



# Pin Out (top view)

# TOP VIEW

| $\Box$    | 1    | 2    | 3           | 4          | 5           | 6    | 7          | 8     | 9          | 1 |
|-----------|------|------|-------------|------------|-------------|------|------------|-------|------------|---|
| A         | TA1+ | TB1+ | TC1+        | TCLK1<br>+ | TD1+        | TA2+ | TB2+       | TC2+  | TCLK2<br>+ | A |
| В         | TA1- | TB1- | TC1-        | TCLK1      | TD1-        | TA2- | TB2-       | TC2-  | TCLK2<br>- | В |
| С         | PRBS | N/C  | Reserved1   | GND        | VCC<br>LVDS | GND  | PLL<br>VCC | TD2-  | TD2+       | С |
| D         | R11  | R10  | LVDS<br>VCC |            |             |      | GND        | /PDWN | OÆ         | D |
| E         | R13  | R12  | GND         |            |             |      | MODE       | MAP   | DDRN       | E |
| F         | R15  | R14  | GND         |            |             |      | 6B/8B      | RS    | CLKIN      | F |
| G         | R17  | R16  | VCC         | GND        | VCC         | GND  | IOVCC      | R/F   | DE         | G |
| н         | G10  | G12  | G14         | G16        | B10         | B12  | B14        | B16   | VSYNC      | Н |
| J         | G11  | G13  | G15         | G17        | B11         | B13  | B15        | B17   | HSYNC      | J |
| $\exists$ | 1    | 2    | 3           | 4          | 5           | 6    | 7          | 8     | 9          |   |





### Pin Description

| Pin Name          | Pin #                                     | Туре     | Description                                                 |  |  |  |  |  |
|-------------------|-------------------------------------------|----------|-------------------------------------------------------------|--|--|--|--|--|
| TA1+, TA1-        | A1,B1                                     |          |                                                             |  |  |  |  |  |
| TB1+, TB1-        | A2,B2                                     |          | The 1st Link.                                               |  |  |  |  |  |
| TC1+, TC1-        | A3,B3                                     | LVDS OUT | The 1st pixel output data when Dual out.                    |  |  |  |  |  |
| TD1+, TD1-        | A5,B5                                     | •        | Output data when Single out.                                |  |  |  |  |  |
| TCLK1+, TCLK1-    | A4,B4                                     | LVDS OUT | LVDS Clock Out for 1st Link.                                |  |  |  |  |  |
| TA2+, TA2-        | A6,B6                                     |          |                                                             |  |  |  |  |  |
| TB2+, TB2-        | A7,B7                                     |          | The 2nd Link.                                               |  |  |  |  |  |
| TC2+, TC2-        | A8,B8                                     | LVDS OUT | The 2nd pixel output data when Dual out.                    |  |  |  |  |  |
| TD2+, TD2-        | C9,C8                                     |          | LVDS Clock Out for 2nd Link.                                |  |  |  |  |  |
| TCLK2+, TCLK2-    | A9,B9                                     | LVDS OUT | LVDS Clock Out for 2nd Link.                                |  |  |  |  |  |
|                   | G1,G2,F1,F2                               |          |                                                             |  |  |  |  |  |
| R17 ~ R10         | E1,E2,D1,D2                               |          |                                                             |  |  |  |  |  |
| 0.17              | J4,H4,J3,H3                               |          |                                                             |  |  |  |  |  |
| G17 ~ G10         | J2,H2,J1,H1                               | IN       | Pixel Data Inputs.                                          |  |  |  |  |  |
| D.17 D.10         | J8,H8,J7,H7                               |          |                                                             |  |  |  |  |  |
| B17 ~ B10         | J6,H6,J5,H5                               |          |                                                             |  |  |  |  |  |
| DE                | G9                                        | IN       | Data Enable Input.                                          |  |  |  |  |  |
| VSYNC             | H9                                        | IN       | Vsync Input.                                                |  |  |  |  |  |
| HSYNC             | J9                                        | IN       | Hsync Input.                                                |  |  |  |  |  |
| CLKIN             | F9                                        | IN       | Clock Input.                                                |  |  |  |  |  |
| 5.75              | 0.0                                       |          | Input Clock Triggering Edge Select.                         |  |  |  |  |  |
| R/F               | R/F G8 IN H: Rising edge, L: Falling edge |          | H: Rising edge, L: Falling edge                             |  |  |  |  |  |
|                   |                                           |          | LVDS swing mode select.                                     |  |  |  |  |  |
|                   |                                           |          | RS LVDS Swing (VOD, see Fig4 and Fig5)                      |  |  |  |  |  |
| RS                | F8                                        | IN       | H 350mV                                                     |  |  |  |  |  |
|                   |                                           |          | L 200mV                                                     |  |  |  |  |  |
|                   |                                           |          | LVDS mapping table select. See Fig9 and Fig10.              |  |  |  |  |  |
|                   |                                           |          | MAP Mapping Mode                                            |  |  |  |  |  |
| MAP               | E8                                        | IN       | H Mapping MODE1                                             |  |  |  |  |  |
|                   |                                           |          | L Mapping MODE2                                             |  |  |  |  |  |
|                   |                                           |          | Pixel data mode. See Fig7 and Fig8.                         |  |  |  |  |  |
|                   |                                           |          | MODE Modes                                                  |  |  |  |  |  |
| MODE              | E7                                        | IN       | H Single out (Single-in/Single-out)                         |  |  |  |  |  |
|                   |                                           |          | L Dual out (Single-in/Dual-out)                             |  |  |  |  |  |
|                   |                                           |          | Output enable.                                              |  |  |  |  |  |
| O/E               | D9                                        | IN       | H: Output enable,                                           |  |  |  |  |  |
| O/E D9            |                                           |          | H: Output enable, L: Output disable (all outputs are Hi-Z). |  |  |  |  |  |
|                   |                                           |          | H: Normal operation,                                        |  |  |  |  |  |
| /PDWN             | D8                                        | IN       | L: Power down (all outputs are Hi-Z and all circuits are    |  |  |  |  |  |
| ,. 5,,,,,         |                                           |          | stand-by mode with minimum current (ITCCS)).                |  |  |  |  |  |
| DDDC 3            | C1                                        | IN       | Must be tied to GND.                                        |  |  |  |  |  |
| PRBS <sup>a</sup> |                                           | IIN      | เพนระ มิย แยน เป นิเทิม.                                    |  |  |  |  |  |





