MAX6754-MAX6764

Low-Power, Single/Dual-Voltage Window Detectors

Absolute Maximum Ratings

(Voltages with respect to GND.)
V _{CC} , V _{CC2} ,0.3V to +6.5V
SET, OVLATCH, \overline{MR} , UVIN, OVIN0.3V to (V _{CC} + 0.3V)
UV, RESET, OV (open drain)0.3V to +6.5V
RESET, $\overline{\text{OV}}$, UV, $\overline{\text{UV}}$, $\overline{\text{RESET}}$ (push-pull)0.3V to (V _{CC} + 0.3V)
Input/Output Current (all pins)20mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
Continuous Power Dissipation ($T_A = +70^{\circ}C$) 5-Pin SOT23-5 (derate 7.1mW°C above $T_A = +70^{\circ}C$) 571mW

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	
Lead(Pb)-Free Package	+260°C
Containing Lead(Pb)	+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{CC}$ = 1.0V to 6.0V, V_{CC2} = 0 to 6.0V (MAX6760–MAX6762), T_A = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
POWER REQUIREMENTS								
		(Note 2)			1.0		6.0	
Operating Voltage Range	V _{CC}	MAX6760TAAA		TAAA/ 3/MAX6764UT-T	1.4		6.0	V
		Vcc = 3.6V. M.	AX6754–M	AX6759, no load		13	30	
				X6764, no load		10	23	
V _{CC} Supply Current	Icc	V _{CC} = 3.6V, V ₀ MAX6760/MA	_{CC} ≥ V _{CC2} ,			13	30	μA
V _{CC2} Supply Current	1	V _{CC2} = 1.8V, V MAX6760/MAX	00 002			1	1.5	μA
Adjustable Bias Current	I _{CC2}	V _{CC2} (MAX676 (Note 3)	V _{CC2} (MAX6760–MAX6762TA_AD_) (Note 3)				+20	nA
V _{CC} THRESHOLD								
				$V_{SET} = V_{SB}$	5.750	5.875	6.000	-
			L, 5V	SET = V _{CC}	5.500	5.625	5.750	
			T, 3.3V	SET = GND	5.250	5.375	5.500	
				$V_{SET} = V_{SB}$	3.795	3.878	3.960	
				SET = V _{CC}	3.630	3.713	3.795	
				SET = GND	3.465	3.548	3.630	
		$T_A = -40^{\circ}C$ to		V _{SET} = V _{SB}	3.450	3.525	3.600	
V _{CC} Overvoltage Threshold	OV _{TH}	+125°C, rising	R, 3.0V	SET = V _{CC}	3.300	3.375	3.450	V
		V _{CC}		SET = GND	3.150	3.225	3.300	
				V _{SET} = V _{SB}	2.875	2.938	3.000	
			Z, 2.5V	SET = V _{CC}	2.750	2.813	2.875	
				SET = GND	2.625	2.688	2.750	
			W, 1.8V	V _{SET} = V _{SB}	2.070	2.115	2.160	
				SET = V _{CC}	1.980	2.025	2.070	
				SET = GND	1.890	1.935	1.980	

Electrical Characteristics (continued)

(V_{CC} = 1.0V to 6.0V, V_{CC2} = 0 to 6.0V (MAX6760–MAX6762), T_A = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS			
				V _{SET} = V _{SB}	4.000	4.125	4.250			
			L, 5V	SET = V _{CC}	4.250	4.375	4.500			
				SET = GND	4.500	4.625	4.750			
				V _{SET} = V _{SB}	2.640	2.723	2.805			
			T, 3.3V	SET = V _{CC}	2.805	2.888	2.970			
				SET = GND	2.970	3.053	3.135			
		T _A = -40°C		V _{SET} = V _{SB}	2.400	2.475	2.550			
V _{CC} Undervoltage Threshold	UV _{TH}	to +125°C,	R, 3.0V	SET = V _{CC}	2.550	2.625	2.700	V		
		falling V _{CC}		SET = GND	2.700	2.775	2.850			
				V _{SET} = V _{SB}	2.000	2.063	2.125			
			Z, 2.5V	SET = V _{CC}	2.125	2.188	2.250			
				SET = GND	2.250	2.313	2.375			
				V _{SET} = V _{SB}	1.440	1.485	1.530			
			W, 1.8V	SET = V _{CC}	1.530	1.575	1.620			
				SET = GND	1.620	1.665	1.710			
				V _{SET} = V _{SB}	3.795	3.878	3.960			
			T, 3.3V	SET = V _{CC}	3.630	3.713	3.795			
				SET = GND	3.465	3.548	3.630			
			R, 3.0V	V _{SET} = V _{SB}	3.450	3.525	3.600			
				SET = V _{CC}	3.300	3.375	3.450			
				SET = GND	3.150	3.225	3.300			
				V _{SET} = V _{SB}	2.875	2.938	3.000			
				,	Z, 2.5V	SET = V _{CC}	2.750	2.813	2.875]
				SET = GND	2.625	2.688	2.750			
				V _{SET} = V _{SB}	2.070	2.115	2.160			
			W, 1.8V	SET = V _{CC}	1.980	2.025	2.070	1		
V Overveltage Threehold	0\/	$T_A = -40^{\circ}C$		SET = GND	1.890	1.935	1.980	V		
V _{CC2} Overvoltage Threshold	OV _{TH2}	to +125°C, rising V _{CC2}		V _{SET} = V _{SB} (Note 2)	1.725	1.763	1.800	V		
		1101119 1002	I, 1.5V	SET = V _{CC} (Note 2)	1.650	1.688	1.725	1		
				SET = GND (Note 2)	1.575	1.613	1.650			
				V _{SET} = V _{SB} (Note 2)	1.380	1.410	1.440			
			G, 1.2V	SET = V _{CC} (Note 2)	1.320	1.350	1.380			
				SET = GND (Note 2)	1.260	1.290	1.320			
				V _{SET} = V _{SB} (Note 2)	1.035	1.058	1.080			
			E, 0.9V	SET = V _{CC} (Note 2)	0.990	1.013	1.035			
				SET = GND (Note 2)	0.945	0.968	0.990			
				V _{SET} = V _{SB}	0.489	0.500	0.511			
			ADJ	SET = V _{CC}	0.468	0.479	0.489	1		
				SET = GND	0.447	0.457	0.468			

