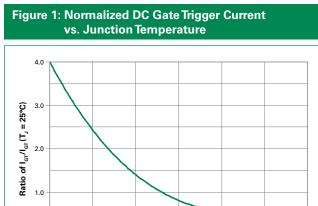


Electrical Characteristics (T₁ = 25°C, unless otherwise specified)

Symbol	Test Conditions	Value	Unit			
I _{gt}	V 6V/ P 100 0		MAX.	200	μA	
V _{gt}	$V_{\rm D} = 6V; \ {\rm R_{\rm L}} = 100 \ {\Omega}$		MAX.	0.8	V	
-1/-14	V/dt $V_{\rm p} = V_{\rm ppm}$; $R_{\rm cv} = 1k\Omega$	400V	MIN.	40	N//	
av/at		600V		30	V/µs	
V _{gd}	$V_{\rm D} = V_{\rm DRM}; R_{\rm L} = 3.3 \text{ k}\Omega; T_{\rm J} = 110^{\circ}\text{C}$		MIN.	0.25	V	
V _{grm}	$I_{gR} = 10 \mu A$		MIN.	6	V	
I _H	$I_{\tau} = 200 \text{mA} \text{ (initial)}$		MAX.	5	mA	
t _q	(1)		MAX.	50	μs	
t _{gt}	$I_{g} = 2 \times I_{gT}$; PW = 15 μ s; $I_{T} = 3A$		TYP.	20	μs	

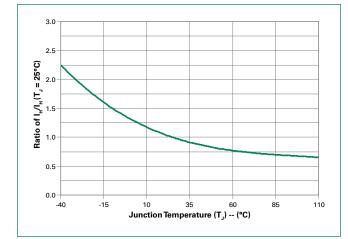
(1) $I_T = 1A$; $t_p = 50 \mu s$; $dv/dt = 5V/\mu s$; $di/dt = -10A/\mu s$

Static Characteristics

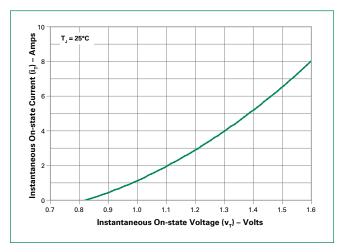

Symbol	Test Conditions				Value	Unit
V _{TM}	I _T = 3A; t _p = 380 μs MAX.			1.5	V	
		т эсос	400V		1	
I _{drm} / I _{rrm}	$V_{\rm DRM} = V_{\rm RRM}$	T _J = 25°C	600V	MAX.	2	μA
		T _J = 11	l0°C		100	

Thermal Resistances								
Symbol	Parameter		Value	Unit				
	Junction to case (AC)	TCR22-x	50	°C/W				
R _{θ(JC)}	JUNCTION TO CASE (AC)	Sx02CSx	60*	C/VV				
R _{0(J-A)}	Junction to ambient	TCR22-x	160	°C/W				

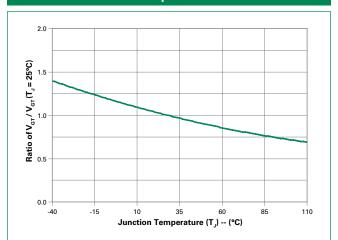
*=Mount on 1 cm2 copper (two-ounce) foil surface



110



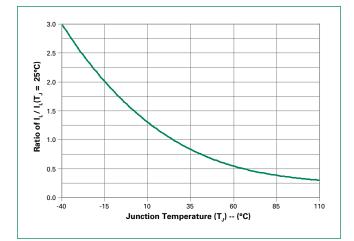
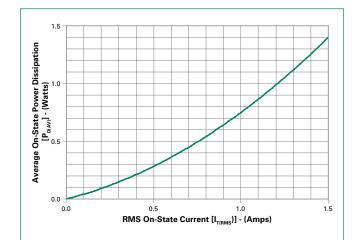
0.0 -40 -15 10 35 60 85 Junction Temperature (T_a) -- (°C)

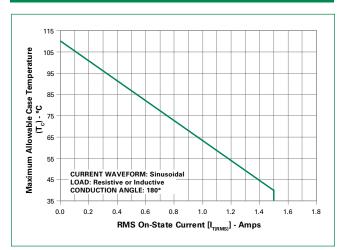


TCR22-x & Sx02CSx series

Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

Figure 4: Normalized DC Latching Current vs. Junction Temperature


Figure 6: Power Dissipation (Typical) vs. RMS On-State Current

©2021 Littelfuse, Inc Specifications are subject to change without notice. Revised: June 28, 2021 4:38 PM