#### Pin Description (Continued)

| Pin Name                                                 | Pin #                    | Туре                                                | Description                                          |  |  |  |
|----------------------------------------------------------|--------------------------|-----------------------------------------------------|------------------------------------------------------|--|--|--|
| Reserved1                                                | C3                       | IN                                                  | Must be tied to GND.                                 |  |  |  |
|                                                          |                          |                                                     | 6bit / 8bit mode select.                             |  |  |  |
| 6B/8B                                                    | F7                       | IN                                                  | H: 6bit mode (21bit mode),                           |  |  |  |
|                                                          |                          |                                                     | L: 8bit mode (27bit mode).                           |  |  |  |
|                                                          |                          |                                                     | DDR function is active when MODE = L (Dual-out mode) |  |  |  |
| DDRN E9 IN H: DDR (Double Edge input) function disable ( |                          | H: DDR (Double Edge input) function disable (Fig4). |                                                      |  |  |  |
|                                                          |                          |                                                     | L: DDR (Double Edge input) function enable (Fig5).   |  |  |  |
| N/C                                                      | C2                       |                                                     | Must be Open.                                        |  |  |  |
| VCC                                                      | G3,G5                    | Power                                               | Power Supply Pins for digital circuitry.             |  |  |  |
| IOVCC                                                    | G7                       | Power                                               | Power Supply Pin for IO inputs circuitry.            |  |  |  |
| LVDSVCC                                                  | C5,D3                    | Power                                               | Power Supply Pins for LVDS Outputs.                  |  |  |  |
| PLLVCC                                                   | C7                       | Power                                               | Power Supply Pin for PLL circuitry.                  |  |  |  |
| GND                                                      | F3,G4,G6,C4,<br>E3,C6,D7 | Ground                                              | Ground Pins.                                         |  |  |  |

a: Setting the PRBS pin high enables the internal test pattern generator. It generates Pseudo-Random Bit Sequence of 2<sup>23</sup>-1. The generated PRBS is fed into input data latches, encoded and serialized into LVDS OUT. This function is normally to be used for analyzing the signal integrity of the transmission channel including PCB traces, connectors, and cables.