Electrical Characteristics (continued)

(V_{CC} = 1.0V to 6.0V, V_{CC2} = 0 to 6.0V (MAX6760–MAX6762), T_A = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
				V _{SET} = V _{SB}	2.640	2.723	2.805	
			T, 3.3V	SET = V _{CC}	2.805	2.888	2.970	
				SET = GND	2.970	3.053	3.135	
				V _{SET} = V _{SB}	2.400	2.475	2.550	
			R, 3.0V	SET = V _{CC}	2.550	2.625	2.700	
				SET = GND	2.700	2.775	2.850	
				V _{SET} = V _{SB}	2.000	2.063	2.125	
			Z, 2.5V	SET = V _{CC}	2.125	2.188	2.250	
				SET = GND	2.250	2.313	2.375	
				V _{SET} = V _{SB}	1.440	1.485	1.530	
		T _A = -40°C to +125°C, falling V _{CC2}	W, 1.8V	SET = V _{CC}	1.530	1.575	1.620	
V _{CC2} Undervoltage Threshold	UV _{TH2}			SET = GND	1.620	1.665	1.710	V
VCC2 Orider voltage Till estiold			I, 1.5V G, 1.2V	V _{SET} = V _{SB} (Note 2)	1.200	1.238	1.275	V
				SET = V _{CC} (Note 2)	1.275	1.313	1.350	-
				SET = GND (Note 2)	1.350	1.388	1.425	
				V _{SET} = V _{SB} (Note 2)	0.960	0.990	1.020	
				SET = V _{CC} (Note 2)	1.020	1.050	1.080	
				SET = GND (Note 2)	1.080	1.110	1.140	
				V _{SET} = V _{SB} (Note 2)	0.720	0.743	0.765	
			E, 0.9V	SET = V _{CC} (Note 2)	0.765	0.788	0.810	
				SET = GND (Note 2)	0.810	0.833	0.855	
				V _{SET} = V _{SB}	0.340	0.351	0.362	
			ADJ	SET = V _{CC}	0.362	0.372	0.383	
				SET = GND	0.383	0.394	0.404	
Threshold Hysteresis	V _{HYST}	V _{CC} , V _{CC2}				0.7		%
UNDERVOLTAGE/OVERVOLTAGE	GE INPUTS	(UVIN, OVIN	(MAX67	63/MAX6764)				
UVIN, OVIN Threshold Voltage	V _{TH-IN}				0.485	0.5	0.515	V
UVIN, OVIN Input Bias Current	I _{IN}	(Note 3)			-20		+20	nA
UVIN, OVIN Threshold Hysteresis	V _{HYST}					0.7		%

Electrical Characteristics (continued)

(V_{CC} = 1.0V to 6.0V, V_{CC2} = 0 to 6.0V (MAX6760–MAX6762), T_A = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
TIMING CHARACTERISTICS				•			•
Deart and IN/Times at Deried		Figure 7	D0		20		μs
Reset and UV Timeout Period	t _{RP}	Figure 7	D3	100	185	320	ms
V _{CC} to Reset Delay	t _{D-RESET}	V _{CC} /V _{CC2} falling at 10 UV _{TH} + 100mV to UV-			20		μs
V _{CC} to UV Delay	t _{D-UV}	V _{CC} /V _{CC2} rising at 10 OV _{TH} - 100mV to OV _T			20		μs
V _{CC} to OV Delay	t _{D-OV}	V_{CC}/V_{CC2} rising at 10 OV_{TH} - 100mV to OV_{T} (MAX6757–MAX6762	_H + 100mV		20		μs
UVIN to UV Delay		(MAX6763/MAX6764)			20		μs
OVIN to OV Delay		(MAX6763/MAX6764)			20		μs
Startup Delay Time	tSTART	D0 options only, OV or	utput (Note 4)		2		ms
THRESHOLD WINDOW SELEC	CT INPUT (SE	ET)					
Input-Voltage Low				0		0.1	V
Innut Dine Veltage		V _{CC} = 1.4V		0.65		0.75	
Input Bias Voltage (Note 5)	V _{SB}	V _{CC} = 3.0V	0.81		2.19	V	
(Note 3)		V _{CC} = 6.0V	1.10		4.90		
Input-Voltage High				V _{CC} - 0.1		V _{CC}	V
Input Current	I _{SET}			-1		+1	μΑ
MANUAL RESET (MR)							
Input-Voltage Low						0.23 x V _{CC}	V
Input-Voltage High				0.6 x V _{CC}			V
Pullup Resistance to V _{CC}					26		kΩ
Minimum Pulse Width				4			μs
Transient Immunity					300		ns
	t _{D-MR}	MR falling, Figure 7			300		ne
Propagation Delay	t	MD riging Figure 7	D0		40		ns
	t _{MR_P}	MR rising, Figure 7	D3	100	185	320	ms
OVERVOLTAGE OUTPUT LAT	CH CONTRO	L INPUT (OVLATCH)					
Input-Voltage Low						0.3 x V _{CC}	V
Input-Voltage High				0.7 x V _{CC}			V

