

KSB772

Audio Frequency Power Amplifier

- Low Speed Switching
- Complement to KSD882

PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	- 40	V
V _{CEO}	Collector-Emitter Voltage	- 30	V
V _{EBO}	Emitter-Base Voltage	- 5	V
I _C	Collector Current (DC)	- 3	А
I _{CP}	*Collector Current (Pulse)	- 7	А
I _B	Base Current (DC)	- 0.6	А
P _C	Collector Dissipation (T _C =25°C)	10	W
	Collector Dissipation (T _a =25°C)	1	W
$R_{\theta ja}$	Junction to Ambient	132	°C/W
$R_{\theta jc}$	Junction to Case	13.5	°C/W
T _J	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 55 ~ 150	°C

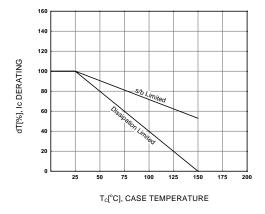
^{*} PW≤10ms, Duty Cycle≤50%

Electrical Characteristics $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
I _{CBO}	Collector Cut-off Current	$V_{CB} = -30V, I_{E} = 0$			- 1	μΑ
I _{EBO}	Emitter Cut-off Current	$V_{EB} = -3V, I_{C} = 0$			- 1	μΑ
h _{FE1}	* DC Current Gain	$V_{CE} = -2V, I_{C} = -20mA$	30	220		
h_{FE2}		$V_{CE} = -2V, I_{C} = -1A$	60	160	400	
V _{CE} (sat)	* Collector-Emitter Saturation Voltage	$I_C = -2A, I_B = -0.2A$		- 0.3	- 0.5	V
V _{BE} (sat)	* Base-Emitter Saturation Voltage	$I_C = -2A, I_B = -0.2A$		- 1.0	- 2.0	V
f _T	Current Gain Bandwidth Product	$V_{CE} = -5V, I_{E} = -0.1A$		80		MHz
C _{ob}	Output Capacitance	$V_{CB} = -10V, I_{E} = 0$ f = 1MHz		55		pF

^{*} Pulse Test: PW≤350μs, Duty Cycle≤2%

$h_{\mbox{\scriptsize FE}}$ Classification


Classification	R	0	Y	G
h _{FE2}	60 ~ 120	100 ~ 200	160 ~ 320	200 ~ 400

©2002 Fairchild Semiconductor Corporation Rev. B, October 2002

Typical Characteristics $V_{CE} = -2V$ [A], COLLECTOR CURRENT -10mA hre, DC CURRENT GAIN $I_{R} = -6mA$ $I_{B} = -1mA$ $I_{\text{c}}[\text{mA}]$, COLLECTOR CURRENT $V_{CE}[V]$, COLLECTOR-EMITTER VOLTAGE Figure 1. Static Characteristic Figure 2. DC current Gain Vce(sat), VBE (sat) [mV] SATURATION VOLTAGE -100 C_∞[pF], CAPACITANCE -100 V_{CE}(sat) Ic[mA], COLLECTOR CURRENT $V_{CR}[V]$, COLLECTOR-BASE VOLTAGE Figure 3. Base-Emitter Saturation Voltage **Figure 4. Collector Output Capacitance** Collector-Emitter Saturation Voltage f_f[MHz], CURRENT GAIN BANDWIDTH PRODUCT MAX(Pulse I,[A], COLLECTOR CURRENT MAX -0.01 L -1 Ic[A], COLLECTOR CURRENT $V_{CE}[V]$, COLLECTOR-EMITTER VOLTAGE Figure 5. Current Gain Bandwidth Product Figure 6. Safe Operating Area

©2002 Fairchild Semiconductor Corporation Rev. B, October 2002

Typical Characteristics (Continued)

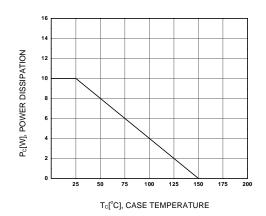
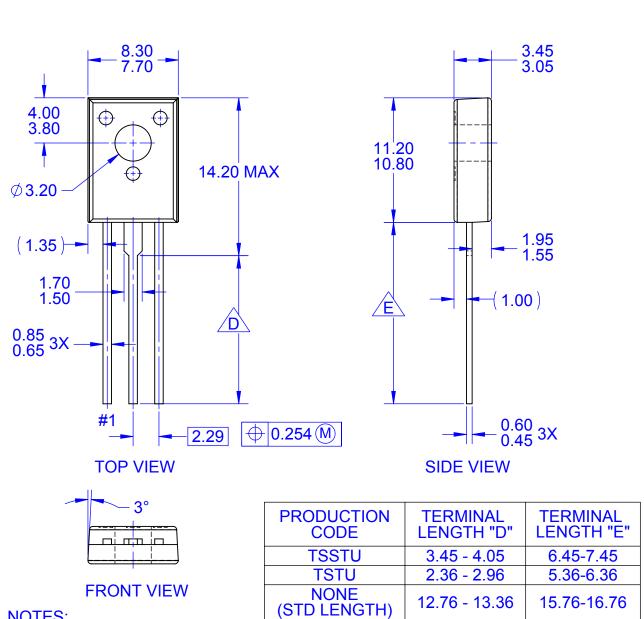



Figure 7. Derating Curve of Safe Operating Areas

Figure 8. Power Derating

©2002 Fairchild Semiconductor Corporation Rev. B, October 2002

- **NOTES:**
- A. NO INDUSTRY STANDARD APPLIES TO THIS **PACKAGE**
- B. ALL DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR PROTRUSIONS

FOR TERMINAL LENGTH "E", REFER TO TABLE DRAWING FILENAME: MKT-TO126AArev2

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Phone: 421 33 790 2910 **Japan Customer Focus Center**Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative