PACKAGE/ORDERING INFORMATION

MODEL	V оит (V)	PACKAGE DESCRIPTION	TEMPERATURE		PACKAGE MARKING	PACKING OPTION
	5.1	TSOT-23-6	-40°C to +85°C	SGM66051-5.1YTN6G/TR	G43XX	Tape and Reel, 3000
SGM66051	5.4	TSOT-23-6	-40°C to +85°C	SGM66051-5.4YTN6G/TR	G44XX	Tape and Reel, 3000
	Adjustable	TSOT-23-6	-40°C to +85°C	SGM66051-ADJYTN6G/TR	G45XX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XX = Date Code.

YYY X X

Date Code - Month
Date Code - Year

Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

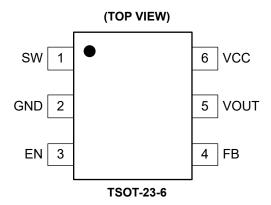
Input Voltage Range on SW, VOUT, VCC, FB, EN	
0.3	V to 6V
Package Thermal Resistance	
TSOT-23-6, θ _{JA}	50°C/W
Junction Temperature	+150°C
Storage Temperature Range65°C to	+150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	. 4000V
MM	400V
CDM	. 1000V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.2V to 5.5V
Operating Temperature Range	40°C to +85°C
Operating Junction Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

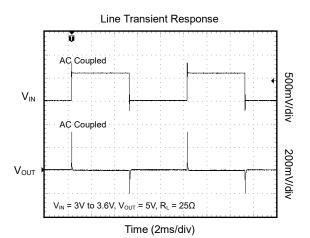
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

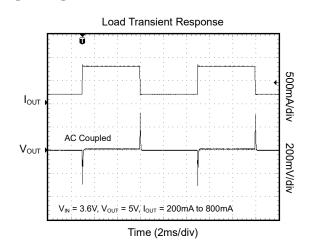
PIN CONFIGURATION

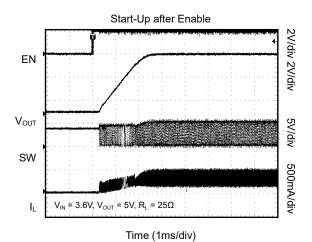
PIN DESCRIPTION

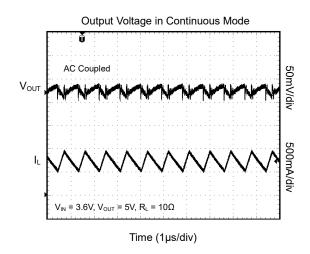
PIN	NAME	FUNCTION
1	SW	Boost Switch Node. Connect this node to one terminal of power inductor.
2	GND	Ground.
3	EN	Enable Input. Input logic high to enable this circuit and logic low to shut down. Do not leave this pin unconnected.
4	FB	Output Voltage Feedback Input or Internally Connected Pin. Connect to tap of external resister divider for SGM66051-ADJ; leave it floating for SGM66051-5.1 and SGM66051-5.4.
5	VOUT	Boost Converter Output. Place a storage capacitor close to this pin.
6	VCC	Supply Input.

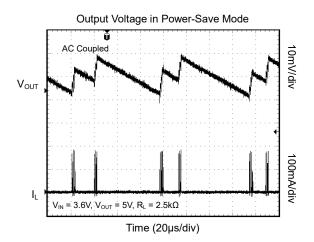
ELECTRICAL CHARACTERISTICS

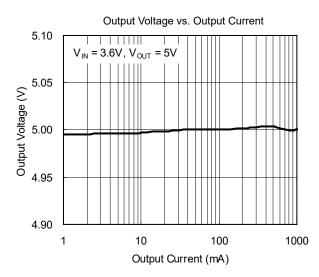

 $(V_{IN} = 3.6V. \text{ Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ typical values are at } T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

