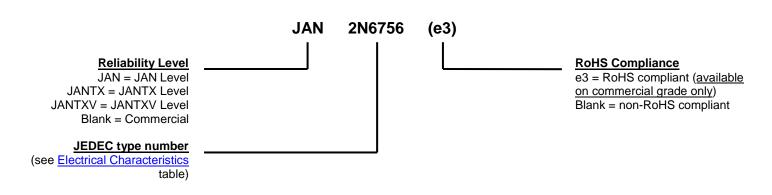


NOTES:

- 1. Derated linearly by 0.6 W/ $^{\circ}$ C for T_C > +25 $^{\circ}$ C.
- 2. The following formula derives the maximum theoretical ID limit. ID is limited by package and internal wires and may be limited by pin diameter:


$$I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} x R_{DS(on)} @ T_J (max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MECHANICAL and PACKAGING

- CASE: TO-3 metal can.
- TERMINALS: Solder dipped (Sn63/Pb37) over nickel plated alloy 52. RoHS compliant matte-tin plating is available on commercial grade only.
- MARKING: Manufacturer's ID, part number, date code.
- WEIGHT: Approximately 12.7 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.					
I _D	Drain current					
I _F	Forward current					
R_{G}	Gate drive impedance					
T _C	Case Temperature					
V_{DD}	Drain supply voltage					
V _{DS}	Drain source voltage					
V_{GS}	Gate source voltage					

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage					
$V_{GS} = 0 \text{ V}, I_{D} = 1.0 \text{ mA}$	2N6756 2N6758 2N6760 2N6762	V _{(BR)DSS}	100 200 400 500		V
Gate-Source Voltage (Threshold)					
$V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}$ $V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}, T_J = +125^{\circ}\text{C}$ $V_{DS} \ge V_{GS}, I_D = 0.25 \text{ mA}, T_J = -55^{\circ}\text{C}$		$V_{GS(th)1}$ $V_{GS(th)2}$ $V_{GS(th)3}$	2.0 1.0	4.0 5.0	V
Gate Current		. ,			
$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_{J} = +125^{\circ}\text{C}$		I_{GSS1} I_{GSS2}		±100 ±200	nA
Drain Current	•				
$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$ $V_{GS} = 0 \text{ V}, V_{DS} = 160 \text{ V}$ $V_{GS} = 0 \text{ V}, V_{DS} = 320 \text{ V}$ $V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V}$	2N6756 2N6758 2N6760 2N6762	I _{DSS1}		25	μΑ
$ \begin{array}{c} \text{Drain Current} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 100 \text{ V}, \text{ T}_{\text{J}} = +125 ^{\circ}\text{C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 200 \text{ V}, \text{ T}_{\text{J}} = +125 ^{\circ}\text{C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 400 \text{ V}, \text{ T}_{\text{J}} = +125 ^{\circ}\text{C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 500 \text{ V}, \text{ T}_{\text{J}} = +125 ^{\circ}\text{C} \\ \end{array} $	2N6756 2N6758 2N6760 2N6762	I _{DSS2}		1.0	mA
$ \begin{array}{c} \text{Drain Current} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 80 \text{ V}, \text{ T}_{\text{J}} = +125 \text{ °C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{V}_{\text{DS}} = 160 \text{ V}, \text{T}_{\text{J}} = +125 \text{ °C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{V}_{\text{DS}} = 320 \text{ V}, \text{T}_{\text{J}} = +125 \text{ °C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{V}_{\text{DS}} = 400 \text{ V}, \text{T}_{\text{J}} = +125 \text{ °C} \\ \end{array} $	2N6756 2N6758 2N6760 2N6762	I _{DSS3}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A pulsed}$	2N6756 2N6758 2N6760 2N6762	r _{DS(on)1}		0.18 0.40 1.00 1.50	Ω
Static Drain-Source On-State Resistance V_{GS} = 10 V, I_D = 14.0 A pulsed V_{GS} = 10 V, I_D = 9.0 A pulsed V_{GS} = 10 V, I_D = 5.5 A pulsed V_{GS} = 10 V, I_D = 4.5 A pulsed	2N6756 2N6758 2N6760 2N6762	r _{DS(on)2}		.21 .49 1.22 1.80	Ω
Static Drain-Source On-State Resistance $T_J = +125^{\circ}C$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A pulsed}$	2N6756 2N6758 2N6760 2N6762	r _{DS(on)3}		0.34 0.8 2.2 3.3	Ω
Diode Forward Voltage $\begin{aligned} &V_{GS}=0 \text{ V, } I_D=14.0 \text{ A pulsed} \\ &V_{GS}=0 \text{ V, } I_D=9.0 \text{ A pulsed} \\ &V_{GS}=0 \text{ V, } I_D=5.5 \text{ A pulsed} \\ &V_{GS}=0 \text{ V, } I_D=4.5 \text{ A pulsed} \end{aligned}$	2N6756 2N6758 2N6760 2N6762	V_{SD}		1.8 1.6 1.5 1.4	V

