

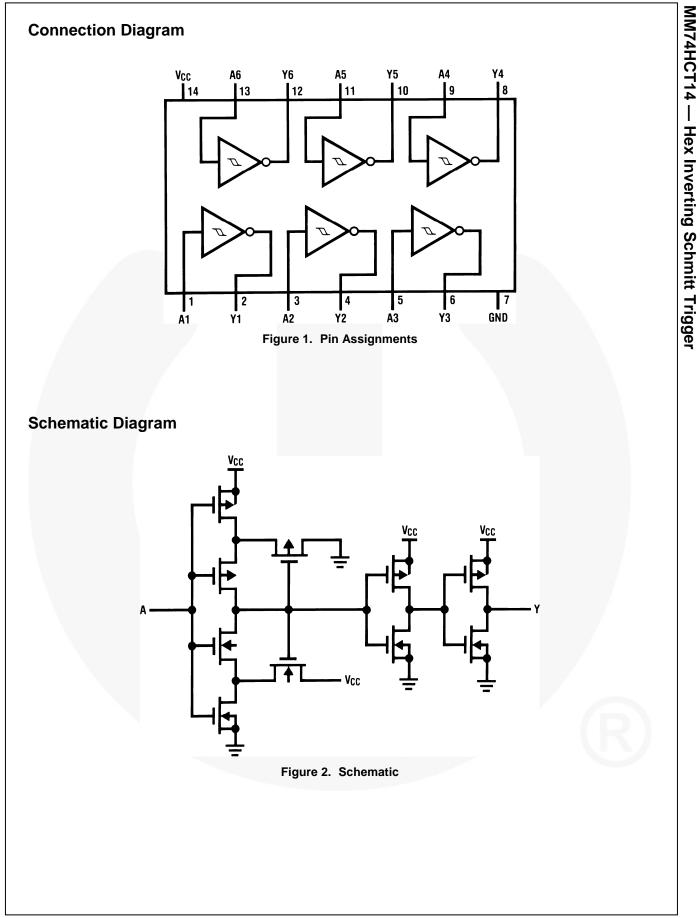
FAIRCHILD

MM74HCT14 Hex Inverting Schmitt Trigger

Features

- Typical Propagation Delay: 13ns
- Wide Power Supply Range: 4.5V–5.5V
- Low Quiescent Current: 10µA Maximum
- Low Input Current: 1µA Maximum
- Fanout of 10 LS-TTL Loads
- Typical Hysteresis Voltage: 0.6V at V_{CC} = 4.5V
- TTL, LS Pin-out and Input Threshold Compatible

Description


The MM74HCT14 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well as the capability to drive 10 LS-TTL loads.

The 74HCT logic family is functionally and pinout-compatible with the standard 74LS logic family. Inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Part Number	Operating Temperature Range	Eco Status	Package	Packing Method
MM74HCT14M	-40°C to +85°C	RoHS	14-Lead, Small-Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150in Narrow	Tube
MM74HCT14MX	-40°C to +85°C	RoHS	14-Lead, Small-Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150in Narrow	Tape & Reel
MM74HCT14SJ	-40°C to +85°C	RoHS	14-Lead, Small-Outline Package (SOP), EIAJ Type II, 5.3mm Wide	Tube
MM74HCT14SJX	-40°C to +85°C	RoHS	14-Lead, Small-Outline Package (SOP), EIAJ Type II, 5.3mm Wide	Tape & Reel
MM74HCT14MTC	-40°C to +85°C	RoHS	14-Lead, Thin-Shrink Small-Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tube
MM74HCT14MTCX	-40°C to +85°C	RoHS	14-Lead, Thin-Shrink Small-Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tape & Reel
MM74HCT14SN	-40°C to +85°C	RoHS	14-Lead, Plastic Dual-Inline Package (PDIP), JEDEC MS-001, 0.300in Wide	Tube

Ordering Information

Ø For Fairchild's definition of Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Unless otherwise specified, all voltages are referenced to ground.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	-0.5	+7.0	V
V _{IN}	DC Input Voltage	-1.5	V _{CC} +1.5	V
V _{OUT}	DC Output Voltage	-0.5	V _{CC} +0.5	V
Iк, I _{0к}	Clamp Diode Current		±20	mA
I _{OUT}	DC Output Current, Per Pin		±25	mA
I _{CC}	DC V _{CC} or GND Current, Per Pin		±50	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
TL	Lead Temperature (Soldering 10 Seconds)		+260	°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	4.5	5.5	V
V _{IN} , V _{OUT}	DC Input or Output Voltage	0	V _{cc}	V
T _A	Operating Temperature Range	-40	+85	°C