Figure 7: Maximum Allowable Case Temperature vs. RMS On-State Current

Figure 9: Maximum Allowable Ambient Temperature vs. RMS On-State Current

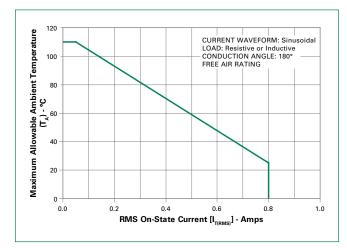
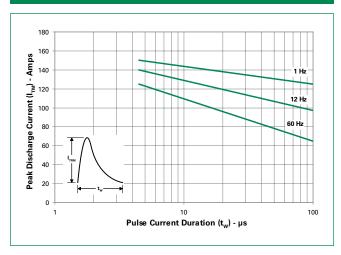



Figure 11: Peak Repetitive Capacitor Discharge Current

TCR22-x & Sx02CSx series

Figure 8: Maximum Allowable Case Temperature vs. Average On-State Current

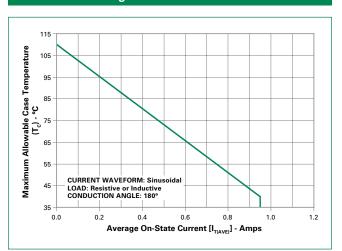


Figure 10: Maximum Allowable Ambient Temperature vs. Average On-State Current

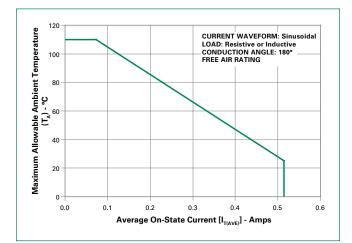
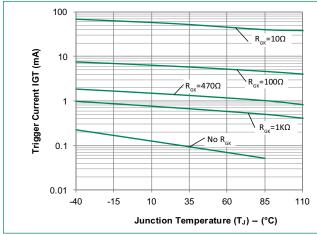


Figure 12: Peak Repetitive Sinusoidal Pulse Current



©2021 Littelfuse, Inc Specifications are subject to change without notice. Revised: June 28, 2021 4:38 PM

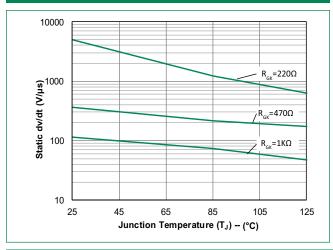

Downloaded from Arrow.com.

Figure 17: Surge Peak On-State Current vs. Number of Cycles

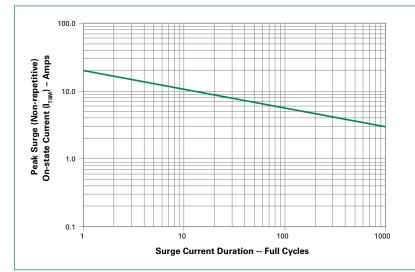
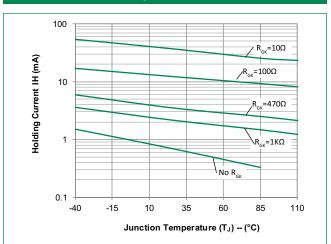
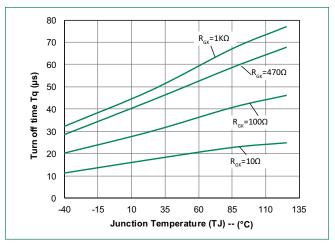
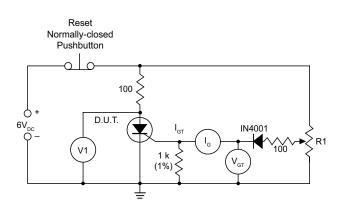




Figure 14: Typical DC Holding Current with R_{GK} vs. Junction Temperature for TCR22-8/S602CS

Figure 16: Typical turn off time with R_{GK} vs. Junction Temperature for TCR22-8/S602CS

SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive


RMS On-State Current: $[I_{\mbox{\tiny T(RMS)}}]$: Maximum Rated Value at Specified Case Temperature

Notes:

- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Figure 18: Simple Test Circuit for Gate Trigger Voltage and Current