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

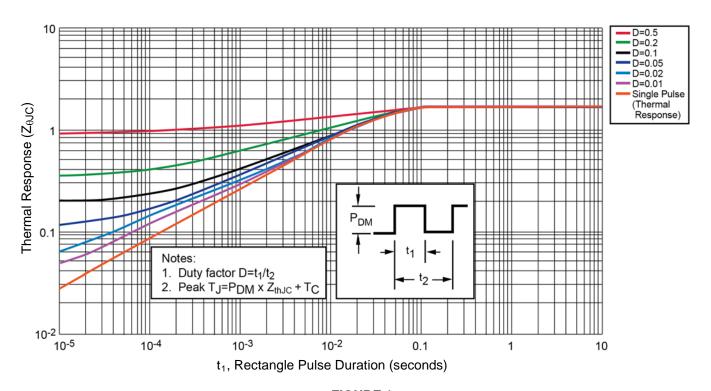
DYNAMIC CHARACTERISTICS

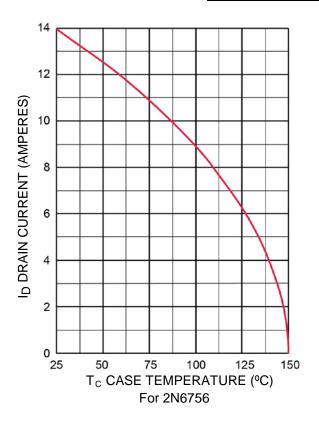
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
On-State Gate Charge $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A}, V_{DS} = 80 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A}, V_{DS} = 160 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}, V_{DS} = 320 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}, V_{DS} = 400 \text{ V}$	2N6756 2N6758 2N6760 2N6762	$Q_{g(on)}$		35 39 39 40	nC
Gate to Source Charge $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A}, V_{DS} = 80 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A}, V_{DS} = 160 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}, V_{DS} = 320 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}, V_{DS} = 400 \text{ V}$	2N6756 2N6758 2N6760 2N6762	Q_gs		10 5.7 6.0 6.0	nC
Gate to Drain Charge $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A}, V_{DS} = 80 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A}, V_{DS} = 160 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}, V_{DS} = 320 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}, V_{DS} = 400 \text{ V}$	2N6756 2N6758 2N6760 2N6762	Q_gd		15 20 20 20	nC

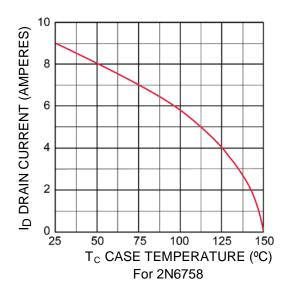
SWITCHING CHARACTERISTICS

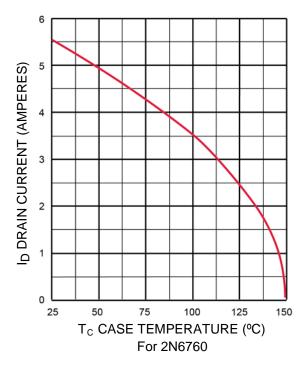
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-on delay time					
$\begin{split} I_D &= 14.0 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 50 \text{ V} \\ I_D &= 9.0 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 100 \text{ V} \\ I_D &= 5.5 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 200 \text{ V} \\ I_D &= 4.5 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 250 \text{ V} \end{split}$	2N6756 2N6758 2N6760 2N6762	$t_{d(on)}$		35 35 30 30	ns
Rinse time					
$\begin{split} I_D &= 14.0 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 50 \text{ V} \\ I_D &= 9.0 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 100 \text{ V} \\ I_D &= 5.5 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 200 \text{ V} \\ I_D &= 4.5 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 250 \text{ V} \end{split}$	2N6756 2N6758 2N6760 2N6762	t _r		80 80 40 40	ns
Turn-off delay time					
$\begin{split} I_D &= 14.0 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 50 \text{ V} \\ I_D &= 9.0 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 100 \text{ V} \\ I_D &= 5.5 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 200 \text{ V} \\ I_D &= 4.5 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 250 \text{ V} \end{split}$	2N6756 2N6758 2N6760 2N6762	$t_{d(off)}$		60 60 80 80	ns
Fall time					
$\begin{split} I_D &= 14.0 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 50 \text{ V} \\ I_D &= 9.0 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 100 \text{ V} \\ I_D &= 5.5 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 200 \text{ V} \\ I_D &= 4.5 \text{ A}, \text{ V}_{GS} = +10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = 250 \text{ V} \end{split}$	2N6756 2N6758 2N6760 2N6762	t _f		45 40 35 30	ns
Diode Reverse Recovery Time					
$ \begin{aligned} & \text{di/dt} = 100 \text{ A/}\mu\text{s, V}_{\text{DD}} \leq 30 \text{ V, I}_{\text{D}} = 14.0 \text{ A} \\ & \text{di/dt} = 100 \text{ A/}\mu\text{s, V}_{\text{DD}} \leq 30 \text{ V, I}_{\text{D}} = 9.0 \text{ A} \\ & \text{di/dt} = 100 \text{ A/}\mu\text{s, V}_{\text{DD}} \leq 30 \text{ V, I}_{\text{D}} = 5.5 \text{ A} \\ & \text{di/dt} = 100 \text{ A/}\mu\text{s, V}_{\text{DD}} \leq 30 \text{ V, I}_{\text{D}} = 4.5 \text{ A} \end{aligned} $	2N6756 2N6758 2N6760 2N6762	t _{rr}		300 500 700 900	ns