## Absolute Maximum Ratings

| Supply Voltage (IOVCC)                | -0.3V ~ +4.0V            |
|---------------------------------------|--------------------------|
| Supply Voltage (VCC, PLLVCC, LVDSVCC) | -0.3V ~ +2.1V            |
| CMOS/TTL Input Voltage                | -0.3V ~ (IOVCC+ 0.3V)    |
| LVDS Transmitter Output Voltage       | -0.3V ~ (LVDSVCC + 0.3V) |
| Output Current                        | -50mA ~ 50mA             |
| Junction Temperature                  | +125°C                   |
| Storage Temperature Range             | -55°C ~ +125°C           |
| Reflow Peak Temperature / Time        | +260°C / 10sec.          |
| Maximum Power Dissipation @+25°C      | 1.3W                     |

## **Recommended Operating Conditions**

|           | Para                | Min               | Тур             | Max  | Units |                                     |     |
|-----------|---------------------|-------------------|-----------------|------|-------|-------------------------------------|-----|
|           | Supply Vol          | 1.62              | 1.8 / 2.5 / 3.3 | 3.6  | V     |                                     |     |
| Su        | upply Voltage (PLL\ | 1.62              | 1.8             | 1.98 | V     |                                     |     |
|           | Operating Ambie     | -40               |                 | 85   | °C    |                                     |     |
|           |                     | Single Edge Input | Input           | 20   |       | 174                                 | MHz |
|           | MODE=L              | (DDRN=H)          | LVDS Output     | 10   |       | 87                                  | MHz |
| Clock     | Dual-out            | Double Edge Input | Input           | 10   |       | 174                                 | MHz |
| Frequency |                     | (DDRN=L)          | LVDS Output     | 10   |       | 174                                 | MHz |
|           | MOE                 | DE=H              | Input           | 10   |       | 174 MH<br>87 MH<br>174 MH<br>174 MH | MHz |
|           | Sing                | le-out            | LVDS Output     | 10   |       | 174                                 | MHz |





#### **Electrical Characteristics**

# CMOS/TTL (Pin type "IN") DC Specifications

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol            | Parameter                     | Conditions                 | Min.       | Тур. | Max.       | Units |
|-------------------|-------------------------------|----------------------------|------------|------|------------|-------|
| V <sub>IH18</sub> | High Level Data Input Voltage | IOVCC=1.62V~1.98V          | 0.65 IOVCC |      | IOVCC+0.3  | V     |
| V <sub>IL18</sub> | Low Level Data Input Voltage  | 10 0 0 0 = 1.02 0 ~ 1.98 0 | -0.3       |      | 0.35 IOVCC | V     |
| V <sub>IH25</sub> | High Level Data Input Voltage | IOVCC=2.3V~2.7V            | 1.7        |      | IOVCC+0.3  | V     |
| V <sub>IL25</sub> | Low Level Data Input Voltage  | 10000=2.30~2.70            | -0.3       |      | 0.7        | V     |
| V <sub>IH33</sub> | High Level Data Input Voltage | IOVCC=3.0V~3.6V            | 2.0        |      | IOVCC+0.3  | V     |
| V <sub>IL33</sub> | Low Level Data Input Voltage  | 10000=3.00~3.00            | -0.3       |      | 0.8        | V     |
| I <sub>INC</sub>  | Input Current                 | VIN=GND~IOVCC              | -10        |      | 10         | μΑ    |

## LVDS Transmitter (Pin type "LVDS OUT") DC Specifications

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol          | Parameter                                         | Co                           | nditions               | Min.  | Тур. | Max.  | Units |
|-----------------|---------------------------------------------------|------------------------------|------------------------|-------|------|-------|-------|
| VOD             | Differential Output Voltage                       | RL=100Ω                      | Normal swing<br>RS= H  | 250   | 350  | 450   | mV    |
| VOD             | Differential Output Voltage                       | IXL=10052                    | Reduced swing<br>RS= L | 140   | 200  | 300   | mV    |
| ΔVOD            | Change in VOD between complementary output states | RL=100Ω                      |                        |       |      | 35    | mV    |
| VOC             | Common Mode Voltage                               |                              |                        | 1.125 | 1.25 | 1.375 | V     |
| ΔVOC            | Change in VOC between complementary output states |                              |                        |       |      | 35    | mV    |
| Ios             | Output Short Circuit Current                      | VOUT=GND, RL=100Ω            |                        |       |      | 100   | mA    |
| I <sub>OZ</sub> | Output TRI-State current                          | /PDWN=L,<br>VOUT=GND~LVDSVCC |                        | -20   |      | 20    | μА    |





