
ABSOLUTE MAXIMUM RATINGS

(Note 1)
Supply Voltage (V _{CC}) 6V
Input Voltage (SHDN) $-0.3V$ to $V_{CC} + 0.3V$
Output Current (I _{OUT}) 50mA
Operating Temperature Range
LTC1262C0°C to 70°C
LTC1262I40°C to 85°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

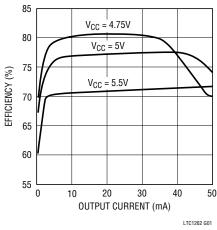
ELECTRICAL CHARACTERISTICS

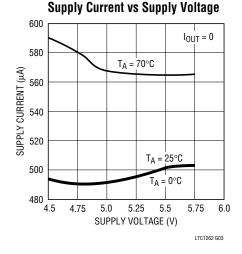
 $V_{CC} = 4.75V$ to 5.5V, $T_A = -40^{\circ}C$ to 85°C, (Notes 2, 3), unless otherwise noted.

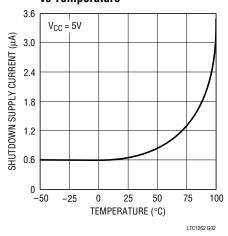
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OUT}	Output Voltage	$\begin{array}{c} 0\text{mA} \leq I_{OUT} \leq 30\text{mA}, \ V_{SHDN} = 0\text{V}, \ 0^{\circ}\text{C} \leq T_{A} \leq 70^{\circ}\text{C} \\ 0\text{mA} \leq I_{OUT} \leq 30\text{mA}, \ V_{SHDN} = 0\text{V}, -40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C} \end{array}$	•	11.4 11.2		12.6 12.6	V V
I _{CC}	Supply Current	No Load, V_{SHDN} = 0V, 0°C \leq T _A \leq 70°C No Load, V_{SHDN} = 0V, -40 °C \leq T _A \leq 85°C	•		0.5 0.5	1.0 1.3	mA mA
I _{SHDN}	Shutdown Supply Current	No Load, V _{SHDN} = V _{CC}	•		0.5	10	μА
f _{OSC}	Oscillator Frequency	V _{CC} = 5V, I _{OUT} = 30mA	•		300		kHz
	Power Efficiency	V _{CC} = 5V, I _{OUT} = 30mA	•		74		%
R _{SW}	V _{CC} to V _{OUT} Switch Impedance	V _{CC} = V _{SHDN} = 5V, I _{OUT} = 0mA	•		0.18	2	kΩ
$\overline{V_{IH}}$	SHDN Input High Voltage		•	2.4			V
V _{IL}	SHDN Input Low Voltage		•			0.8	V
	SHDN Input Current	$\begin{array}{c} V_{CC} = 5V, \ V_{SHDN} = 0V, \ 0^{\circ}C \leq T_{A} \leq 70^{\circ}C \\ V_{CC} = 5V, \ V_{SHDN} = 0V, -40^{\circ}C \leq T_{A} \leq 85^{\circ}C \\ V_{CC} = 5V, \ V_{SHDN} = 5V \end{array}$	•	-20 -35	-10 -10 0.06	-5 -5 10	μΑ μΑ μΑ
t _{ON}	Turn-On Time	C1 = C2 = 0.22 μ F, C _{IN} = C _{OUT} = 4.7 μ F, (Figures 1, 2)			500		μs
t _{OFF}	Turn-Off Time	C1 = C2 = 0.22µF, C _{IN} = C _{OUT} = 4.7µF, (Figures 1, 2)			3.3		ms

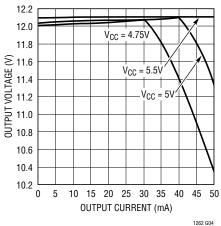
The ullet denotes specifications which apply over the full operating temperature range.

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.


Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.


Note 3: All typicals are given at $V_{CC} = 5V$, $T_A = 25$ °C.


TYPICAL PERFORMANCE CHARACTERISTICS



Shutdown Supply Current vs Temperature

Output Voltage vs Output Current

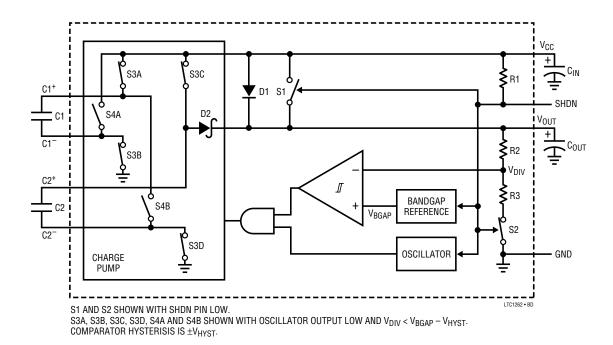
PIN FUNCTIONS

 $C1^-$ (Pin 1): C1 Negative Input. Connect a $0.22\mu F$ capacitor C1 between C1+ and C1-.

