

PIN DESCRIPTION

Pin No.	Pin name	Functions
1, 2, 16, 18	AVdd	Analog power supply pins (+3 V)
13	DVdd	Digital power supply pin (+3 V)
3, 15, 17, 24	AVss	Analog power ground pins (0 V)
12	DVss	Digital power ground pin (0 V)
4 to 11	D ₁ to D ₈	Digital output pins. D1: MSB, D8: LSB
14	CLK	Clock input pin
21	Vina	Analog input pin. Input range: VRB to VRT (2 Vp-p between 0.5 to 3 V)
19	Vrt	Reference voltage input pin (3 V)
23	Vrb	Reference voltage input pin (1 V)
22	Vrefb	Reference voltage output pin. When connected to V_RB, the pin generates $0.33 \times AV_{DD}$ (1 V).
20	N. C.	No connection pin. Should be connected to AVDD.

Values within () are typical values.

NOTES ON USE

- Be sure to bypass the AV_{DD}, DV_{DD}, V_{RT} and V_{RB} pins to the ground using a high-frequency capacitor. The high-frequency capacitor should be connected as near the pin as possible.
- Provide four clocks or more immediately after the power up to prevent current dissipation due to the indeterminate internal logic.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Ra	Unit	
Farameter	Symbol	Min.	Max.	Unit
Power supply voltage	AVdd, DVdd	-0.3	0.7	V
Input voltage	CLK, Vina Vrt, Vrb	-0.3	AVDD+0.3	V
Output voltage	D ₁ to D ₈	-0.3	DVpd+0.3	V
Storage temperature	Tstg	-55	+125	°C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	
Falameter	Symbol	Min.	Тур.	Max.	Unit	
Power supply voltage	AVdd, DVdd	2.70	3.00	3.60	V	
Analog input voltage	Vina	Vrb	-	Vrt	V	
Analog reference voltage: T	Vrt	-	-	AVdd	V	
Analog reference voltage: B	Vrb	0.50	-	-	V	
Analog reference voltage range	Vrt–Vrb	1.90	2.00	2.10	V	
Digital "H" level input voltage	Vihd	2.4	-	-	V	
Digital "L" level input voltage	Vild	-	_	0.8	V	
Digital input current	lıd	-	-	5	μA	
Clock frequency	fclк	0.1	-	18	MHz	
Minimum "H" level clock pulse width	tw+	22.5	-	-	ns	
Minimum "L" level clock pulse width	tw-	22.5	-	-	ns	
Operating temperature range	Та	-20	-	70	°C	

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ ELECTRICAL CHARACTERISTICS

DC Characteristics

(1) Analog section

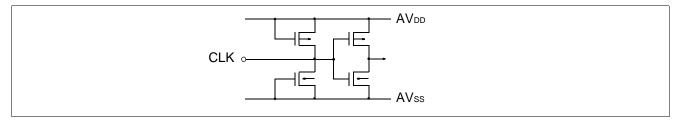
		(10 1 10 10:00 1	,	
Doromotor	Symbol		11:0:4			
Parameter		Symbol	Min.	Тур.	Max.	Unit
Resolution		_	_	8	_	bit
Linearity error	DC precision	LE	-	±0.20	±0.30	%
Differential linearity error	DC precision	DLE	-	±0.12	±0.20	%
Analog input capacity		CINA	-	15	-	pF
Reference voltage		Vrefb	-	$0.33 imes AV_{DD}$	-	V
Reference current		IRB	-16.0	-8.0	-2.0	mA
Analog power supply current		Ald	-	2.2	10.0	mA
Digital power supply current		DIDD	-	2.5	6.0	mA

$(AV_{DD} = DV_{DD} = 2.70 \text{ V to } +3.60 \text{ V}, \text{ Ta} = -20^{\circ}\text{C to } +70^{\circ}\text{C})$

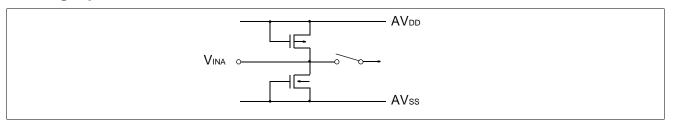
(2) Digital section

$(AV_{DD} = DV_{DD} = 2.70 \text{ V to } +3.60 \text{ V}, \text{ Ta} = -20^{\circ}\text{C}$

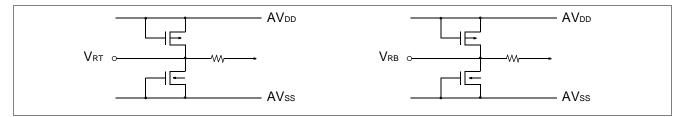
Parameter	Symbol	Value			Unit	
Falameter		Min.	Тур.	Max.	Onit	
Digital "H" level output voltage	Vонd	2.4	_	DVdd	V	
Digital "L" level output voltage	Vold	-	-	0.4	V	
Digital "H" level output current	Іон	-400	-	-	μA	
Digital "L" level output current	lol	-	-	1.6	mA	