### **Electrical Characteristics (Continued)**

### **Supply Current**

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol            | Parameter                     |                    | Conditions                           |               | Typ.(a)    | Max.(b)                                                                          | Units |
|-------------------|-------------------------------|--------------------|--------------------------------------|---------------|------------|----------------------------------------------------------------------------------|-------|
|                   |                               |                    |                                      | CLKIN=37MHz   | 24<br>(18) | 33<br>(26)                                                                       | mA    |
|                   |                               |                    | MODE=H<br>Single-out                 | CLKIN=65MHz   | (23)       | 43<br>(37)                                                                       | mA    |
|                   |                               |                    |                                      | CLKIN=72MHz   | 30<br>(24) | 46<br>(40)                                                                       | mA    |
|                   |                               |                    | MODE=L                               | CLKIN=89MHz   | 48<br>(36) | (40)<br>65<br>(53)<br>75<br>(63)<br>82<br>(70)<br>88<br>(76)<br>64<br>(52)<br>74 | mA    |
|                   | Transmitter                   | RL=100Ω            | Dual-out                             | CLKIN=119MHz  | 53<br>(41) |                                                                                  | mA    |
| I <sub>TCCW</sub> | Supply Current                | CL=5pF             | DDRN=H                               | CLKIN=139MHz  | 56<br>(44) |                                                                                  | mA    |
|                   | Current                       | RS = H<br>(RS = L) | DDR Input Off                        | CLKIN=154MHz  | 58<br>(46) |                                                                                  | mA    |
|                   |                               |                    | MODE=L<br>Dual-out                   | CLKIN=44.5MHz | 47<br>(35) | _                                                                                | mA    |
|                   |                               |                    |                                      | CLKIN=59.5MHz | 51<br>(39) | 74<br>(62)                                                                       | mA    |
|                   |                               |                    | DDRN=L                               | CLKIN=69MHz   | 54<br>(42) | 80<br>(68)                                                                       | mA    |
|                   |                               |                    | DDR Input On                         | CLKIN=77MHz   | 56<br>(44) | 85<br>(73)                                                                       | mA    |
| I <sub>TCCS</sub> | Transmitter Power Down Supply | /PD                | /PDWN = L, All Inputs = Fixed L or H |               |            |                                                                                  | uA    |
|                   | Current                       |                    |                                      |               |            |                                                                                  |       |

- (a) All Typ. values are at Vcc=1.8V, Ta=25°C. The 256 Grayscale Test Pattern inputs test for a typical display pattern.
- (b) All Max. values are at Vcc=1.98V, Ta=85  $^{\circ}$ C . Worst Case Test Pattern produces maximum switching frequency for all the LVDS outputs (Fig.1).

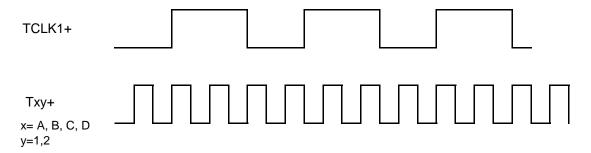



Fig1. Test Pattern (LVDS Output Full Toggle Pattern)





# **Switching Characteristics**

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol             | Parame                                                | eter                            | Min.                         | Тур.                      | Max.                         | Units |
|--------------------|-------------------------------------------------------|---------------------------------|------------------------------|---------------------------|------------------------------|-------|
| t <sub>TCIP</sub>  | CLK IN Period(Fig4,                                   | 5)                              | 5.75                         |                           | 100                          | ns    |
| t <sub>TCH</sub>   | CLK IN High Time(Fi                                   | g4,5)                           | 0.35t <sub>TCIP</sub>        | 0.5t <sub>TCIP</sub>      | 0.65t <sub>TCIP</sub>        | ns    |
| t <sub>TCL</sub>   | CLK IN Low Time(Fig                                   | g4,5)                           | 0.35t <sub>TCIP</sub>        | 0.5t <sub>TCIP</sub>      | 0.65t <sub>TCIP</sub>        | ns    |
| t <sub>TS</sub>    | TTL Data Setup to CLK IN(Fig4,5)                      |                                 | 0.8                          |                           |                              | ns    |
| t <sub>TH</sub>    | TTL Data Hold from                                    | CKL IN(Fig4,5)                  | 0.8                          |                           |                              | ns    |
| t <sub>TCD</sub>   | CLK IN to TCLK+/-                                     | MODE=L,DDR=H                    | 9t <sub>TCIP</sub> +3.1      |                           | 9t <sub>TCIP</sub> +8.0      | ns    |
| TCD                | Delay (Fig4,5)                                        | Others                          | 5t <sub>TCIP</sub> +3.1      |                           | 5t <sub>TCIP</sub> +8.0      | ns    |
| t <sub>TCOP</sub>  | CLK OUT Period(Fig                                    | 6)                              | 5.75                         |                           | 100                          | ns    |
| t <sub>LVT</sub>   | LVDS Transition Time                                  | e(Fig2)                         |                              | 0.6                       | 1.5                          | ns    |
| t <sub>TOP1</sub>  | Output Data Position0 (Fig6)                          |                                 | -0.15                        | 0.0                       | +0.15                        | ns    |
| t <sub>TOP0</sub>  | Output Data Position1 (Fig6)                          |                                 | $\frac{t_{TCOP}}{7} - 0.15$  | t <sub>TCOP</sub>         | $\frac{t_{TCOP}}{7} + 0.15$  | ns    |
| t <sub>TOP6</sub>  | Output Data Position2 (Fig6)                          |                                 | $2\frac{t_{TCOP}}{7} - 0.15$ | 2 <sup>t</sup> TCOP<br>7  | $2\frac{t_{TCOP}}{7} + 0.15$ | ns    |
| t <sub>TOP5</sub>  | Output Data Position3 (Fig6)                          | t <sub>TCOP</sub> = 5.75ns~15ns | $3\frac{t_{TCOP}}{7} - 0.15$ | 3 <sup>t</sup> TCOP 7     | $3\frac{t_{TCOP}}{7} + 0.15$ | ns    |
| t <sub>TOP4</sub>  | Output Data Position4 (Fig6)                          |                                 | $4\frac{t_{TCOP}}{7} - 0.15$ | 4 <sup>t</sup> TCOP<br>7  | $4\frac{t_{TCOP}}{7} + 0.15$ | ns    |
| t <sub>TOP3</sub>  | Output Data Position5 (Fig6)                          |                                 | $5\frac{t_{TCOP}}{7} - 0.15$ | 5 <sup>t</sup> TCOP<br>7  | $5\frac{t_{TCOP}}{7} + 0.15$ | ns    |
| t <sub>TOP2</sub>  | Output Data Position6 (Fig6)                          |                                 | $6\frac{t_{TCOP}}{7} - 0.15$ | 6 <sup>t</sup> TCOP<br>7  | $6\frac{t_{TCOP}}{7} + 0.15$ | ns    |
| t <sub>TPLL</sub>  | Phase Lock Time(Fig                                   | <b>j</b> 3)                     |                              |                           | 10.0                         | ms    |
| t <sub>DEINT</sub> | DE input period (Fig3-1)  Dual out mode only (MODE=L) |                                 | 4t <sub>TCIP</sub>           | tTCIP*(2n) <sup>(a)</sup> |                              | ns    |
| t <sub>DEH</sub>   | DE High time (Fig3-1<br>Dual-out mode only (          | )                               | 2t <sub>TCIP</sub>           | tTCIP*(2m) <sup>(a)</sup> |                              | ns    |
| t <sub>DEL</sub>   | DE Low time(Fig3-1) Dual-out mode only (              |                                 | 2t <sub>TCIP</sub>           |                           |                              | ns    |

<sup>(</sup>a) Refer to Fig3-1 for details.



## **AC Timing Diagrams**

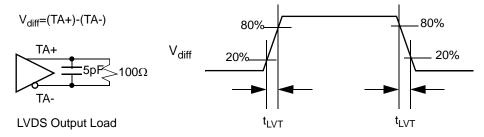



Fig2. LVDS Output Load and Transition Time

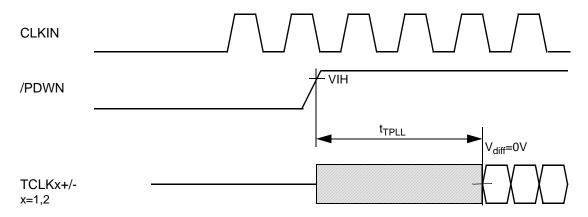
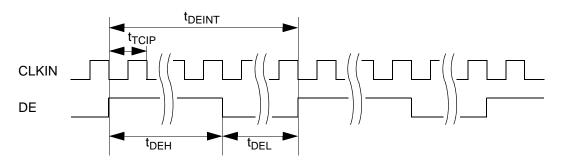