Low-Power, Single/Dual-Voltage Window Detectors

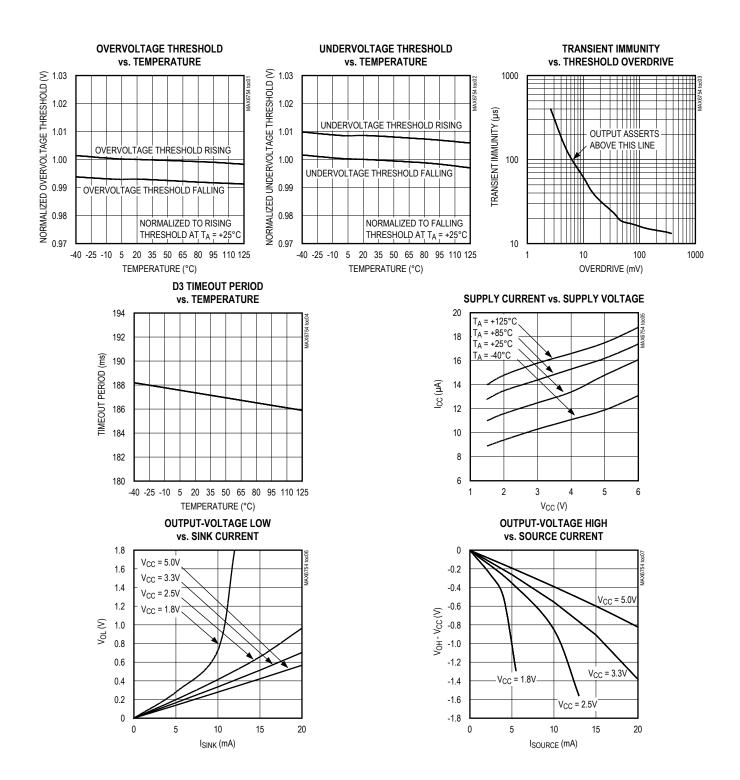
Electrical Characteristics (continued)

(V_{CC} = 1.0V to 6.0V, V_{CC2} = 0 to 6.0V (MAX6760–MAX6762), T_A = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

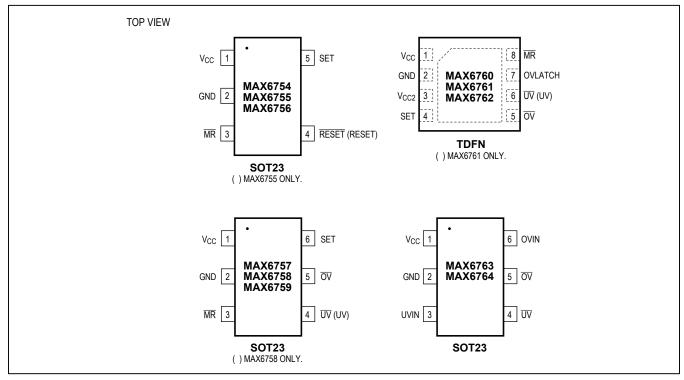
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Bias Current	IOVLATCH		-1		+1	μA	
RESET, $\overline{\text{RESET}}$, $\overline{\text{UV}}$, $\overline{\text{UV}}$, $\overline{\text{OV}}$							
		Any V _{CC} ≥ 1.0V, I _{SINK} = 100µA, output asserted			0.3		
		Any V _{CC} ≥ 1.2V, I _{SINK} = 200µA, output asserted			0.3		
RESET, UV Output Low (Open Drain or Push-Pull)	V _{OL}	Any V _{CC} ≥ 1.71V, I _{SINK} = 1.0mA, output asserted			0.3	V	
		Any V _{CC} ≥ 2.85V, I _{SINK} = 2.0mA, output asserted			0.3		
		Any V _{CC} ≥ 4.75V, I _{SINK} = 4.0mA, output asserted			0.3		
		Any V _{CC} ≥ 1.71V, I _{SOURCE} = 0.8mA, output deasserted	0.8 x V _{CC}				
RESET, UV Output High (Push-Pull)	V _{OH}	Any V _{CC} ≥ 2.85V, I _{SOURCE} = 2.0mA, output deasserted	0.8 x V _{CC}			V	
		Any V _{CC} ≥ 4.75V, I _{SOURCE} = 4.0mA, output deasserted	0.8 x V _{CC}				
		Any V _{CC} ≥ 1.71V, I _{SINK} = 1.0mA, output deasserted			0.3		
RESET, UV Output Low (Push-Pull)	V _{OL}	Any $V_{CC} \ge 2.85V$, $I_{SINK} = 2.0$ mA, output deasserted			0.3	V	
		Any V _{CC} ≥ 4.75V, I _{SINK} = 4.0mA, output deasserted			0.3		
		Any V _{CC} ≥ 1.0V, I _{SOURCE} = 50µA, output asserted	0.8 x V _{CC}				
		Any V _{CC} ≥1.2V, I _{SOURCE} = 100μA, output asserted	0.8 x V _{CC}				
RESET, UV Output High (Push-Pull)	V _{OH}	Any $V_{CC} \ge 1.71V$, $I_{SOURCE} = 0.8$ mA, 0.8 x output asserted V_{CC}			V		
		Any V _{CC} ≥ 2.85V, I _{SOURCE} = 2.0mA, output asserted	0.8 x V _{CC}				
		Any V _{CC} ≥ 4.75V, I _{SOURCE} = 4.0mA, output asserted	0.8 x V _{CC}				

