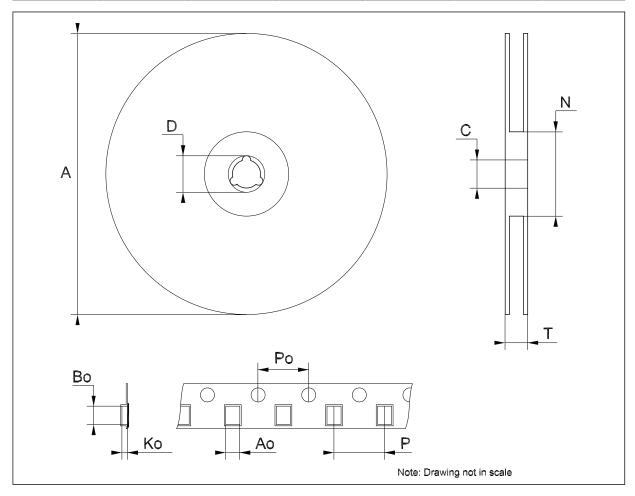
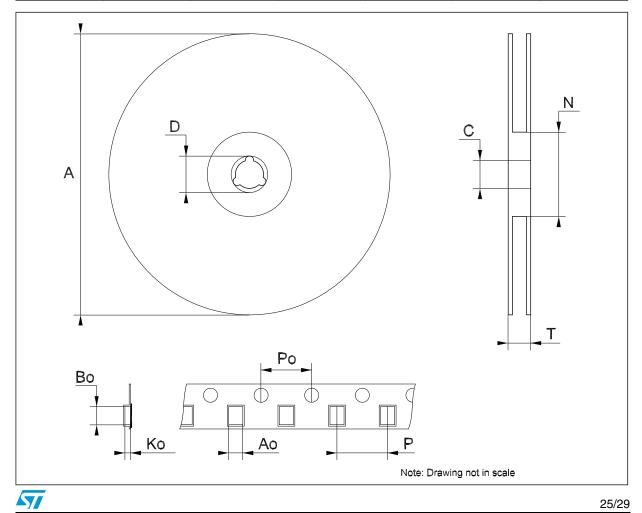


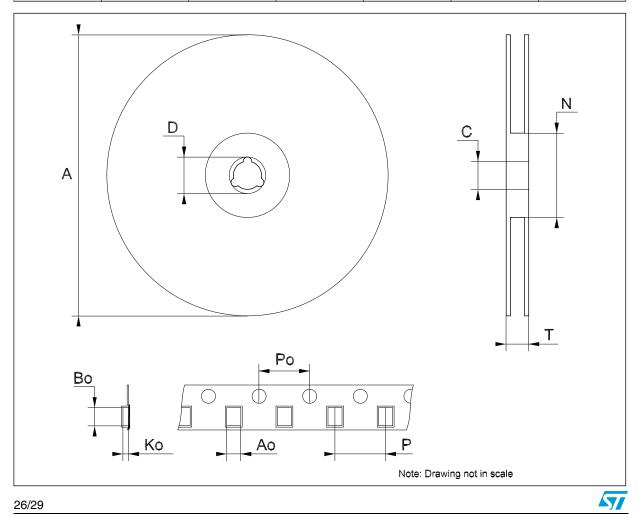
Table 10. Footprint data


Values					
Dim.	mm.	inch.			
A	12.20	0.480			
В	9.75	0.384			
С	16.90	0.665			
D	3.50	0.138			
E	1.60	0.063			
F	2.54	0.100			
G	5.08	0.200			

	DPAK mechanical data						
Dim.		mm.			inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
b4	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
D1		5.1			0.200		
E	6.4		6.6	0.252		0.260	
E1		4.7			0.185		
е		2.28			0.090		
e1	4.4		4.6	0.173		0.181	
Н	9.35		10.1	0.368		0.397	
L	1			0.039			
(L1)		2.8			0.110		
L2		0.8			0.031		
L4	0.6		1	0.023		0.039	
R		0.2			0.008		
V2	0°		8°	0°		8°	


	Tape & reel SOT223 mechanical data					
		mm.		inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362		
Т			14.4			0.567
Ao	6.73	6.83	6.93	0.265	0.269	0.273
Во	7.32	7.42	7.52	0.288	0.292	0.296
Ko	1.78		2	0.070		0.078
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

24/29


Γ

	Tape & reel DPAK-PPAK mechanical data					
Dim		mm.		inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362		
Т			22.4			0.882
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76
Во	10.40	10.50	10.60	0.409	0.413	0.417
Ко	2.55	2.65	2.75	0.100	0.104	0.105
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Dim.		mm.		inch.		
Diin.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ко	4.80	4.90	5.00	0.189	0.193	0.197
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

9 Order codes

Table 11.	Order codes
-----------	-------------

	Output valtage			
SOT-223	SOT-223 DPAK D ² PAK/A		TO-220	Output voltage
LD1117AS12TR	LD1117ADT12TR			1.2 V
LD1117AS18TR	LD1117ADT18TR		LD1117AV18	1.8 V
LD1117AS25TR	LD1117ADT25TR		LD1117AV25	2.5 V
LD1117AS33TR	LD1117ADT33TR		LD1117AV33	3.3 V
LD1117ASTR	LD1117ADT-TR	LD1117AD2MTR	LD1117AV	Adjustable from 1.25 to 15 V

10 Revision history

Date	Revision	Changes	
29-Sep-2004	11	Add new part number #12.	
12-Oct-2004	12	Mistake V _O max Table 4.	
21-Apr-2005	13	Add new package - D ² PAK/A.	
05-Jul-2005	14	The DPAK mechanical data updated.	
10-Feb-2006	15	Add new package - D ² PAK/A (B Type).	
20-Dec-2006	16	Change value V _{IN} on <i>Table 2</i> .	
19-Jan-2007	17	D ² PAK/A mechanical data updated and add footprint data.	
28-May-2007	18	Add I_{ADJ} and ΔI_{ADJ} values on <i>Table 8</i> .	
07-Jun-2007	19	Add I _{O(min)} value on <i>Table 8</i> .	
15-Apr-2008	20	Modified: <i>Table 11 on page 27</i> .	

Table 12.Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