Fig3. PLL Lock Time



Note: In dual-out mode (MODE=L),

the period between rising edges of DE ( $t_{DEINT}$ ), high time of DE ( $t_{DEH}$ ) should always satisfy following equations.

$$t_{DEH}$$
 = tTCIP \* (2m)  
 $t_{DEINT}$  = tTCIP \* (2n)  
m, n =integer

Fig3-1. Dual OUT mode DE input timing





#### AC Timing Diagrams (Continued)

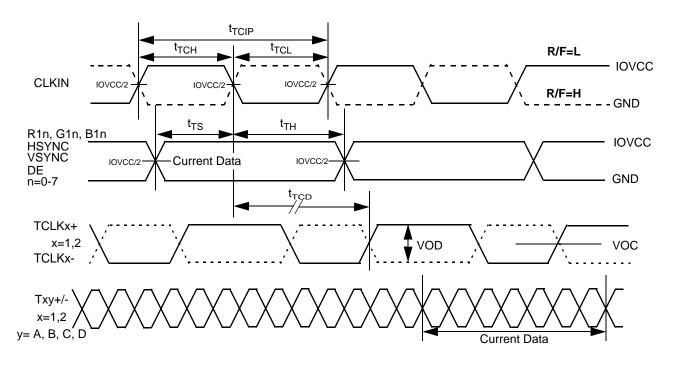



Fig4. CLKIN Period, High/Low Time, Setup/Hold Timing for Single Edge Input Mode MODE=H or MODE=L,DDR=H

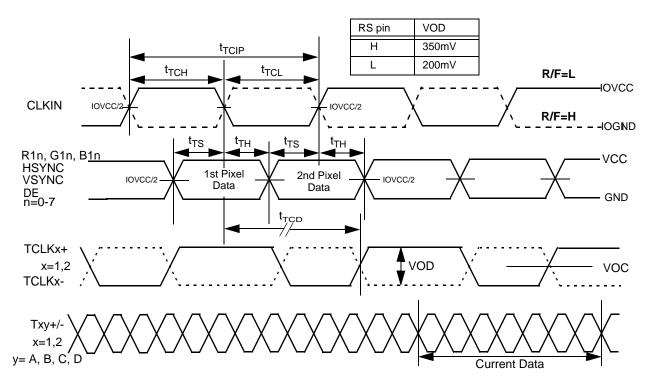



Fig5. CLKIN Period, High/Low Time, Setup/Hold Timing for Double Edge Input Mode (DDR) MODE=L,DDRN=L