Note: V1 - 0 V to 10 V dc meter

- V_{gT} 0 V to 1 V dc meter
- I_{G}^{G} 0 mA to 1 mA dc milliammeter
- Ř1 1 k potentiometer

To measure gate trigger voltage and current, raise gate voltage (V_{GT}) until meter reading V1 drops from 6 V to 1 V. Gate trigger voltage is the reading on V_{GT} just prior to V1 dropping. Gate trigger current I_{GT} Can be computed from the relationship

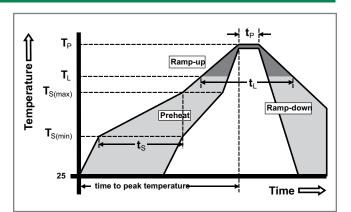
$$I_{\rm GT} = I_{\rm G}^{-} \frac{V_{\rm GT}}{1000} \rm Amps$$

where I_c is reading (in amperes) on meter just prior to V1 dropping

Note: $I_{\rm gT}$ may turn out to be a negative quantity (trigger current flows out from gate lead). If negative current occurs, $I_{\rm gT}$ value is not a valid reading. Remove 1 k resistor and use $I_{\rm g}$ as the more correct $I_{\rm gT}$ value. This will occur on 12 μA gate products.

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly
	-Temperature Min (T _{s(min)})	150°C
Pre Heat	-Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 – 180 secs
Average ramp up rate (Liquidus Temp) (T _L) to peak 5°C/second max		
$T_{S(max)}$ to T_{L}	- Ramp-up Rate	5°C/second max
	-Temperature (T _L) (Liquidus)	217°C
Reflow	-Time (t _L)	60 – 150 seconds
PeakTemp	erature (T _P)	260 ^{+0/-5} °C
Time within 5°C of actual peak Temperature (t _e)		20 – 40 seconds
Ramp-dov	vn Rate	5°C/second max
Time 25°C	to peak Temperature (T _P)	8 minutes Max.
Do not exc	ceed	280°C

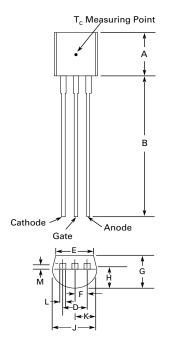

Physical Specifications

Terminal Finish	100% Matt Tin-plated/Pb-free Solder Dipped
Body Material	UL Recognized compound meeting flammability rating V-0
Lead Material	Copper Alloy

Design Considerations

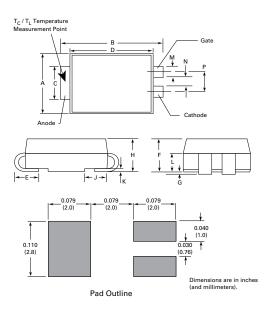
Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

TCR22-x & Sx02CSx series



Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 110°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 160V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E


Dimensions – TO-92 (E Package)

Dimension	Inches		Mill	imeters
Dimension	Min	Max	Min	Max
А	0.176	0.196	4.47	4.98
В	0.500		12.70	
D	0.095	0.105	2.41	2.67
E	0.150		3.81	
F	0.046	0.054	1.16	1.37
G	0.135	0.145	3.43	3.68
Н	0.088	0.096	2.23	2.44
J	0.176	0.186	4.47	4.73
К	0.088	0.096	2.23	2.44
L	0.013	0.019	0.33	0.48
М	0.013	0.017	0.33	0.43

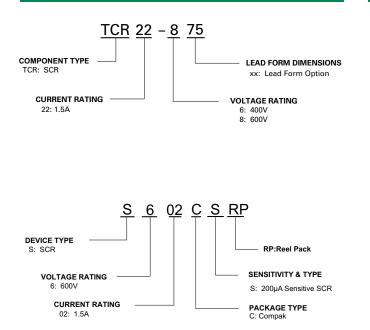
All leads insulated from case. Case is electrically nonconductive.

