Absolute Maximum Ratings

IN to GND0.3V to +13V	Maximum Junction Temperature+150°C
OUTF, OUTS to GND0.3V to +6V	Lead Temperature (soldering, 10s)+300°C
Continuous Power Dissipation (TA = +70°C)	Soldering Temperature (reflow)
6-Pin SOT23 (derate 7.40mW/°C above +70°C)595.20mW	RoHS-Compliant Packages+245°C
Operating Temperature Range40°C to +125°C	Packages Containing Lead(Pb)+240°C
Storage Temperature Range65°C to +150°C	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

6 SOT23

PACKAGE CODE	U6F+6
Outline Number	21-0058
Land Pattern Number	90-0175
Thermal Resistance, Single-Layer Board	
Junction to Ambient (θ _{JA})	185.50
Junction to Case (θ_{JC})	75
Thermal Resistance, Four-Layer Board	
Junction to Ambient (θ _{JA})	134.40
Junction to Case (θ _{JC})	39

RoHS SOT23-6

PACKAGE CODE	U6FH+6
Outline Number	_
Land Pattern Number	_
Thermal Resistance, Single-Layer Board	
Junction to Ambient (θ _{JA})	185.50
Junction to Case (θ_{JC})	75
Thermal Resistance, Four-Layer Board	
Junction to Ambient (θ _{JA})	134.40
Junction to Case (θ_{JC})	39

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

www.maximintegrated.com Maxim Integrated | 2

Electrical Characteristics—V_{OUT} = 2.500V

 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } T_A = +25 ^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	cc	ONDITIONS	MIN	TYP	MAX	UNITS	
Output Voltage			MAX6033A	2.4990	2.5000	2.5010		
	V _{OUT}	T _A = +25°C	MAX6033B	2.4950	2.5000	2.5050	V	
			MAX6033C	2.4975	2.5000	2.5025		
			MAX6033A	-0.04		+0.04	%	
Output-Voltage Accuracy		T _A = +25°C	MAX6033B	-0.2		+0.2		
			MAX6033C	-0.1		+0.1		
		MAX6033A	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1.5	7		
		IVIAAGUSSA	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2.5	10		
Output Voltage Temperature	TCV	MAX6033B	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	10	ppm/°C	
Coefficient	TCV _{OUT}	IVIAAOUSSB	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		7	15	ppin/ C	
		MAX6033C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		6	20	1	
		WAX6033C	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		10	40		
Input Voltage Range	V _{IN}	Inferred from line r	egulation specification	2.7		12.6	V	
Line Regulation	ΔV _{OUT} /	2.7V ≤ V _{IN} ≤ 12.6V	T _A = +25°C		3	25	μV/V	
Line Regulation	ΔV_{IN}		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			50		
Load Regulation	ΔV _{OUT} /	-100µA ≤ I _{OUT} ≤ 15mA	T _A = +25°C		0.001	0.05	mV/mA	
Load Regulation	Δl _{OUT}		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			0.1		
		V _{OUT} = 0.1%, I _{OUT} = 1mA			0.02	0.2		
Dropout Voltage (Note 2)	V _{DO}	V _{OUT} = 0.1%, I _{OUT} = 10mA	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		0.3	0.4	V	
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			0.5		
		T _A = +25°C			40	60		
Quiescent Supply Current	I _{IN}	T _A = -40°C to +85°C				75	μА	
		T _A = -40°C to +125°C				85		
Output Short-Circuit Current	laa	V _{OUT} = 0V			90		mΛ	
Output Short-Circuit Current	I _{SC}	V _{OUT} = V _{IN}			-2		mA	
Outrot Velta and Nation		0.1Hz ≤ f ≤ 10Hz			16		μV _{P-P}	
Output-Voltage Noise	en	10Hz ≤ f ≤ 1kHz			12		μV _{RMS}	
Turn-On Settling Time	t _{ON}	V _{OUT} settles to ±0.01% of final value			500		μs	
Temperature Hysteresis		(Note 3)			150		ppm	
Long-Term Stability		∆t = 1000hr			40		ppm	

Electrical Characteristics—V_{OUT} = 3.000V

 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } T_A = +25 ^{\circ}C.)$ (Note 1)