Low-Power, Single/Dual-Voltage Window Detectors

Electrical Characteristics (continued)


 $(V_{CC} = 1.0V \text{ to } 6.0V, V_{CC2} = 0 \text{ to } 6.0V \text{ (MAX6760-MAX6762)}, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		Any V _{CC} ≥ 1.98V, I _{SINK} = 1.4mA, output asserted			0.3		
OV Output Low	\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Any $V_{CC} \ge 2.75V$, $I_{SINK} = 2.0$ mA, output asserted			0.3	V	
(Open-Drain or Push-Pull)	V _{OL}	Any $V_{CC} \ge 3.63V$, $I_{SINK} = 3.0$ mA, output asserted			0.3		
		Any V _{CC} ≥ 5.5V, I _{SINK} = 4.0mA, output asserted			0.3		
	h V _{OH}	Any V _{CC} ≥ 1.0V, I _{SOURCE} = 50μA, output deasserted	0.8 x V _{CC}				
		Any V _{CC} ≥ 1.2V, I _{SOURCE} = 100μA, output deasserted	0.8 x V _{CC}				
OV Output High		Any V _{CC} ≥ 1.98V, I _{SOURCE} = 1.4mA, output deasserted	0.8 x V _{CC}			v	
(Push-Pull)		Any V _{CC} ≥ 2.75V, I _{SOURCE} = 2.0mA, output deasserted	0.8 x V _{CC}				
		Any $V_{CC} \ge 3.63V$, $I_{SOURCE} = 3.0mA$, output deasserted	0.8 x V _{CC}				
		Any V _{CC} ≥ 5.5V, I _{SOURCE} = 4.5mA, output deasserted					
RESET, UV, OV Output Open- Drain Leakage Current	I _{LKG}	Output not asserted			1	μА	


- Note 1: Devices are production tested at +25°C. Overtemperature limits are guaranteed by design.
- Note 2: Voltage monitoring requires that V_{CC} must be greater than or equal to 1.4V, but outputs remain asserted in the correct state for V_{CC} down to 1.0V.
- Note 3: Guaranteed by design.
- **Note 4:** For D0 window detector options and $\overline{\text{OV}}$ outputs, startup delay time is the time required for the internal reference/circuitry to reach specified accuracy after the monitor is powered up from GND.
- Note 5: The input bias voltage is based off of V_{CC} . The minimum value is given by the equation (0.1 x V_{CC} + 0.51)V and the maximum value is given by (0.9 x V_{CC} 0.51)V.

Typical Operating Characteristics

(V_{CC} = 5V, V_{CC2} = 3.3V, T_A = +25°C, unless otherwise noted.)

Pin Configurations

Pin Description

	PI	N			
MAX6754/ MAX6755/ MAX6756	MAX6757/ MAX6758/ MAX6759	MAX6760/ MAX6761/ MAX6762	MAX6763/ MAX6764	NAME FUNCTION	
1	1	1		V _{CC}	Power Voltage Input. V_{CC} powers the device. V_{CC} is the monitored voltage. Connect V_{CC} of the MAX6756 to an RC filter to ensure proper operation during extreme transition events. A 100Ω resistor in series with a $0.1\mu F$ bypass capacitor is sufficient for most applications. See Figure 9 for more details.
_	_	_	1		Power Input. V _{CC} powers the device.
2	2	2	2	GND	Ground
3	3	8		MR	Active-Low Manual Reset Input. Drive $\overline{\text{MR}}$ low to assert undervoltage and reset outputs. The asserted output remains asserted for the specified propagation delay period after $\overline{\text{MR}}$ goes high. $\overline{\text{MR}}$ is internally pulled up to V_{CC} through a 26k Ω resistor.
4	_	_	_	RESET/ RESET	Reset Output. The Reset Output asserts when V_{CC} is below the selected UV_{TH} threshold or above the selected OV_{TH} threshold. Reset output deasserts after the specified timeout period after V_{CC} rises above the UV_{TH} threshold or drops below the OV_{TH} threshold. MAX6754: Active-low push-pull output (\overline{RESET}). MAX6755: Active-high push-pull output (\overline{RESET}). MAX6756: Active-low open-drain output (\overline{RESET}).

Pin Description (continued)