## AC Timing Diagrams (Continued)

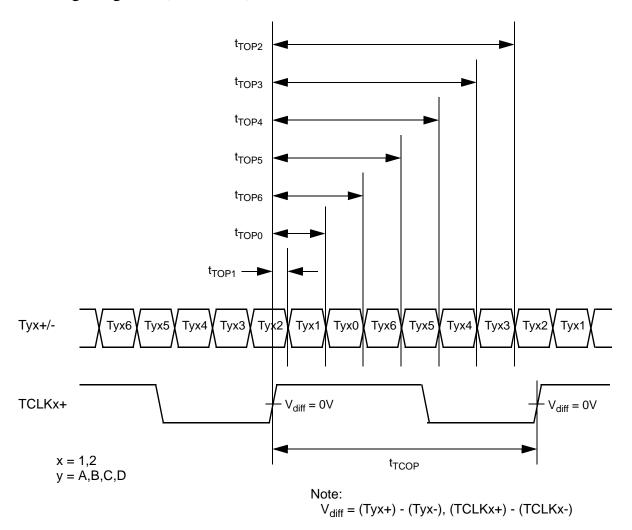



Fig6. LVDS Output Data Position





## Single-In / Dual-Out Mode (MODE = L)

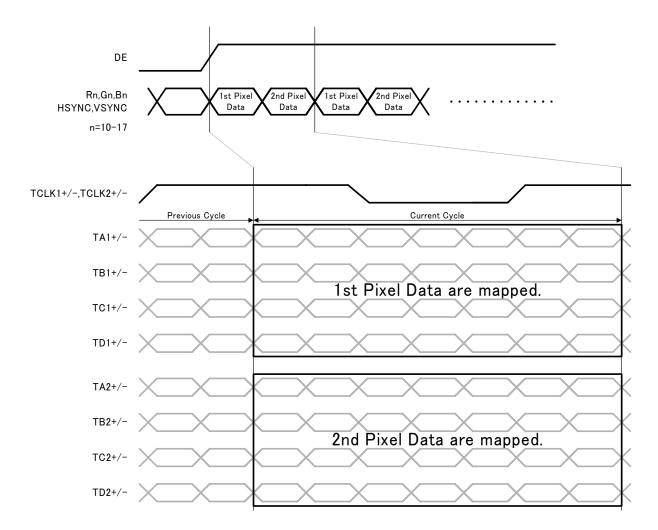



Fig7. Single-In / Dual-Out Mode (MODE=L)





## Single-In / Single-Out Mode (MODE=H)

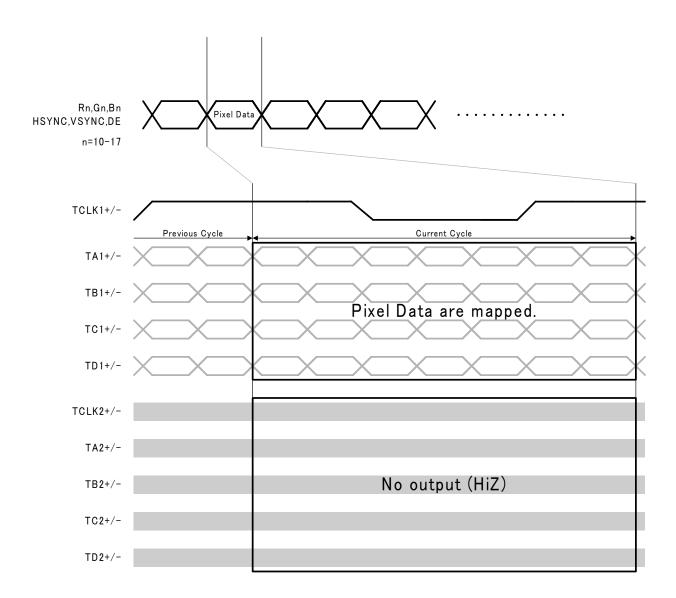
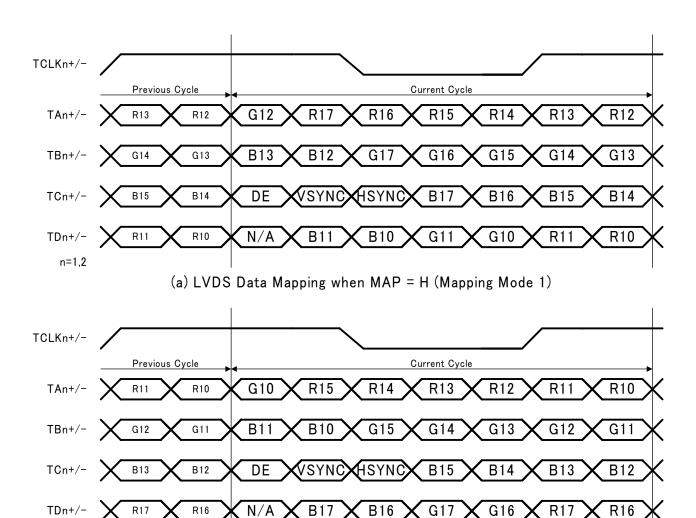




Fig8. Single-In / Single-Out Mode (MODE=H)

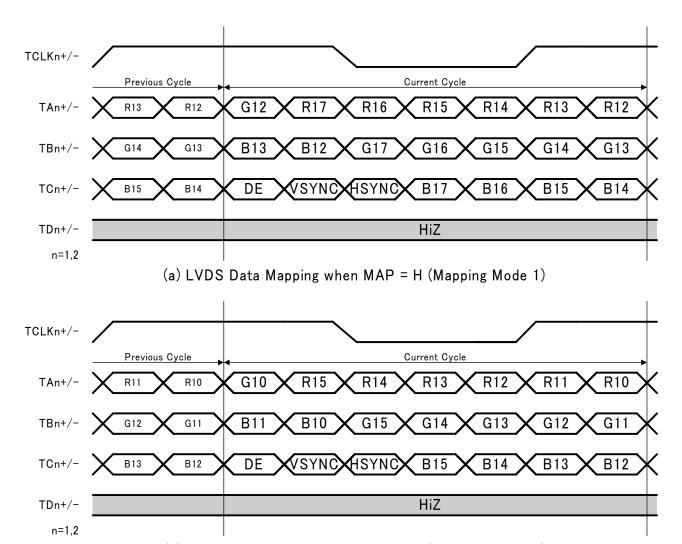




#### LVDS Data Mapping for 8 bit mode (6B/8B=L)



(b) LVDS Data Mapping when MAP = L (Mapping Mode 2)