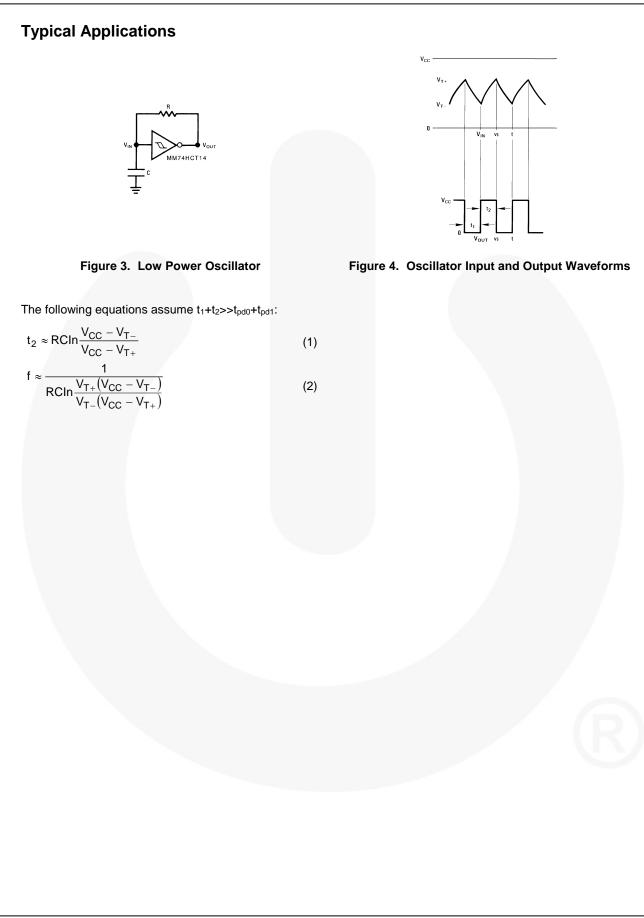
MM74HC
;T14 —
- Hex li
nverting
Schmitt
Trigger

Symbol	Parameter	Conditions	V _{cc}	T _A =+25°C		T _A =-40°C to +85°C	Units
•				Тур.	Guarante	ed Limits	
			4.5	1.5	1.2	1.2	
N/	Positive-Going	Minimum	5.5	1.7	1.4	1.4	V
V_{T+}	Threshold Voltage	Maximum	4.5	1.5	1.9	1.9	V
		Maximum	5.5	1.7	2.1	2.1	
		Minimum	4.5	0.9	0.5	0.5	V
V	Negative-Going Threshold Voltage		5.5	1.0	0.6	0.6	
V _T .		Maximum	4.5	0.9	1.2	1.2	
			5.5	1.0	1.4	1.4	
	Hysteresis Voltage	Minimum	4.5	0.6	0.4	0.4	V
M			5.5	0.7	0.4	0.4	
Vн		Maximum	4.5	0.6	1.4	1.4	
			5.5	0.7	1.5	1.5	
	Minimum HIGH Level Output Voltage	$V_{IN} = V_{IL}$, $ I_{OUT} = 20 \mu A$	4.5	V _{cc}	$V_{CC} - 0.1$	$V_{CC} - 0.1$	v
V _{OH}		$V_{IN} = V_{IL}, I_{OUT} = 4.0 \text{mA}$	4.5	4.20	3.98	3.84	
	ouput vonago	$V_{IN} = V_{IL}$, $ I_{OUT} = 4.8 \text{mA}$	5.5	5.20	4.98	4.98	
	Maximum LOW Level Voltage	V _{IN} =V _{IL} , I _{OUT} = 20µA	4.5	0	0.1	0.1	V
V _{OL}		$V_{IN} = V_{IL}$, $ I_{OUT} = 4.0 \text{mA}$	4.5	0.2	0.26	0.33	
		$V_{IN} = V_{IL}$, $ I_{OUT} = 4.8 \text{mA}$	5.5	0.2	0.26	0.33	
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}	5.5		±0.1	±1.0	μA
1	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0\mu A$	5 5		1.0	10.0	μA
Icc	Supply Current	V _{IN} = 2.4V or 0.5V	5.5		2.4	2.4	mA