PIN PIN					
MAX6754/ MAX6755/ MAX6756	MAX6757/ MAX6758/ MAX6759	MAX6760/ MAX6761/ MAX6762	MAX6763/ MAX6764	NAME	FUNCTION
5	6	4	_	SET	Threshold Window Select Input. SET configures the undervoltage and overvoltage window range for the internal detectors. Connect SET to GND for $\pm 5\%$ window, or to V_{CC} for $\pm 10\%$ window. Bias SET to $V_{CC}/2$ for a $\pm 15\%$ window.
_	4	6	_	Undervoltage Output. UV/UV asserts when the monitored supplies are below the UV _{TH} thresholds or MR is low. UV. deasserts after the specified timeout period when the mor supply/supplies rise above the UV _{TH} thresholds or for the propagation delay after MR goes high. MAX6757/MAX6760: Active-low push-pull output (UV). MAX6758/MAX6761: Active-high push-pull output (UV). MAX6759/MAX6762: Active-low open-drain output (UV).	
_		3	_	V _{CC2}	V_{CC2} Voltage Input. Input for the second window voltage monitor, and device output power supply when $V_{CC2} > V_{CC}$.
	5	5	5	ŌV	Active-Low Overvoltage Output. \overline{OV} asserts low when the monitored supply/supplies are above their overvoltage threshold (OV _{TH}). \overline{OV} goes high impedance immediately when the monitored supply/ supplies drop below OV _{TH} . There is no timeout delay period for the \overline{OV} output. For MAX6763/MAX6764, \overline{OV} is low when OVIN is above the internal 0.5V threshold. \overline{OV} is high when OVIN is below the internal 0.5V threshold. MAX6757–MAX6762: Active-low open-drain output. MAX6763: Active-low push-pull output. MAX6764: Active-low open-drain output.
		7	_	OVLATCH	Overvoltage Output Latch Control Input. Drive OVLATCH high to latch the overvoltage output for any V_{CC} or V_{CC2} overvoltage condition. Drive OVLATCH low to clear the latch after overvoltage conditions have been removed. The latch is transparent when OVLATCH is connected to GND. OVLATCH is a high-impedance input. Use external pullup or pulldown.
_	_	_	3	UVIN	Undervoltage Input. $\overline{\text{UV}}$ is low when UVIN is below the internal 0.5V threshold. $\overline{\text{UV}}$ is high when UVIN is above the internal 0.5V threshold.
_	_	_	4	ŪV	Undervoltage Output. \overline{UV} is low when UVIN is below the internal 0.5V threshold. \overline{UV} is high when UVIN is above the internal 0.5V threshold. There is no timeout delay period for the \overline{UV} output.
_	_	_	6	OVIN	Overvoltage Input. $\overline{\text{OV}}$ is low when OVIN is above the internal 0.5V threshold. $\overline{\text{OV}}$ is high when OVIN is below the internal 0.5V threshold.
_	_	_	_	EP	Exposed Pad (TDFN Only). EP is internally connected to GND. Leave EP unconnected or connect to GND.

Functional Diagrams

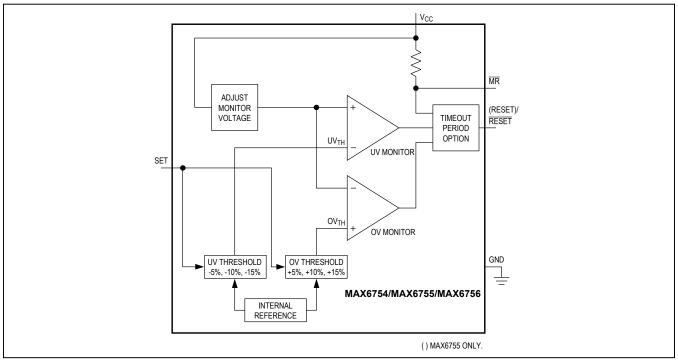


Figure 1. MAX6754/MAX6755/MAX6756 Functional Diagram

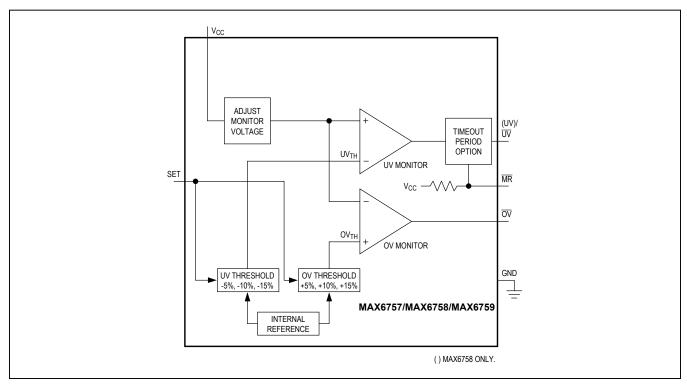


Figure 2. MAX6757/MAX6758/MAX6759 Functional Diagram

Functional Diagrams (continued)

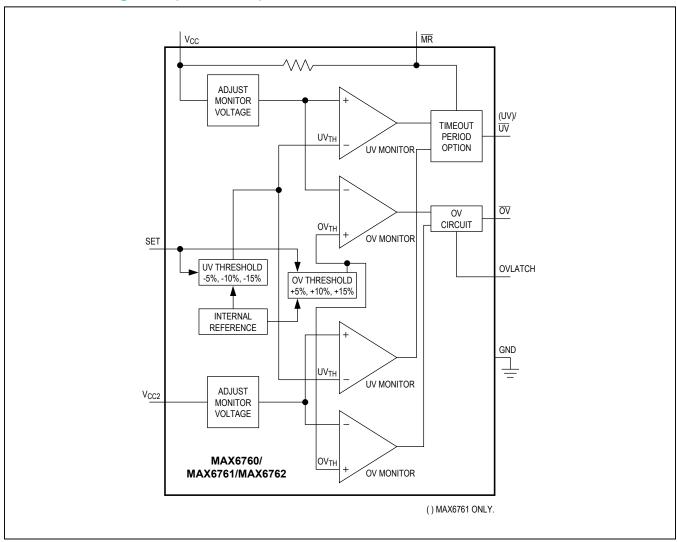


Figure 3. MAX6760/MAX6761/MAX6762 Functional Diagram

MAX6763/MAX6764 UVIN VCC INTERNAL REFERENCE 0.5V OVIN OVIN OV MONITOR

Functional Diagrams (continued)

Figure 4. MAX6763/MAX6764 Functional Diagram

Detailed Description

The MAX6754–MAX6764 are low-power window voltage detectors capable of monitoring undervoltage and overvoltage conditions on system power supplies. Whenever a monitored voltage falls below its undervoltage threshold or exceeds its overvoltage threshold, these devices assert their outputs to notify the system (see Functional Diagrams).