C1+ (Pin 2): C1 Positive Input. Connect a $0.22\mu F$ capacitor C1 between C1+ and C1-.

 $C2^-$ (Pin 3): C2 Negative Input. Connect a $0.22\mu F$ capacitor C2 between C2+ and C2-.

C2+ (Pin 4): C2 Positive Input. Connect a 0.22μF capacitor C2 between C2+ and C2-.


V_{CC} (Pin 5): Positive Supply Input Where $4.75V \le V_{CC} \le 5.5V$. Connect a $4.7\mu F$ bypass capacitor C_{IN} to ground.

 V_{OUT} (Pin 6): 12V Output. Connect a 4.7μF bypass capacitor C_{OUT} to ground. When in the shutdown mode $V_{OUT} = V_{CC}$.

GND (Pin 7): Ground.

SHDN (Pin 8): Logic Level Shutdown Pin. Application of a logic low at SHDN pin will place the regulator in normal operation. With no external connection, or with SHDN tied to V_{CC} , the device will be put into shutdown mode. Connect to GND for normal operation. In shutdown mode the charge pump is turned off and $V_{OUT} = V_{CC}$.

BLOCK DIAGRAM

TIMING DIAGRAMS

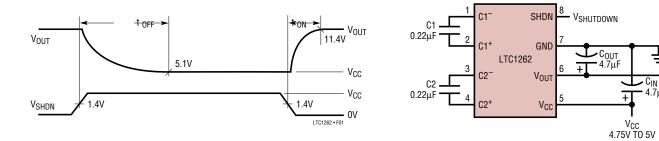


Figure 1. LTC1262 Timing Diagram

Figure 2. LTC1262 Timing Circuit

 v_{out}

LTC1262 • F02

APPLICATIONS INFORMATION

Operation

The LTC1262 uses a charge pump tripler to generate 12V from a V_{CC} of 5V. The charge pump operates when clocked by a 300kHz oscillator. When the oscillator output is low, C1 and C2 are connected between V_{CC} and GND, charging them to V_{CC} . When the oscillator output goes high, C1 and C2 are stacked in series with the bottom plate of C1 pulled to V_{CC} . The top plate of C2 is switched to charge C_{OUT} and V_{OUT} rises. V_{OUT} is regulated to within 5% of 12V by an oscillator pulse gating scheme. A resistor divider senses V_{OUT} . When the output of the divider (V_{DIV}) is less than the output of a bandgap (V_{BGAP}) by the hysteresis voltage (V_{HYST}) of the comparator, oscillator pulses are applied to the charge pump to raise V_{OUT} . When V_{DIV} is above V_{BGAP} by V_{HYST}, the oscillator pulses are prevented from clocking the charge pump. V_{OUT} drops until V_{DIV} is below V_{BGAP} by V_{HYST} again. The gates of all internal switches are driven between V_{OUT} and GND. An internal diode ensures that the LTC1262 will start up under load by charging C_{OLIT} to one diode drop below V_{CC} .

To reduce supply current the LTC1262 may be put into shutdown mode by floating the SHDN pin or taking it to $V_{CC}.$ In this mode the bandgap, comparator, oscillator and resistor divider are switched off to reduce supply current to typically 0.5 $\mu A.$ At the same time an internal switch shorts V_{OUT} to $V_{CC};$ V_{OUT} takes 3.3ms to reach 5.1V (see t_{OFF} in Figure 1). When the SHDN pin is low, the LTC1262 exits shutdown and the charge pump operates to raise V_{OUT} to 12V. V_{OUT} takes 500 μs to reach the lower regulation limit of 11.4V (see t_{ON} in Figure 1).

Choice of Capacitors

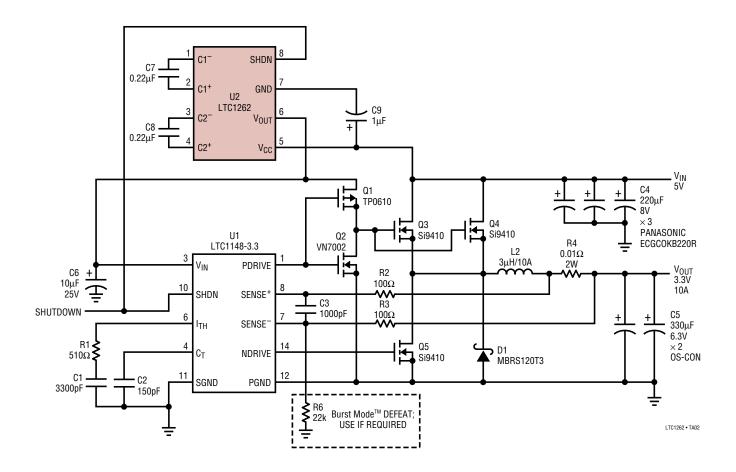
The LTC1262 is tested with the capacitors shown in Figure 2. C1 and C2 are $0.22\mu F$ ceramic capacitors and C_{IN} and C_{OUT} are $4.7\mu F$ tantalum capacitors. Refer to Table 1 if other choices are desired.