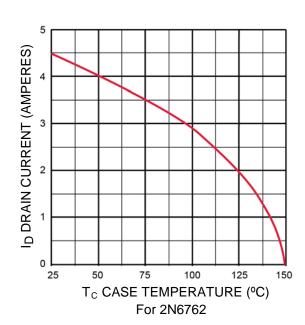
GRAPHS



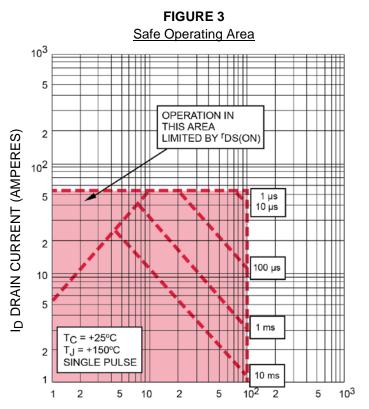

FIGURE 1
Thermal Response Curves

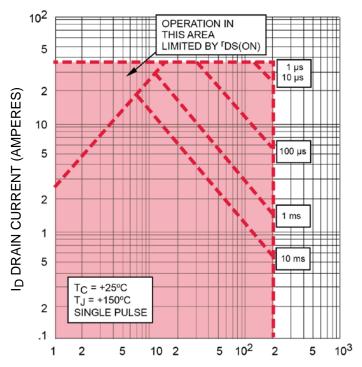



GRAPHS (continued)

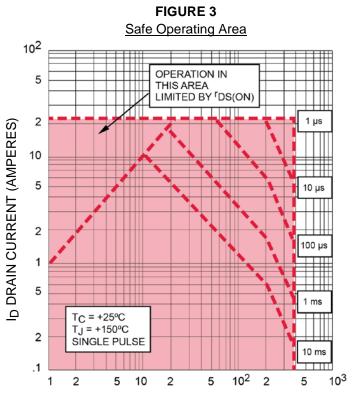

FIGURE 2

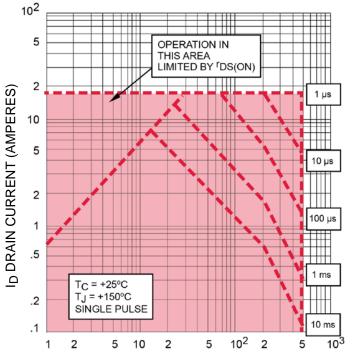
Maximum Drain Current vs Case Temperature



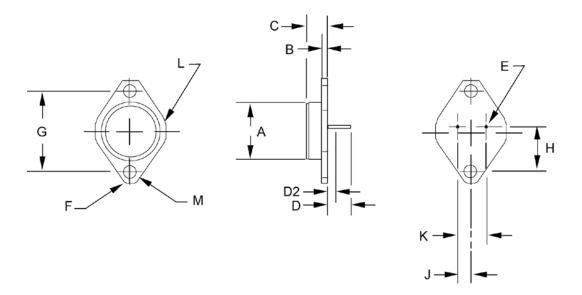


GRAPHS (continued)


V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FOR 2N6756

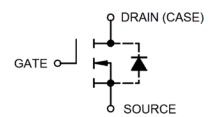

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FOR 2N6758

GRAPHS (continued)


V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FOR 2N6760

 V_{DS} , DRAIN-TO-SOURCE VOLTAGE (VOLTS) FOR 2N6762

PACKAGE DIMENSIONS



NOTE:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. These dimensions should be measured at points .050 inch (1.27 mm) and .055 inch (1.40 mm) below seating plane. When gauge is not used measurement will be made at the seating plane.
- 4. The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- 5. Mounting holes shall be deburred on the seating plane side.
- 6. Drain is electrically connected to the case.
- 7. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

DIM	INC	HES	MILLIM	NOTES	
DIIVI	MIN	MAX	MIN	MAX	NOTES
Α	1	.875	1	22.23	
В	.060	.135	1.52	3.43	
C	.250	.360	6.35	9.14	
D	.312	.500	7.92	12.70	
D2	1	.050	1	1.27	
Е	.038	.043	0.97	1.09	DIA.
F	.131	.188	3.33	4.78	Radius
G	1.177	1.197	29.90	30.40	
H	.655	.675	16.64	17.15	
J	.205	.225	5.21	5.72	3, 5
K	.420	.440	10.67	11.18	3, 5
L	.495	.525	12.57	13.34	Radius
М	.151	.161	3.84	4.09	DIA.

SCHEMATIC

