

- **NOTES:** 1. Derate linearly by 1.2 W/°C for $T_c > +25$ °C.
 - 2. The following formula derives the maximum theoretical I_D limit. I_D is limited by package and internal wires and may also be limited by pin diameter:

$$I_{D} = \sqrt{\frac{T_{J}(max) - T_{C}}{R_{\theta JC} \times R_{DS(on)} @ T_{J}(max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MECHANICAL and PACKAGING

- CASE: TO-3 metal can.
- TERMINALS: Solder dipped (Sn63/Pb37) over nickel plated alloy 52. RoHS compliant matte-tin plating is also available on commercial grade only.
- MARKING: Manufacturer's ID, part number, date code.
- WEIGHT: Approximately 12.7 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS			
Symbol	Definition		
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.		
١ _F	Forward current		
R _G	Gate drive impedance		
V _{DD}	Drain supply voltage		
V _{DS}	Drain source voltage, dc		
V _{GS}	Gate source voltage, dc		

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS		•		·	
Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ mA}$	2N6764 2N6766 2N6768 2N6770	V _{(BR)DSS}	100 200 400 500		V
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}$ $V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}, T_J = +125 ^{\circ}C$ $V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}, T_J = -55 ^{\circ}C$		$\begin{array}{c} V_{GS(th)1} \\ V_{GS(th)2} \\ V_{GS(th)3} \end{array}$	2.0 1.0	4.0 5.0	V
$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_J = +125 \text{ °C}$		I _{GSS1} I _{GSS2}		±100 ±200	nA
	2N6764 2N6766 2N6768 2N6770	I _{DSS1}		25	μΑ
Drain Current $V_{GS} = 0 V, V_{DS} = 100 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 200 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 400 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 500 V, T_J = +125 °C$	2N6764 2N6766 2N6768 2N6770	I _{DSS2}		1.0	mA
Drain Current $V_{GS} = 0 V, V_{DS} = 80 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 160 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 320 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 400 V, T_J = +125 °C$	2N6764 2N6766 2N6768 2N6770	I _{DSS3}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 24.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 19.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 7.75 \text{ A pulsed}$	2N6764 2N6766 2N6768 2N6770	r _{DS(on)1}		0.055 0.085 0.3 0.4	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 38.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 30.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A pulsed}$	2N6764 2N6766 2N6768 2N6770	r _{DS(on)2}		0.065 0.09 0.4 0.5	Ω
Static Drain-Source On-State Resistance $T_J = +125 \text{ °C}$ $V_{GS} = 10 \text{ V}, I_D = 24.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 19.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 7.75 \text{ A pulsed}$	2N6764 2N6766 2N6768 2N6770	r _{DS(on)3}		0.094 0.153 0.66 0.88	Ω
Diode Forward Voltage $V_{GS} = 0 V, I_D = 38.0 A \text{ pulsed}$ $V_{GS} = 0 V, I_D = 30.0 A \text{ pulsed}$ $V_{GS} = 0 V, I_D = 14.0 A \text{ pulsed}$ $V_{GS} = 0 V, I_D = 12.0 A \text{ pulsed}$	2N6764 2N6766 2N6768 2N6770	V _{SD}		1.9 1.9 1.7 1.7	V

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted (continued)

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate Charge:				
On-State Gate Charge				
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 38.0 \text{ A}, \text{ V}_{DS} = 50 \text{ V}$ 2N6764			125	
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 30.0 \text{ A}, \text{ V}_{DS} = 100 \text{ V}$ 2N6766	0		115	nC
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 14.0 \text{ A}, \text{ V}_{DS} = 200 \text{ V}$ 2N6768	G g(on)		110	110
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12.0 \text{ A}, \text{ V}_{DS} = 250 \text{ V}$ 2N6770			120	
Gate to Source Charge				
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 38.0 \text{ A}, \text{ V}_{DS} = 50 \text{ V}$ 2N6764			22	
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 30.0 \text{ A}, \text{ V}_{DS} = 100 \text{ V}$ 2N6766	0		22	nC
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 14.0 \text{ A}, \text{ V}_{DS} = 200 \text{ V}$ 2N6768	Qgs		18	no
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12.0 \text{ A}, \text{ V}_{DS} = 250 \text{ V}$ 2N6770			19	
Gate to Drain Charge				
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 38.0 \text{ A}, \text{ V}_{DS} = 50 \text{ V}$ 2N6764			65	
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 30.0 \text{ A}, \text{ V}_{DS} = 100 \text{ V}$ 2N6766	0		60	nC
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 14.0 \text{ A}, \text{ V}_{DS} = 200 \text{ V}$ 2N6768	⊂ _{gd}		65	no
$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12.0 \text{ A}, \text{ V}_{DS} = 250 \text{ V}$ 2N6770			70	

SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-on delay time					
$I_D = 38.0 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_G = 2.35 \Omega, \text{ V}_{DD} = 50 \text{ V}$	2N6764				
$I_D = 30.0 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_G = 2.35 \Omega, \text{ V}_{DD} = 100 \text{ V}$	2N6766	t		35	ne
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N6768	۲d(on)		55	113
I_{D} = 12.0 A, V_{GS} = 10 V, R_{G} = 2.35 Ω , V_{DD} = 250 V	2N6770				
Rise time					
$I_{D} = 38.0 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_{G} = 2.35 \Omega, \text{ V}_{DD} = 50 \text{ V}$	2N6764				
$I_D = 30.0 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_G = 2.35 \Omega, \text{ V}_{DD} = 100 \text{ V}$	2N6766	t		100	ne
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N6768	۲		130	115
I_{D} = 12.0 A, V_{GS} = 10 V, R_{G} = 2.35 Ω , V_{DD} = 250 V	2N6770				
Turn-off delay time					
$I_{D} = 38.0 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_{G} = 2.35 \Omega, \text{ V}_{DD} = 50 \text{ V}$	2N6764				
$I_D = 30.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N6766	t		170	ne
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N6768	Ld(off)		170	113
$I_D = 12.0 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_G = 2.35 \Omega, \text{ V}_{DD} = 250 \text{ V}$	2N6770				
Fall time					
$I_{D} = 38.0 \text{ A}, V_{GS} = 10 \text{ V}, R_{G} = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N6764				
$I_D = 30.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N6766	t.		130	ne
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N6768	ч		150	115
$I_D = 12.0 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_G = 2.35 \Omega, \text{ V}_{DD} = 250 \text{ V}$	2N6770				
Diode Reverse Recovery Time					
di/dt = 100 A/µs, V _{DD} ≤ 30 V, I _D = 38.0 A	2N6764			500	
di/dt = 100 A/ μ s, V _{DD} ≤ 30 V, I _D = 30.0 A	2N6766	t		950	ne
$di/dt = 100 \text{ A}/\mu \text{s}, \text{ V}_{\text{DD}} \le 30 \text{ V}, \text{ I}_{\text{D}} = 14.0 \text{ A}$	2N6768	۲r		1200	113
$di/dt = 100 \text{ A}/\mu \text{s}, \text{ V}_{\text{DD}} \le 30 \text{ V}, \text{ I}_{\text{D}} = 12.0 \text{ A}$	2N6770			1600	

GRAPHS

Thermal Response Curves

GRAPHS (continued)

T4-LDS-0101, Rev. 3 (121466)

GRAPHS (continued)

T4-LDS-0101, Rev. 3 (121466)

GRAPHS (continued)

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) for 2N6768

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) for 2N6770

T4-LDS-0101, Rev. 3 (121466)

PACKAGE DIMENSIONS

MILLIMETERS

MAX

22.23

3.43

9.15

12.70

1.27

1.60

1.10

4.78

30.40

17.15

5.72

11.18

13.3

4.09

MIN

-

1.52

6.35

7.92

-

1.45

0.97

3.33

29.90

16.64

5.21

10.67

12.57

3.84

NOTES

(3)

DIA. (5)

DIA. (6)

Radius

Radius

DIA. (7)

INCHES

MAX

0.875

0.135

0.360

0.500

0.050

0.063

0.043

0.188

1.197

0.675

0.225

0.440

0.525

0.161

MIN

-

0.060

0.250

0.312

0.057

0.038

0.131

1.177

0.655

0.205

0.420

0.495

0.151

DIM

Α

В

С

D

D2

Е

F

G

Η

J

Κ

L

Μ

NOTE:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. These dimensions should be measured at points .050 inch (1.27 mm) and .055 inch (1.40 mm) below the seating plane. When gauge is not used measurement will be made at the seating plane.
- 4. The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- 5. These dimensions pertain to the 2N6764 and 2N6766 types.
- 6. These dimensions pertain to the 2N6768 and 2N6770 types.
- 7. Mounting holes shall be deburred on the seating plane side.
- 8. Drain is electrically connected to the case.
- 9. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

SCHEMATIC