Table 1. Recommended Capacitor Types and Values

CAPACITOR	CERAMIC	TANTALUM	ALUMINUM
C1, C2	0.22μF to 1μF	Not	Not
		Recommended	Recommended
C _{OUT}	2μF (Min)	4.7μF (Min)	10μF (Min)
C _{IN}	1μF (Min)	4.7μF (Min)	10μF (Min)

C1 and C2 should be ceramic capacitors with values in the range of $0.22\mu F$ to $1\mu F$. Higher values provide better load regulation. Tantalum capacitors are not recommended as the higher ESR of these capacitors degrades performance when the load current is above 25mA with $V_{CC} = 4.75V$.

 C_{IN} and C_{OUT} can be ceramic, tantalum or electrolytic capacitors. The ESR of C_{OUT} introduces steps in the V_{OUT} waveform whenever the charge pump charges C_{OUT} . This tends to increase V_{OUT} ripple. Ceramic or tantalum capacitors are recommended for C_{OUT} if minimum ripple is desired. The LTC1262 does not require a $0.1\mu F$ capacitor between V_{CC} and V_{OUT} for stability.

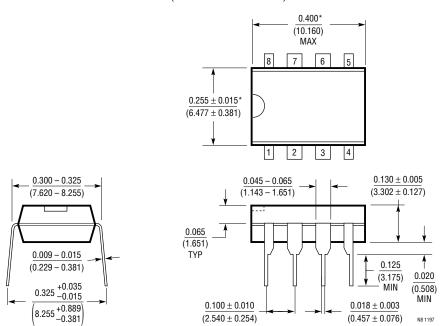

Maximum Load Current

The LTC1262 will source up to 50mA continuously without any damage to itself. **Do not short the V_{OUT} pin to ground**. If the V_{OUT} pin is shorted to ground, irreversible damage to the device will result.

TYPICAL APPLICATION

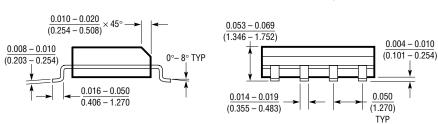
5V to 3.3V/10A Converter

Burst Mode is a trademark of Linear Technology Corporation.



PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

N8 Package 8-Lead PDIP (Narrow 0.300)

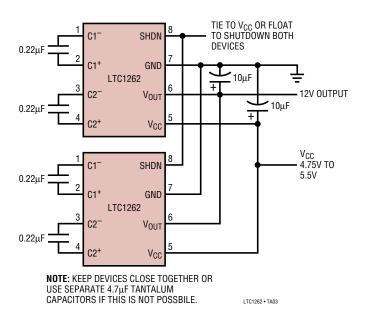

(LTC DWG # 05-08-1510)

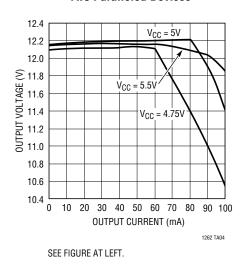
^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610)

0.189 - 0.197* (4.801 - 5.004) 8 7 6 5 0.228 - 0.244 (5.791 - 6.197) 0.150 - 0.157** (3.810 - 3.988)

^{*}DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE


S08 0996


^{**}DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

TYPICAL APPLICATION

Paralleling Devices

Output Voltage vs Output Current for Two Paralleled Devices

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1106*	Micropower Step-Up DC/DC Converter for PCMCIA Card Flash Memory	PCMCIA Card Power Control, 9µA I _{SHDN} , Small SMT Components, Requires External Inductor
LT1109-12	Micropower Low Cost DC/DC Converter Adjustable and Fixed 12V	Three-Lead Z Package, Requires External Inductor
LT1109A-12	Micropower DC/DC Converter Flash Memory VPP Generator Adjustable and Fixed 12V	Requires External Inductor
LT1301	Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory	7μΑ I _{SHDN} , SMT Inductor and Capacitors
LT1309	500kHz Micropower DC/DC Converter for Flash Memory	Small SMT Inductor and Capacitors, 6µA I _{SHDN}

^{*} See also LT1312/LT1313 PCMCIA VPP drivers/regulators, LT1314/LT1315 PCMCIA switch matrix and the LTC1470/LTC1471/LTC1472 Protected V_{CC} and VPP switching matrices