The MAX6754/MAX6755/MAX6756 are single-voltage window detectors with internally fixed nominal voltage, externally adjustable set window, single reset undervoltage/overvoltage output, and a manual reset input.

The MAX6757/MAX6758/MAX6759 are single-voltage window detectors with internally set nominal voltage, externally adjustable set window, separate undervoltage/overvoltage outputs, and manual reset input.

The MAX6760/MAX6761/MAX6762 are dual-voltage window detectors with internally/externally set nominal voltages, externally adjustable set window, separate undervoltage/overvoltage outputs, manual reset input, and overvoltage latch functions.

The MAX6763/MAX6764 are single adjustable window detectors with separate undervoltage/overvoltage outputs.

The MAX6754–MAX6762 offer factory-fixed voltage thresholds for monitoring system voltages from 0.9V to 5V. The MAX6754–MAX6762 include a SET function to select the window voltage to $\pm 5\%$, $\pm 10\%$, or $\pm 15\%$. The MAX6763/MAX6764 allow for externally adjustable upper

and lower voltage thresholds to be set externally (down to 0.5V). The MAX6754–MAX6762 are available with two timing options (20µs propagation delay or 100ms minimum reset timeout).

Supply Voltages

 V_{CC} is the power-supply input and the monitored voltage of the MAX6754–MAX6762. These devices feature a factory-trimmed V_{CC} and V_{CC2} divider that sets the nominal input range (see <u>Table 1</u> and <u>Table 2</u>). V_{CC} for the MAX6763/MAX6764 is the power supply of the device and not the monitored voltage. For noisy systems, bypass V_{CC} and V_{CC2} each with a $0.1\mu F$ capacitor to GND. Connect V_{CC} of the MAX6756 to an RC filter to ensure proper operation during extreme transition events. A 100Ω resistor in series with a $0.1\mu F$ bypass capacitor is sufficient for most applications. See Figure 9 for more details.

Setting the Adjustable Nominal Voltage Threshold

The MAX6760/MAX6761/MAX6762 (versions with suffixes LA, TA, RA, ZA, WA, and AA) offer adjustable nominal voltage threshold to monitor $V_{CC2}.$ Use an external voltage-divider to set the voltage at V_{CC2} to 0.4255V. Configure SET to select a monitor window of $\pm 5\%,\ \pm 10\%,\$ or $\pm 15\%$ (see Figure 5). The MAX6760/MAX6761/MAX6762 suffix AA monitor only V_{CC2} and do not monitor $V_{CC}.$

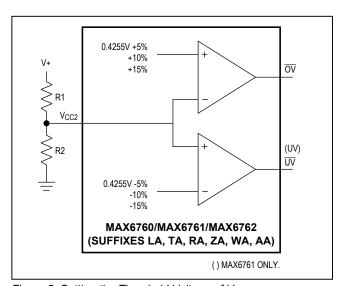


Figure 5. Setting the Threshold Voltage of V_{CC2}

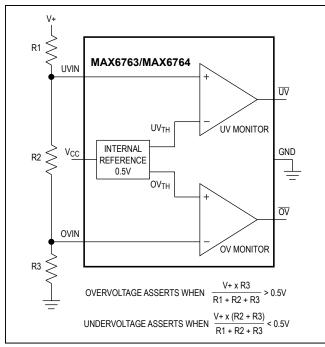


Figure 6. Setting the Undervoltage/Overvoltage Window

Choose R2 to have a resistance of up to $500k\Omega$. Calculate R1 by:

$$R1 = ((V + - 0.4255V) \times R2) / 0.4255V$$

The MAX6763/MAX6764 provide inputs to a window detector allowing the programming of the threshold voltage to within V_{CC} (see Figure 6).

Choose R1, R2, and R3 such that:

$$(V + / (R1 + R2 + R3)) \ge 1\mu A$$

SET

The MAX6754–MAX6762 allow the setting of the window voltage range of the voltage detector. Connect SET to GND to set a $\pm 5\%$ window. Connect SET to V_{CC} for a $\pm 10\%$ window. Bias SET to V_{CC} / 2 for a $\pm 15\%$ window.

Manual Reset (MR)

The MAX6754–MAX6762 include an active-low manual reset input. Drive $\overline{\text{MR}}$ low to assert a reset output (MAX6754/MAX6755/MAX6756) or an undervoltage output (MAX6757/MAX6758/MAX6759). The output remains asserted for the specified propagation delay time (see Figure 7a and Figure 7b) after $\overline{\text{MR}}$ goes high. $\overline{\text{MR}}$ is internally pulled to V_{CC} with a $26k\Omega$ resistor.

Overvoltage Latch Control Input (OVLATCH)

The MAX6760/MAX6761/MAX6762 provide an overvoltage latch control input (OVLATCH). Drive OVLATCH high to latch the overvoltage output for any $V_{\rm CC}$ or $V_{\rm CC2}$ overvoltage condition. Drive OVLATCH low to clear the latch after overvoltage conditions have been removed. The latch is transparent when OVLATCH is connected to GND. OVLATCH is a high impedance input. Use external pullup or pulldown.