Fig9. LVDS Data Mapping for 8 bit mode (6B/8B=L)

n=1,2





#### LVDS Data Mapping for 6 bit mode (6B/8B=H)



(b) LVDS Data Mapping when MAP = L (Mapping Mode 2)

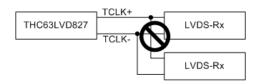
Fig10. LVDS Data Mapping for 6 bit mode (6B/8B=H)

Note: Input pins which are not used in 6 bit mode (R10-11,G10-11,B10-11 on Mapping Mode 1, R16-17,G16-17,G16-17 on Mapping Mode 2) can be H, L, or Open.



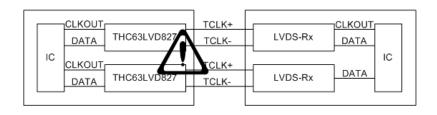
#### Note

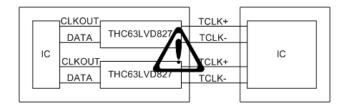
#### 1)Cable Connection and Disconnection


Don't connect and disconnect the LVDS cable, when the power is supplied to the system.

#### 2)GND Connection

Connect the each GND of the PCB which THC63LVD827 and LVDS-Rx on it. It is better for EMI reduction to place GND cable as close to LVDS cable as possible.


#### 3)Multi Drop Connection

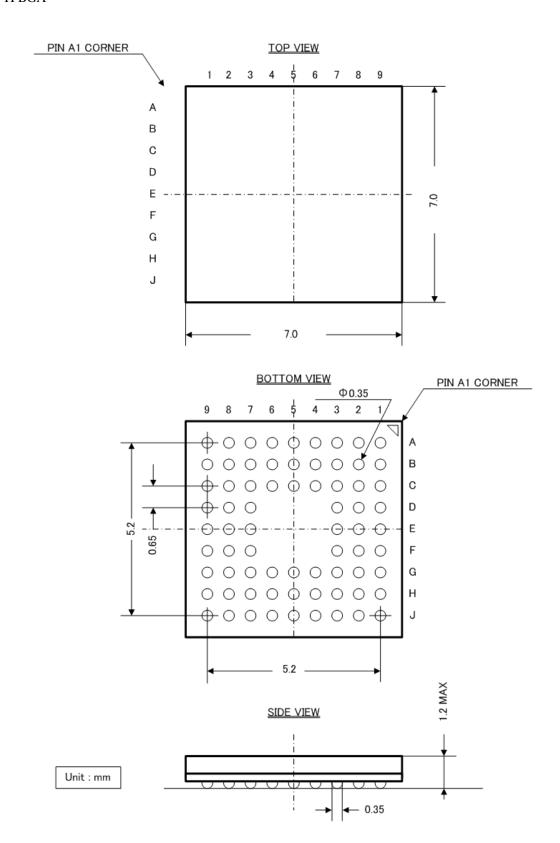

Multi drop connection is not recommended.



#### 4)Asynchronous use

Asynchronous use such as following systems are not recommended.










### Package

**TFBGA** 







#### **Notices and Requests**

- 1.) The product specifications described in this material are subject to change without prior notice.
- 2.) The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. We are not responsible for possible errors and omissions in this material. Please note if errors or omissions should be found in this material, we may not be able to correct them immediately.
- 3.) This material contains our copyright, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without our prior permission is prohibited.
- 4.) Note that if infringement of any third party's industrial ownership should occur by using this product, we will be exempted from the responsibility unless it directly relates to the production process or functions of the product.
- 5.) This product is presumed to be used for general electric equipment, not for the applications which require very high reliability (including medical equipment directly concerning people's life, aerospace equipment, or nuclear control equipment). Also, when using this product for the equipment concerned with the control and safety of the transportation means, the traffic signal equipment, or various Types of safety equipment, please do it after applying appropriate measures to the product.
- 6.)Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7.)Please note that this product is not designed to be radiation-proof.
- 8.) Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Control Law.

THine Electronics, Inc. E-mail: sales@thine.co.jp