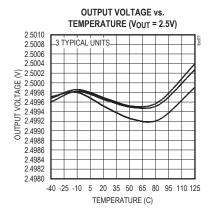
PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
			MAX6033A	2.9988	3.0000	3.0012	
Output Voltage	V _{OUT}	T _A = +25°C	MAX6033B	2.9940	3.0000	3.0060	V
			MAX6033C	2.9970	3.0000	3.0030	
			MAX6033A	-0.04		+0.04	
Output-Voltage Accuracy		T _A = +25°C	MAX6033B	-0.2		+0.2	%
			MAX6033C	-0.1		+0.1	
		MAX6033A	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1.5	7	
		IVIAA0USSA	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2.5	10	
Output-Voltage Temperature	TOV	MAYGOOD	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	10	/°C
Coefficient	TCV _{OUT}	MAX6033B	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		7	15	ppm/°C
		MAVEOSSC	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		6	20	
		MAX6033C	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		10	40	
Input Voltage Range	V _{IN}	Inferred from line reg	gulation specification	3.2		12.6	V
Line Regulation	ΔV _{OUT} /	$3.2V \le V_{1N} \le 12.6V$	T _A = +25°C		4	30	μV/V
Line Regulation	ΔV_{IN}		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			60	μν/ν
Load Regulation	ΔV _{OUT} /	_{JT} / -100µA ≤ I _{OUT} ≤	T _A = +25°C		0.002	0.06	mV/mA
Load Regulation	Δl _{OUT}	15mA	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			0.12	IIIV/IIIA
Dropout Voltage (Note 2)	\/p.c	ΔV _{OUT} = 0.1%	I _{OUT} = 1mA		0.02	0.2	V
Dropout voltage (Note 2)	V _{DO}	ΔVOUT - 0.176	I _{OUT} = 10mA		0.2	0.4	V
		$T_A = +25$ °C			40	60	
Quiescent Supply Current	I _{IN}	T _A = -40°C to +85°C				75	75 μA 85
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$				85	
Output Short-Circuit Current	la a	V _{OUT} = 0V			90		mA
Output Short-Circuit Current	I _{SC}	$V_{OUT} = V_{IN}$			-2		IIIA
Output Valtage Naige	00	0.1Hz ≤ f ≤ 10Hz			24		μV _{P-P}
Output-Voltage Noise	en	10Hz ≤ f ≤ 1kHz			15		μV _{RMS}
Turn-On Settling Time	t _{ON}	V _{OUT} settles to ±0.01% of final value			600		μs
Temperature Hysteresis		(Note 3)			150		ppm
Long-Term Stability		Δt = 1000hr			40		ppm

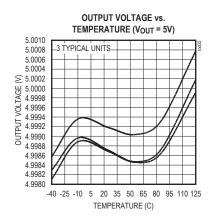
Electrical Characteristics—V_{OUT} = 4.096V

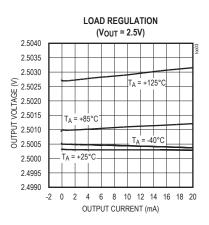
 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } T_A = +25 ^{\circ}C.)$ (Note 1)

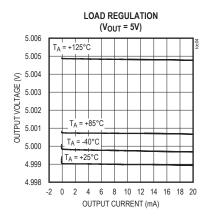
PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
			MAX6033A	4.0943	4.0960	4.0977	
Output Voltage	V _{OUT}	T _A = +25°C	MAX6033B	4.0878	4.0960	4.1042	V
			MAX6033C	4.0919	4.0960	4.1001	
			MAX6033A	-0.04		+0.04	
Output-Voltage Accuracy		T _A = +25°C	MAX6033B	-0.2		+0.2	%
			MAX6033C	-0.1		+0.1]
		MAX6033A	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1.5	7	
		IVIAXOUSSA	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2.5	10	
Output-Voltage Temperature	TOV	MAVGOOOD	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	10	/°C
Coefficient	TCV _{OUT}	MAX6033B	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		7	15	ppm/°C
		MAN/00000	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		6	20	
		MAX6033C	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		10	40	
Input-Voltage Range	V _{IN}	Inferred from line reg	ulation specification	4.3		12.6	V
Line Demulation	ΔV _{OUT} /	4.3V ≤ V _{IN} ≤ 12.6V	T _A = +25°C		6	30	μV/V
Line Regulation	ΔV _{IN}		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			60	
Load Degulation	ΔV _{OUT} /	/ -100μA ≤ I _{OUT} ≤	T _A = +25°C		0.002	0.08	mV/mA
Load Regulation	Δlout	15mA				0.15	mv/ma
Dramavit \((altaga (Nata 2))	\/	A)/ - 0.40/	I _{OUT} = 1mA		0.02	0.2	V
Dropout Voltage (Note 2)	V _{DO}	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.2	0.4	V
		T _A = +25°C			40	60	
Quiescent Supply Current	I _{IN}	T _A = -40°C to +85°C				75	μА
		T _A = -40°C to +125°C				85	
Output Short Circuit Current	laa	V _{OUT} = 0V			90		mΛ
Output Short-Circuit Current I _{SC}		V _{OUT} = V _{IN}			-2		mA
Output Malta and Maine		0.1Hz ≤ f ≤ 10Hz			32		μV _{P-P}
Output-voltage Noise	Output-Voltage Noise en		10Hz ≤ f ≤ 1kHz		22		μV _{RMS}
Turn-On Settling Time	t _{ON}	V _{OUT} settles to ±0.01% of final value			800		μs
Temperature Hysteresis		(Note 3)			150		ppm
Long-Term Stability		∆t = 1000hr			40		ppm