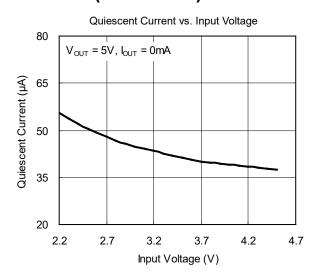

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
DC/DC Stage								
Output Voltage Range	V _{OUT}	V _{IN} < 0.9V _{OUT}	Full	3.0		5.5	V	
Input Voltage Range V _{IN}			+25°C	2.2		5.5	V	
Feedback Voltage	V_{FB}	SGM66051-ADJ	Full	478	495	510	mV	
Switching Frequency	f		Full	850	1100	1300	kHz	
Switch Current Limit	ΙL		+25°C	2.15	2.7	3.25	Α	
Start-Up Current Limit			+25°C		500		mA	
Boost Switch On-Resistance		V _{OUT} = 5.1V	+25°C		100		mΩ	
Rectifying Switch On-Resistance		V _{OUT} = 5.1V	+25°C		110		mΩ	
Outrout Valtage		SGM66051-5.1	Full	4.86	5.05	5.18	V	
Output Voltage		SGM66051-5.4	Full	5.19	5.35	5.48		
Line Regulation		$V_{CC} = 2.7V \text{ to } V_{OUT} - 0.5V$	+25°C		0.5		%	
Load Regulation			+25°C		0.5		%	
Quiescent Current I _Q		$V_{EN} = V_{CC} = 3.6V$, not switching	+25°C		20	35	μA	
Shutdown Current		V _{EN} = 0V, V _{CC} = 3.6V	+25°C			1	μA	
Control Stage								
EN Input Low Voltage	V_{IL}		Full			0.4	V	
EN Input High Voltage V _{IH}			Full	1.6			V	
EN Input Current		Clamped on GND or VCC	Full			1	μA	
Over-Temperature Protection			•		150		°C	
Over-Temperature Hysteresis					20		°C	

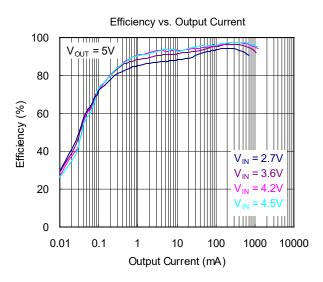

RECOMMENDED COMPONENTS OF TEST CIRCUITS

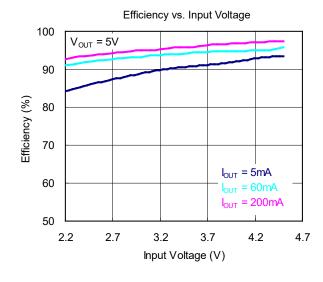

	Component		Component
Inductor	2.2011/CDDLIED28DLIDND 2D2NC	Canacitor	10μF/08055C106KAT2A
	2.2µH/CDRH5D28RHPNP-2R2NC	Capacitor -	22μF/08055C226KAT2A

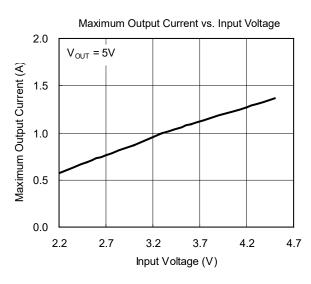

TYPICAL PERFORMANCE CHARACTERISTICS










TYPICAL PERFORMANCE CHARACTERISTICS (continued)

TYPICAL APPLICATION CIRCUITS

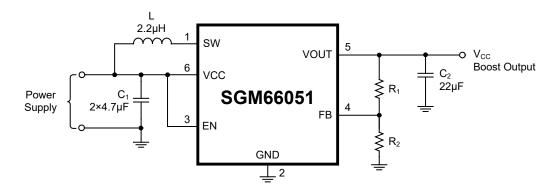


Figure 2. Typical Single-Cell Li-Ion Input or Dual Dry Cell Input Boost

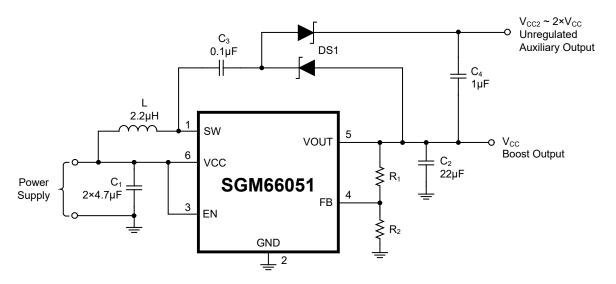


Figure 3. Supply with an Auxiliary Positive Output

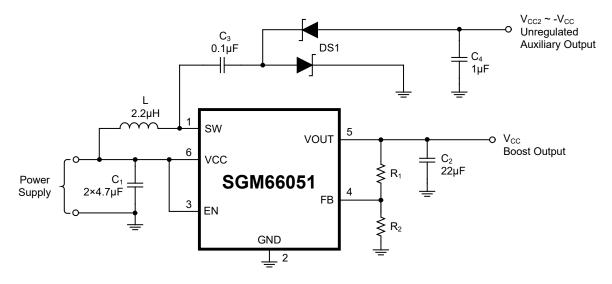


Figure 4. Supply with an Auxiliary Negative Output

TYPICAL APPLICATION CIRCUITS (continued)

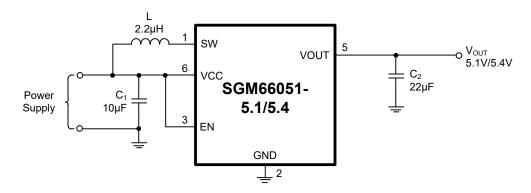


Figure 5. Typical Circuit for the Preset Output Voltage SGM66051-5.1 and SGM66051-5.4

APPLICATION INFORMATION

The SGM66051 is a boost DC/DC converter operating in 2.7V to 5.5V supply range, for generating a regulated output voltage which can be set to as low as 10% above the supply voltage. An inductor, an output storage capacitor and an input decoupling capacitor should be selected to ensure proper performance desired in a specific application circuit.

Programming Output Voltage

In Figure 2, the output voltage of the SGM66051 DC/DC converter is set with an external resistor divider. The voltage at the FB pin is kept at 500mV when the output is regulated, and the maximum available output voltage is 5.5V. R_1 is calculated using Equation 1:

$$R_1 = R_2 \times (\frac{V_{OUT}}{V_{FB}} - 1) = R_2 \times (\frac{V_{OUT}}{500mV} - 1)$$
 (1)

 R_2 could be given as $100k\Omega$ normally. For example, if an output voltage of 5.5V is needed, a $1M\Omega$ resistor should be chosen for $R_1.$

Inductor Selection

The device has been optimized to operate with inductance values between $1\mu H$ and $4.7\mu H$. Nevertheless, operation with higher inductance values may be possible. Both average current and peak current should be evaluated in inductor selection. The maximum average inductor current is estimated using Equation 2:

$$I_{L} = I_{OUT} \times \frac{V_{OUT}}{V_{CC} \times 0.8}$$
 (2)

For example, for an output current of 300mA at 5V, at least an average current of 700mA flows through the inductor at a minimum input voltage of 2.7V.

Choosing a proper inductance for a given current ripple value is readily done in design practice. A smaller ripple reduces the magnetic hysteresis losses in the inductor, as well as output voltage ripple and EMI. Though regulation settle time may rise when load changes. The minimum inductance value for the inductor at given condition is estimated by using Equation 3:

$$L = \frac{V_{CC} \times (V_{OUT} - V_{CC})}{\Delta I_{L} \times f \times V_{OUT}}$$
 (3)

Where f is the switching frequency and ΔI_L is the ripple current in the inductor, which normally is 20% of the average inductor current or is a design specified value. In typical applications, a 2.2 μ H inductance is recommended. After choosing an inductor, peak current at maximum loading and lowest input voltage is suggested to be evaluated, which should be lower than the switch current limit of this device as well as the inductor saturation current.

Input Capacitor

At least a $10\mu F$ input capacitor is recommended to improve transient behavior of the regulator and EMI behavior. A ceramic capacitor or a tantalum capacitor with a 100nF ceramic capacitor in parallel, placed close to the IC, is recommended.

APPLICATION INFORMATION (continued)

Output Capacitor

The capacitance and the ESR define the output voltage ripple. Supposing that the ESR is zero, the minimum capacitance could be estimated by using Equation 4:

$$C_{MIN} = \frac{I_{OUT} \times (V_{OUT} - V_{CC})}{f \times \Delta V \times V_{OUT}}$$
(4)

Where f is the switching frequency and ΔV is the maximum allowed voltage ripple.