Reset, Undervoltage, and Overvoltage Outputs (RESET, RESET, UV, UV, OV)

RESET, $\overline{\text{RESET}}$, $\overline{\text{UV}}$, UV, and OV outputs assert when the monitored supply is below the selected UV_{TH} threshold or above the selected OV_{TH} threshold. The reset output deasserts after the specified timeout period when the monitored supply rises above the UV_{TH} threshold or drops below the OV_{TH} threshold. The push-pull versions are referenced to V_{CC}.

The MAX6760/MAX6761/MAX6762 monitor both V_{CC} and V_{CC2} . An undervoltage/overvoltage condition on either voltage supply asserts the corresponding output. RESET and \overline{UV} are guaranteed to be in the correct logic state when V_{CC} or $V_{CC2} > 1V$.

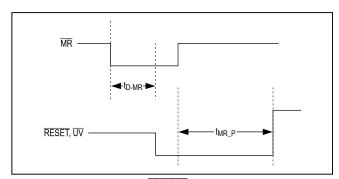


Figure 7a. Manual RESET/RESET Timing Diagram

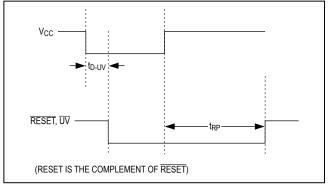


Figure 7b. V_{CC}/RESET, UV Timing Diagram

Applications Information

Microprocessor Monitoring

Figure 8 shows a microprocessor monitoring circuit. An overvoltage condition on either the core or I/O supply

turns the SCR on, blowing the fuse to disconnect the circuit from the power source. An optional capacitor (C1) on the gate of the SCR provides additional transient immunity against nuisance trips.

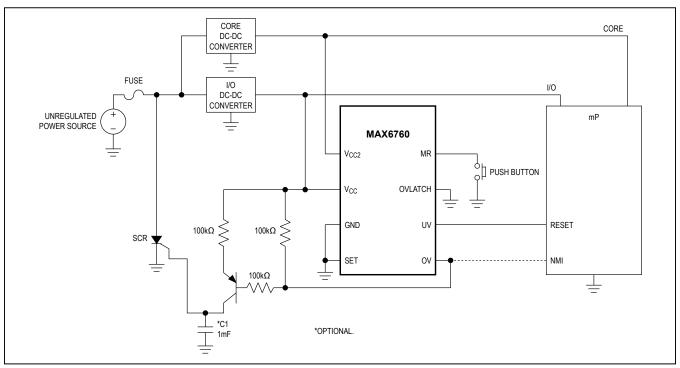


Figure 8. Microprocessor Monitoring

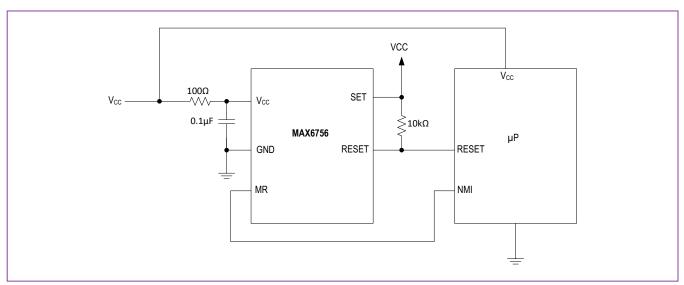


Figure 9. MAX6756 Input Filter Connection

Table 1. Window Threshold Voltage Suffix Guide Single Fixed V_{CC} (MAX6754—MAX6759)

PART NO. SUFFIX	V _{CC} NOMINAL SYSTEM VOLTAGE (V)
L	5.0
Т	3.3
R	3.0
Z	2.5
W	1.8

Table 2. Window Threshold Voltage Suffix Guide Dual Fixed/Adjustable (MAX6760/MAX6761/MAX6762)

PART NO. SUFFIX	V _{CC} NOMINAL SYSTEM VOLTAGE (V)	V _{CC2} NOMINAL SYSTEM VOLTAGE (V)
LT	5	3.3
LR	5	3.0
LA	5	ADJ*
TZ	3.3	2.5
TW	3.3	1.8
TI	3.3	1.5
TG	3.3	1.2
TE	3.3	0.9
TA	3.3	ADJ*
RZ	3.0	2.5
RW	3.0	1.8
RI	3.0	1.5
RG	3.0	1.2
RE	3.0	0.9
RA	3.0	ADJ*
ZW	2.5	1.8
ZI	2.5	1.5
ZG	2.5	1.2
ZE	2.5	0.9
ZA	2.5	ADJ*
WI	1.8	1.5
WG	1.8	1.2
WE	1.8	0.9
WA	1.8	ADJ*
AA		ADJ*

^{*}See the Setting the Adjustable Nominal Voltage Threshold section.