Dimensions – Compak (C Package)

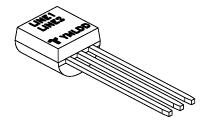
Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.130	0.156	3.30	3.95
В	0.201	0.220	5.10	5.60
С	0.077	0.087	1.95	2.20
D	0.159	0.181	4.05	4.60
E	0.030	0.063	0.75	1.60
F	0.075	0.096	1.90	2.45
G	0.002	0.008	0.05	0.20
Н	0.077	0.104	1.95	2.65
J	0.043	0.053	1.09	1.35
К	0.006	0.016	0.15	0.41
L	0.030	0.055	0.76	1.40
М	0.022	0.028	0.56	0.71
Ν	0.027	0.033	0.69	0.84
Р	0.052	0.058	1.32	1.47

Product Selector

Part Number	Volt	tage	Coto Sopoitivity	Tuno	Poskaga	
Part Number	400V	600V	Gate Sensitivity	Туре	Package	
TCR22-6	Х		200µA	Sensitive SCR	TO-92	
TCR22-8		Х	200µA	Sensitive SCR	TO-92	
Sx02CS		Х	200µA	Sensitive SCR	Compak	


Note: x = Voltage

Packing Options

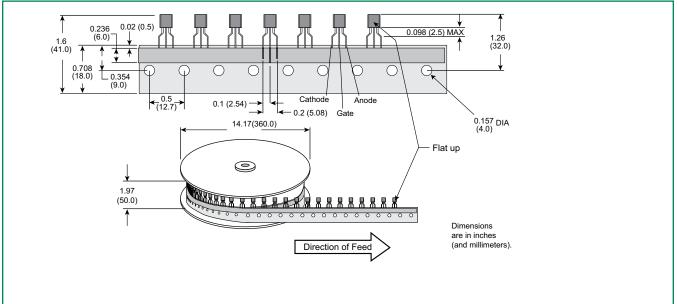

Part Number	Marking	Weight	Packing Mode	Base Quantity
TCR22-x	TCR22-x	0.19 g	Bulk	2000
TCR22-xRP	TCR22-x	0.19 g	Reel Pack	2000
TCR22-xAP	TCR22-x	0.19 g	Ammo Pack	2000
Sx02CSRP	Sx02CS	0.18 g	Reel Pack	2500

Note: x = Voltage

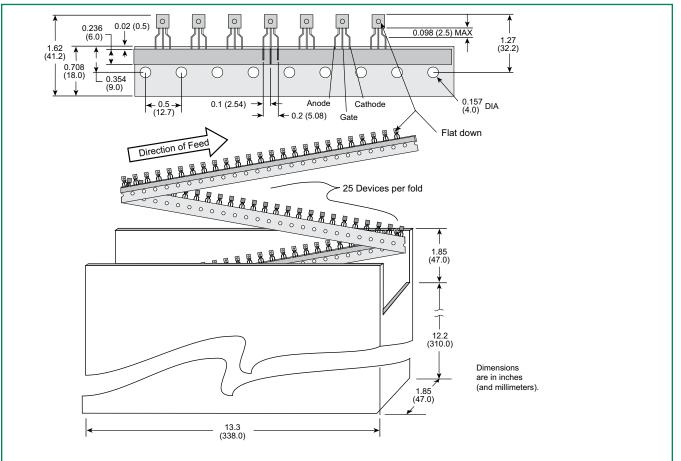
Part Numbering System

Part Marking System

Line 1 = Littelfuse Part Number Line 2 = continuation...Littelfuse Part Number Y = Last Digit of Calendar Year M = Letter Month Code (A-L for Jan-Dec) L = Location Code DD = Calendar Date

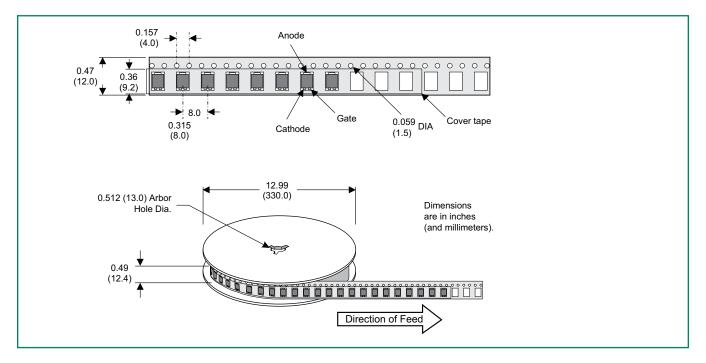

Date Code Marking Y:Year Code M: Month Code XXX: Lot Trace Code

Thyristors 1.5 Amp Sensitive SCRs


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-C Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications


Meets all EIA-468-C Standards

Compak Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-1 Standards

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littlefuse.com/disclaimer-electronics.

TCR22-x & Sx02CSx series