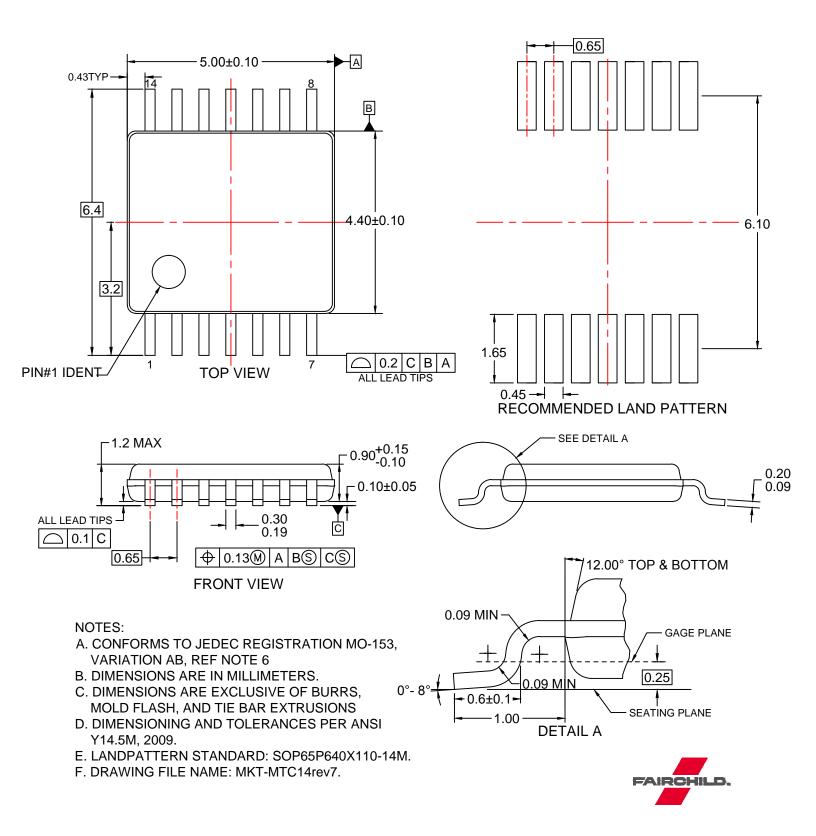
AC Electrical Characteristics

 $V_{CC} = 5V, T_A = 25^{\circ}C, C_L = 15pF, t_r = t_f = 6ns.$

Symbol	Parameter		Guaranteed Limit	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay	10	18	ns

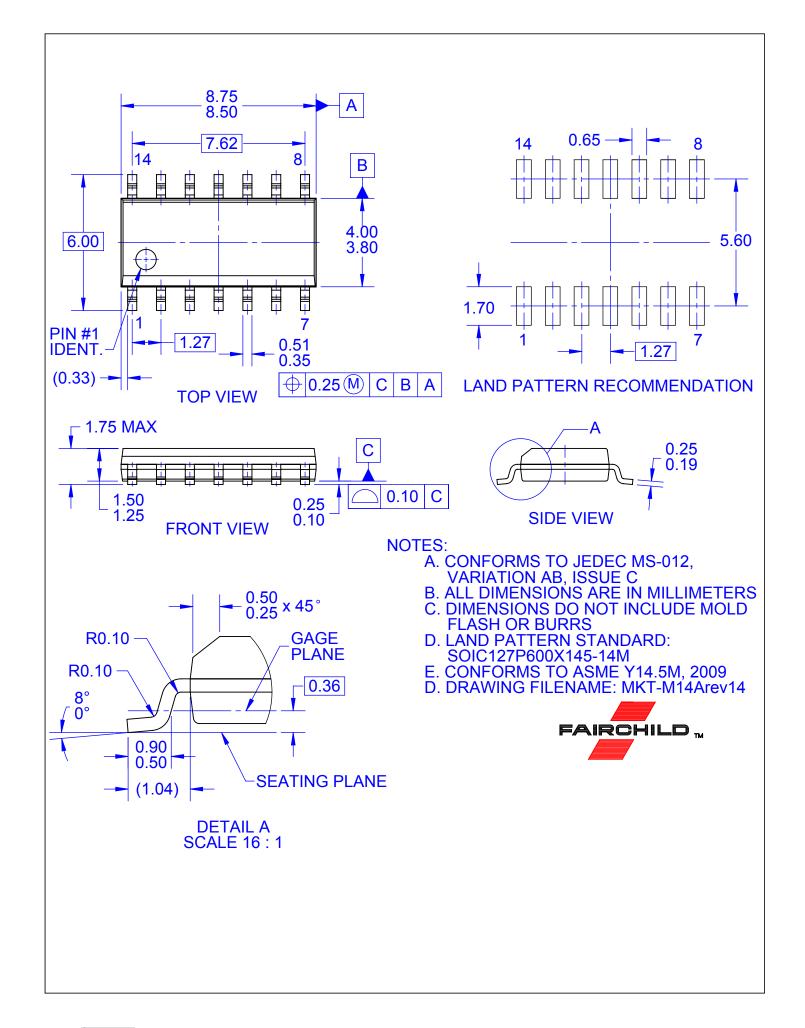

AC Electrical Characteristics

Unless otherwise specified, $V_{CC} = 5V \pm 10\%$, $C_L = 50 pF$, $t_r = t_f = 6 ns$.


Symbol	Parameter	Conditions	T _A =+25°C		T _A =-40°C to +85°C	Units	
				Тур.	Guaran	teed Limits	
t _{PHL} , t _{PLH}	Maximum Propagation Delay				20	25	ns
t_{TLH}, t_{THL}	Maximum Output Rise and Fall Time			9	15	19	ns
CPD	Power Dissipation Capacitance ⁽¹⁾	Per Gate			25		pF
C _{IN}	Maximum Input Capacitance			5	10	10	pF

Note:

1. C_{PD} determines the no-load dynamic power consumption, $P_D = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$, and the no-load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.



Downloaded from Arrow.com.

Downloaded from Arrow.com.

.rrow.com.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.