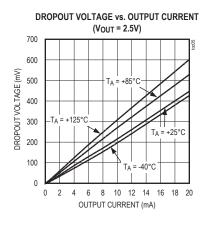
Electrical Characteristics—V_{OUT} = 5.000V

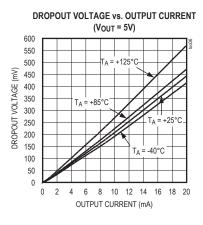

 $(V_{IN} = 5.5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } T_A = +25 ^{\circ}C.)$ (Note 1)

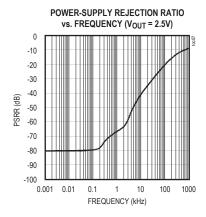

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
Output Voltage		T _A = +25°C	MAX6033A	4.9980	5.000	5.0020	
	V _{OUT}		MAX6033B	4.9900	5.000	5.0100	V
			MAX6033C	4.9950	5.000	5.0050	
			MAX6033A	-0.04		+0.04	
Output-Voltage Accuracy		T _A = +25°C	MAX6033B	-0.2		+0.2	%
			MAX6033C	-0.1		+0.1	
		MAYGOOOA	T _A = -40°C to +85°C		1.5	7	
		MAX6033A	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2.5	10	
Output-Voltage Temperature	TOV	MAYGOOOD	T _A = -40°C to +85°C		3	10	/°C
Coefficient	TCV _{OUT}	MAX6033B	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		7	15	ppm/°C
		MAYCOOO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		6	20	-
		MAX6033C	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		10	40	
Input Voltage Range	V _{IN}	Inferred from line regu	ulation specification	5.2		12.6	V
Line Degulation	ΔV _{OUT} / ΔV _{IN}	5.2V ≤ V _{IN} ≤ 12.6V	T _A = +25°C		7	50	μV/V
Line Regulation			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			100	
Load Regulation	ΔV _{OUT} /	-100µA ≤ I _{OUT}	$T_A = +25^{\circ}C$		0.003	0.1	m\//m A
Load Regulation	Δl _{OUT}	≤ 15mA	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			0.2	mV/mA
Dropout Voltage (Note 2)	\/	A)/ = 0.10/	I _{OUT} = 1mA		0.02	0.2	V
Dropout Voltage (Note 2)	V _{DO}	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.2	0.4]
		T _A = +25°C			40	60	
Quiescent Supply Current	I _{IN}	T _A = -40°C to +85°C				75	<u> </u>
		T _A = -40°C to +125°C				85	
Output Chart Circuit Current		V _{OUT} = 0V			90		Л
Output Short-Circuit Current	I _{SC}	V _{OUT} = V _{IN}			-2		mA
Output Valtage Naise	0.		0.1Hz ≤ f ≤ 10Hz		40		μV _{P-P}
Output-Voltage Noise	en	10Hz ≤ f ≤ 1kHz			26		μV _{RMS}
Turn-On Settling Time	t _{ON}	V _{OUT} settles to ±0.01% of final value			1000		μs
Temperature Hysteresis		(Note 3)			150		ppm
Long-Term Stability		Δt = 1000hr			40		ppm

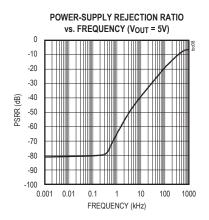

Note 1: MAX6033 is 100% production tested at T_A = +25°C and is guaranteed by design for T_A = T_{MIN} to T_{MAX} as specified. Note 2: Dropout Voltage is the minimum input voltage at which V_{OUT} changes \leq 0.1% from V_{OUT} at V_{IN} = 5V (V_{IN} = 5.5V to V_{OUT} = 5V). Note 3: Temperature Hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MAX} to T_{MIN} .