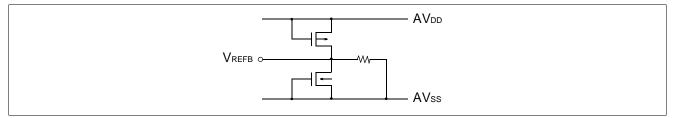

(3) Switching section

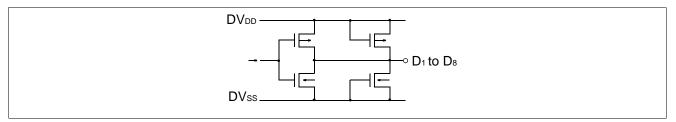
 $(AV_{DD} = DV_{DD} = 2.70 \text{ V to } +3.60 \text{ V}, \text{ Ta} = -20^{\circ}\text{C to } +70^{\circ}\text{C})$

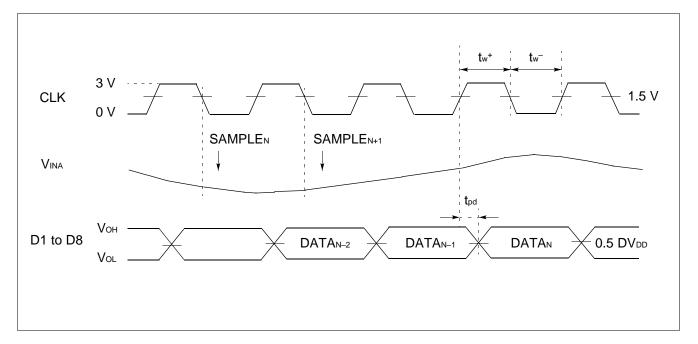

Parameter	Symbol	Value			Unit	
Falameter	Symbol	Min.	Тур.	Max.	Unit	
Maximum conversion rate	fs	18	_	_	MSPS	
Digital output delay time	tpd	0	6	25	ns	

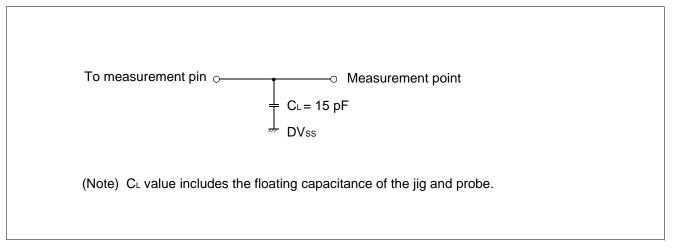
■ EQUIVALENT CIRCUIT


Clock input

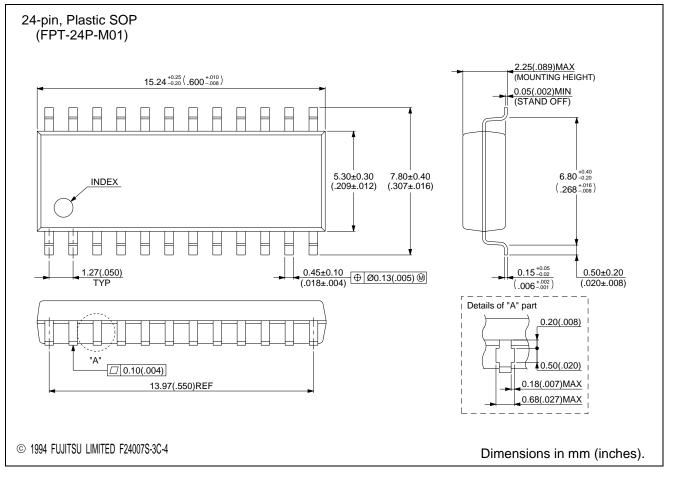

• Analog input


• Reference voltage input

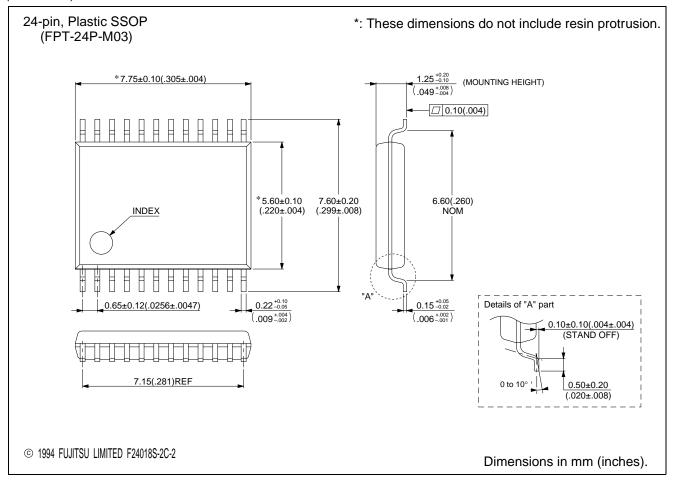

• Reference voltage output


• Digital output

■ TIMING CHART


■ DIGITAL OUTPUT BUFFER LOAD CIRCUIT

■ ORDERING INFORMATION


Part number	Package	Remarks
MB40C368PF	24-pin, Plastic SOP (FPT-24P-M01)	
MB40C368PFV	24-pin, Plastic SSOP (FPT-24P-M03)	

■ PACKAGE DIMENSIONS

(Continued)

(Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

F9703 © FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

*DS04-2820