The ESR and the additional ripple related to ESR may be negligible if a low ESR ceramic capacitor is used. This part of ESR component is calculated using Equation 5:

$$\Delta V_{ESR} = I_{OUT} \times R_{ESR}$$
 (5)

The total ripple is the sum of the ripple caused by the capacitance and the ripple caused by the ESR of the capacitor. Additional voltage change may be caused by load transients; the output capacitor has to completely supply the load during the charging phase of the inductor.

The value of the output capacitance depends on the speed of the load transients and the load current during the load change. With the calculated minimum value of $10\mu F$ and load transient considerations, the recommended output capacitance value is in the range of $10\mu F$ to $47\mu F$.

The capacitance loss due to the DC biasing and the high frequency performance has to be counted for de-rating. For example, larger form factor capacitors (in 1206 size) have their self-resonant frequencies in the same frequency range as the SGM66051 operating frequency. The effective capacitance of the capacitor may be significantly lower than its rating.

Layout Considerations

Careful layout is always important to ensure good performance and stable operation to any kind of switching regulators. Place the capacitors close to the device, use the GND pin of the device as the center of star-connection to other grounds, and minimize the trace area of SW node. These measures reduce transient current loops and lower the possible parasitic ringing.

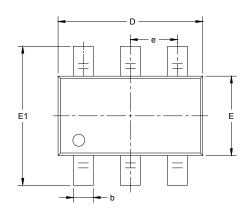
If a resistor divider is employed, the center tap to FB trace should have sufficient clearance from noisy PCB traces, as the FB node is sensitive and easily picks up noise.

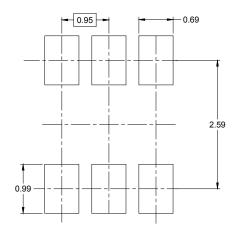
Thermal Information

Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of a given component.

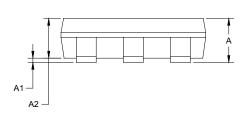
Common approaches for enhancing thermal performance are listed below for convenient reference:

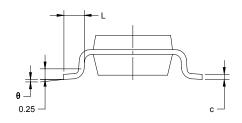
- 1. Improving the power dissipation capability of the PCB design.
- 2. Improving the thermal coupling of the component to the PCB.
- 3. Introducing airflow in the system.


REVISION HISTORY

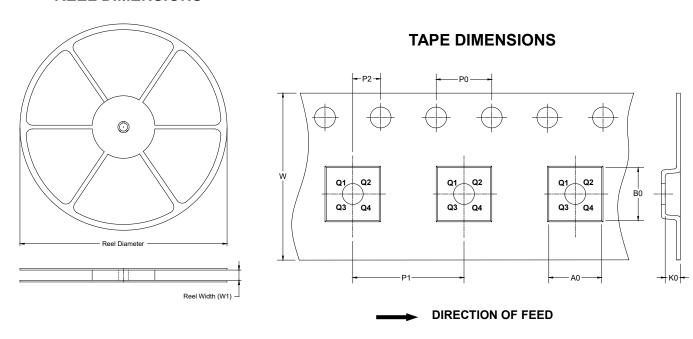

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

FEBRUARY 2021 – REV.A to REV.A.1	Page
Updated Features and Recommended Operating Conditions	1, 2
Changes from Original (MARCH 2016) to REV.A	Page
Changed from product preview to production data	All




PACKAGE OUTLINE DIMENSIONS TSOT-23-6

RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
	MIN MAX		MIN	MAX	
Α		1.000		0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.700	0.900	0.028	0.039	
b	0.300	0.500	0.012	0.020	
С	0.080	0.200	0.003	800.0	
D	2.850	2.950	0.112	0.116	
E	1.550	1.650	0.061	0.065	
E1	2.650	2.650 2.950 0.104		0.116	
е	0.950	BSC	0.037	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSOT-23-6	7"	9.5	3.20	3.10	1.10	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	9
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002