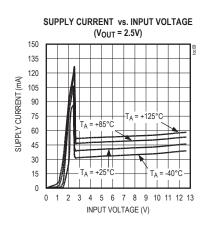

Typical Operating Characteristics

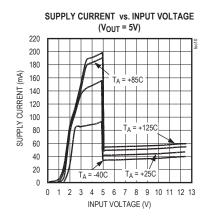

 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = +25 ^{\circ}C, unless otherwise specified.)$ (Note 4)

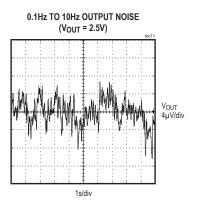


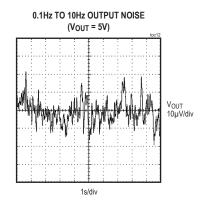


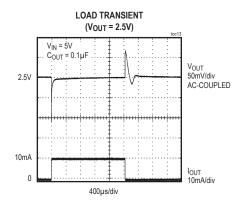


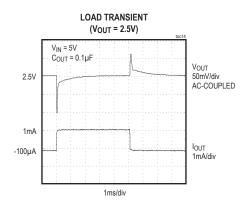


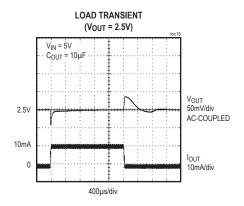


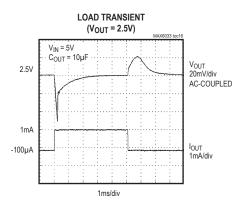


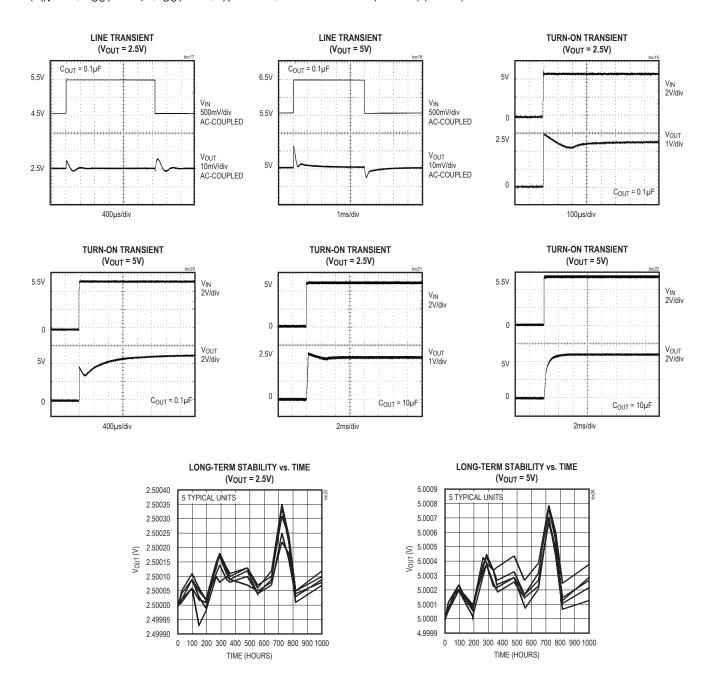



Typical Operating Characteristics (continued)


 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = +25 ^{\circ}C, unless otherwise specified.)$ (Note 4)







Typical Operating Characteristics (continued)

 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = +25 ^{\circ}C, unless otherwise specified.)$ (Note 4)

Note 4: Many of the MAX6033 Typical Operating Characteristics are similar. The extremes of these characteristics are found in the MAX6033 (2.5V output) and the MAX6033 (5V output). The Typical Operating Characteristics of the remainder of the MAX6033 family typically lie between these two extremes and can be estimated based on their output voltages.

Pin Description

PIN	NAME	FUNCTION
1, 3	I.C.	Internally Connected. Do not connect externally.
2	GND	Ground
4	IN	Positive Power-Supply Input
5	OUTF	Voltage Reference Force Output. Short OUTF to OUTS as close to the device as possible. Bypass OUTF with 0.1µF (min) capacitor to GND.
6	OUTS	Voltage Reference Sense

Applications Information

Bypassing/Load Capacitance

For the best line-transient performance, decouple the input with a $0.1\mu F$ ceramic capacitor as shown in the Typical Operating Circuit. Place the capacitor as close to IN as possible. When transient performance is less important, no capacitor is necessary.