Table 3. Timeout Period Suffix Guide

TIMEOUT	ACTIVE TIMEOUT PERIOD			
PERIOD SUFFIX	MIN (ms)	Typ (ms)	MAX (ms)	
D0	_	0.02	_	
D3	100	185	320	

Standard Versions Table

Standard Versions 1
PART
MAX6754UKLD0
MAX6754UKLD3
MAX6754UKTD0
MAX6754UKTD3
MAX6754UKZD0
MAX6754UKZD3
MAX6754UKWD0
MAX6754UKWD3
MAX6755UKLD0
MAX6755UKLD3
MAX6755UKTD0
MAX6755UKTD3
MAX6755UKZD0
MAX6755UKZD3
MAX6755UKWD0
MAX6755UKWD3
MAX6756UKLD0
MAX6756UKLD3
MAX6756UKTD0
MAX6756UKTD3
MAX6756UKZD0
MAX6756UKZD3
MAX6756UKWD0
MAX6756UKWD3
MAX6757UTTD0
MAX6757UTTD3
MAX6757UTLD0
MAX6757UTLD3
MAX6757UTZD0
MAX6757UTZD3
MAX6757UTWD0
MAX6757UTWD3
MAX6758UTLD0
MAX6758UTLD3
MAX6758UTTD0
MAX6758UTTD3
MAX6758UTZD0
MAX6758UTZD3
MAX6758UTWD0
MAX6758UTWD3

PART
MAX6759UTLD0
MAX6759UTLD3
MAX6759UTTD0
MAX6759UTTD3
MAX6759UTZD0
MAX6759UTZD3
MAX6759UTWD0
MAX6759UTWD3
MAX6760TALTD3
MAX6760TALAD3
MAX6760TATZD3
MAX6760TATWD3
MAX6760TATAD3
MAX6760TARAD3
MAX6760TAZWD3
MAX6760TAZAD3
MAX6760TAWED3
MAX6760TAWAD3
MAX6761TALTD3
MAX6761TALAD3
MAX6761TATZD3
MAX6761TATWD3
MAX6761TATAD3
MAX6761TARAD3
MAX6761TAZWD3
MAX6761TAZAD3
MAX6761TAWED3
MAX6761TAWAD3
MAX6762TALTD3
MAX6762TALAD3
MAX6762TATZD3
MAX6762TATWD3
MAX6762TATAD3
MAX6762TARAD3
MAX6762TAZWD3
MAX6762TAZAD3
MAX6762TAWED3
MAX6762TAWAD3
MAX6763UT
MAX6764UT

Selector Guide

	PUSH-PULL RESET	PUSH-PULL RESET	OPEN-DRAIN RESET	PUSH-PULL UV	PUSH-PULL UV	OPEN-DRAIN UV	PUSH-PULL OV	OPEN-DRAIN OV
MAX6754	Х	_	_	_	_	_	_	_
MAX6755	_	Х	_	_	_	_	_	_
MAX6756	_	_	X	_	_	_	_	
MAX6757	_	_	_	Х	_	_	_	Х
MAX6758	_	_	_	_	Х	_	_	X
MAX6759	_	_	_	_	_	X		X
MAX6760	_	_	_	X	_	_	_	X
MAX6761	_	_	_	_	Х	_		X
MAX6762	_	_	_	_	_	X	_	X
MAX6763	_	_	_	Х	_	_	X	_
MAX6764	_	_	_	_	_	Х	_	Х

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX6754 UK_DT	-40°C to +125°C	5 SOT23-5
MAX6755UK_DT	-40°C to +125°C	5 SOT23-5
MAX6756 UK_DT	-40°C to +125°C	5 SOT23-5
MAX6756UK_D_/V+T	-40°C to +125°C	5 SOT23-5
MAX6757 UT_DT	-40°C to +125°C	6 SOT23-6
MAX6758 UT_DT	-40°C to +125°C	6 SOT23-6
MAX6759 UT_D_/V-T	-40°C to +125°C	6 SOT23-6
MAX6760 TADT	-40°C to +125°C	8 TDFN-EP
MAX6761 TADT	-40°C to +125°C	8 TDFN-EP
MAX6762 TADT	-40°C to +125°C	8 TDFN-EP
MAX6763UT-T	-40°C to +125°C	6 SOT23-6
MAX6764UT-T	-40°C to +125°C	6 SOT23-6

Devices are available in both leaded and lead(Pb)-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

N denotes an automotive qualified part.

Insert the threshold level suffixes for V_{CC} and V_{CC2} (see <u>Table 1</u> and <u>Table 2</u>) after UK, UT, or TA. For the MAX6754–MAX6759, insert only the V_{CC} threshold suffix after the UK or UT. Insert the reset timeout delay (see <u>Table 3</u>) after D to complete the part number. For example, the MAX6760TALTD3-T provides a V_{CC} threshold of 5V, a V_{CC2} threshold of 3.3V, and a 100ms minimum reset timeout period. Sample stock is generally held on standard versions only (see the Standard Versions Table).

Standard versions have an order increment requirement of 2500 pieces. Nonstandard versions have an order increment requirement of 10,000 pieces. Contact factory for availability.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SOT23	U5+1	<u>21-0057</u>	90-0174
6 SOT23	U6-1	21-0058	<u>90-0175</u>
8 TDFN	T833-2	21-0137	90-0059

MAX6754-MAX6764

Low-Power, Single/Dual-Voltage Window Detectors

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
4	1/11	Added /V to the MAX6759 Ordering Information and added soldering temperature in the Absolute Maximum Rating section	2, 16
5	10/15	Adding /V part number of MAX6756 to data sheet	1, 16–18
6	11/15	Updated package code for 5 SOT23 in Ordering Information section	19
7	3/16	Re-added Standard Versions table	17–18
8	6/16	Removed top mark information from Standard Versions table	17–18
9	3/17	Moved Ordering Information and Selector Guide to end of data sheet and Pin Configurations to before Pin Description table; updated Pin Description (row 1), Supply Voltages section, and added Figure 9	1, 9, 13, 16, 17
10	11/17	Added AEC statement to Benefits and Features section	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.