The MAX6033 family requires a minimum output capacitance of $0.1\mu F$ for stability and is stable with capacitive loads (including the bypass capacitance) of up to $100\mu F$. In applications where the load or the supply can experience step changes, a larger output capacitor reduces the amount of overshoot (undershoot) and improves the circuit's transient response. Place output capacitors as close to the device as possible.

Supply Current

The quiescent supply current of the MAX6033 series reference is typically $40\mu A$ and is virtually independent of the supply voltage. In the MAX6033 family, the load current is drawn from the input only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency reduces power dissipation and extends battery life.

When the supply voltage is below the minimum-specified input voltage (as during turn-on), the devices can draw up to $150\mu A$ beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Output-Voltage Hysteresis

Output voltage hysteresis is the change in the output voltage at $T_A = +25$ °C before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across

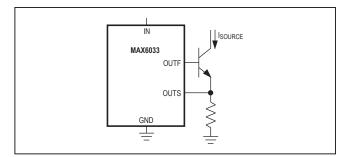


Figure 1. Precision Current Source

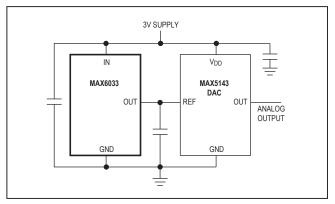


Figure 2. 14-Bit High-Resolution DAC and Positive Reference from a Single 3V Supply

the bandgap core transistors. The typical temperature hysteresis value is 150ppm.

Turn-On Time

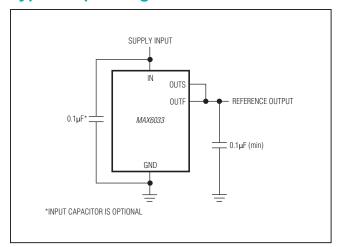
These devices typically turn on and settle to within 0.01% of their final value in >1 μ s. The turn-on time can increase up to 2ms with the device operating at the minimum dropout voltage and the maximum load.

Precision Current Source

Figure 1 shows a typical circuit providing a precision current source. The OUTF output provides the bias current for the bipolar transistor. OUTS senses the voltage across the resistor and adjusts the current sourced by OUTF accordingly.

High-Resolution DAC and Reference from Single Supply

Figure 2 shows a typical circuit providing both the power supply and reference for a high-resolution DAC. A MAX6033 with 2.5V output provides the reference voltage for the DAC.


Ordering Information/Selector Guide (continued)

PART	OUTPUT VOLTAGE (V)	TEMP COEFF (PPM/°C)	INITIAL ACCURACY (%)	TOP MARK
MAX6033AAUT30-T	3.000	10	0.04	ABDG
MAX6033BAUT30+T	3.000	15	0.20	+AAXM
MAX6033BAUT30-T	3.000	15	0.20	AAXM
MAX6033BAUT30+T	3.000	15	0.20	+AAXM
MAX6033CAUT30-T	3.000	40	0.10	AAXI
MAX6033CAUT30+T	3.000	40	0.10	+AAXI
MAX6033AAUT41-T	4.096	10	0.04	ABDH
MAX6033BAUT41+T	4.096	15	0.20	+AAXN
MAX6033BAUT41-T	4.096	15	0.20	AAXN
MAX6033CAUT41-T	4.096	40	0.10	AAXJ
MAX6033CAUT41+T	4.096	40	0.10	+AAXJ
MAX6033AAUT50-T	5.000	10	0.04	ABDI
MAX6033BAUT50+T	5.000	15	0.20	+AAXO
MAX6033BAUT50-T	5.000	15	0.20	AAXO
MAX6033CAUT50-T	5.000	40	0.10	AAXK
MAX6033CAUT50+T	5.000	40	0.10	+AAXK

#Denotes a RoHS-compliant device that may include lead(Pb) that is exempt under the RoHS requirements.

T = Tape and reel.

Typical Operating Circuit

Chip Information

PROCESS: BICMOS

www.maximintegrated.com Maxim Integrated | 12

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	6/03	Various changes	_
3	3/12	Replaced Ordering Information table/Selector Guide, updated packaging information	1, 10
4	2/19	Updated Ordering Information, Absolute Maximum Ratings, and Package Thermal Characteristics	1, 2, 10
5	3/19	Updated Ordering Information	1, 11
6	8/19	Updated Ordering Information	11
7	1/20	Updated Ordering Information	1
8	8/21	Updated Ordering Information	1, 11

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.