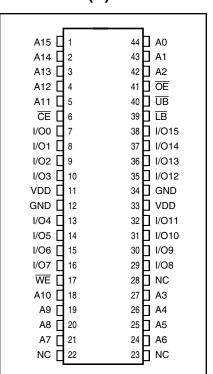


PIN CONFIGURATIONS

48-Pin mini BGA (6mm x 8mm)


44-Pin TSOP-II

PIN DESCRIPTIONS

A0-A15 Address Inputs				
I/O0-I/O	15 Data Inputs/Outputs			
CE	Chip Enable Input			
ŌĒ	Output Enable Input			
WE	Write Enable Input			
LB	Lower-byte Control (I/O0-I/O7)			
ŪB	Upper-byte Control (I/O8-I/O15)			
NC	No Connection			
VDD	Power			
GND	Ground			

44-Pin SOJ (K)

TRUTH TABLE

					I/O PIN			
Mode	WE	CE	ŌĒ	ΙΒ	ŪB	1/00-1/07	I/O8-I/O15	VDD Current
Not Selected	Х	Н	Х	Х	Х	High-Z	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	Χ	Χ	High-Z	High-Z	Icc
	Χ	L	Χ	Н	Н	High-Z	High-Z	
Read	Н	L	L	L	Н	D оит	High-Z	Icc
	Н	L	L	Н	L	High-Z	D оит	
	Н	L	L	L	L	D out	D ouт	
Write	L	L	Х	L	Н	Din	High-Z	Icc
	L	L	Χ	Н	L	High-Z	DIN	
	L	L	Χ	L	L	Din	Din	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to VDD+0.5	V
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.5	W
V _{DD}	VDD Related to GND	-0.2 to +3.9	V

Note:

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect reliability.

OPERATING RANGE (VDD)

Range	Ambient Temperature	VDD (15 ns)	VDD (12 ns)	
Commercial	0°C to +70°C	2.5V-3.6V	3.3V <u>+</u> 10%	
Industrial	–40°C to +85°C	2.5V-3.6V	3.3V <u>+</u> 10%	
Automotive	-40°C to +125°C	2.5V-3.6V	3.3V <u>+</u> 10%	

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

$V_{DD} = 2.5V-3.6V$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., I_{OH} = -1.0 \text{ mA}$	2.3	_	V
Vol	Output LOW Voltage	VDD = Min., IOL = 1.0 mA	_	0.4	V
VIH	Input HIGH Voltage		2.0	VDD + 0.3	V
VIL	Input LOW Voltage(1)		-0.3	0.8	V
lu	Input Leakage	$GND \leq V_{IN} \leq V_{DD}$	-2	2	μA
ILO	Output Leakage	GND ≤ Vout ≤ Vdd, Outputs Disabled	-2	2	μA

Note:

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

$V_{DD} = 3.3V \pm 10\%$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$	2.4	_	V
Vol	Output LOW Voltage	VDD = Min., IOL = 8.0 mA	_	0.4	V
VIH	Input HIGH Voltage		2	VDD + 0.3	V
VIL	Input LOW Voltage(1)		-0.3	0.8	V
lu	Input Leakage	$GND \leq Vin \leq Vdd$	-2	2	μA
ILO	Output Leakage	GND ≤ Vout ≤ Vdd, Outputs Disabled	-2	2	μA

Note:

^{1.} V_{IL} (min.) = -0.3V DC; V_{IL} (min.) = -2.0V AC (pulse width 2.0 ns). Not 100% tested. V_{IH} (max.) = V_{DD} + 0.3V DC; V_{IH} (max.) = V_{DD} + 2.0V AC (pulse width 2.0 ns). Not 100% tested.

VIL (min.) = -0.3V DC; VIL (min.) = -2.0V AC (pulse width 2.0 ns). Not 100% tested.
 VIH (max.) = VDD + 0.3V DC; VIH (max.) = VDD + 2.0V AC (pulse width 2.0 ns). Not 100% tested.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-12 ns			-15 ns	
Symbol	Parameter	Test Conditions	Options	Min.	Max.	Min.	Max.	Unit
Icc	VDD Dynamic Operating	VDD = Max.,	COM.	_	35	_	30	mA
	Supply Current	IOUT = 0 mA, f = fMAX	IND.	_	45	_	40	
			AUTO	_	60	_	50	
			typ. ⁽²⁾	_	20	_	20	
Icc1	Operating Supply	V _{DD} = Max.,	COM.	_	5	_	5	mA
	Current	lout = 0mA, f = 0	IND.	_	5	_	5	
			AUTO	_	5	_	5	
ISB2	CMOS Standby	VDD = Max.,	COM.	_	20	_	20	uA
	Current (CMOS Inputs)	$\overline{CE} \ge V_{DD} - 0.2V$,	IND.	_	50	_	50	
	. ,	$V_{IN} \ge V_{DD} - 0.2V$, or	AUTO	_	75	_	75	
		$Vin \leq 0.2V, \ f=0$	typ. ⁽²⁾	_	6	_	6	

Note:

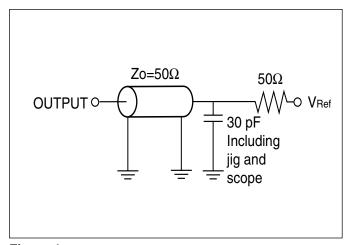
CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	6	pF
Соит	Input/Output Capacitance	Vout = $0V$	8	pF

Note:

^{1.} At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

^{2.} Typical values are measured at VDD=2.5V, Ta=25°C. Not 100% tested.


^{1.} Tested initially and after any design or process changes that may affect these parameters.

ACTEST CONDITIONS

Parameter	Unit (2.5V-3.6V)	Unit (3.3V <u>+</u> 10%)
Input Pulse Level	0V to VDD V	0V to V _{DD} V
Input Rise and Fall Times	1.5ns	1.5ns
Input and Output Timing and Reference Level (VRef)	V _{DD} /2	V _{DD} /2 + 0.05
Output Load	See Figures 1a and 1b	See Figures 1a and 1b

ACTEST LOADS

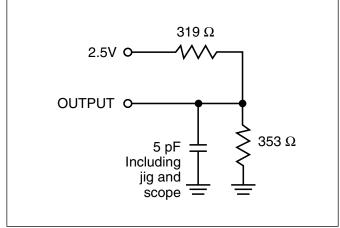


Figure 1a.

Figure 1b.

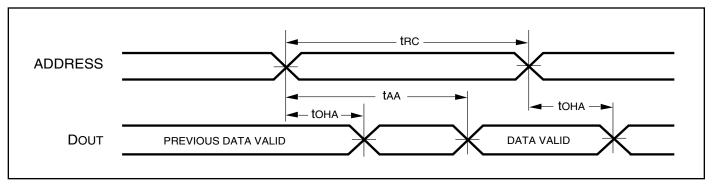
6

READ CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)

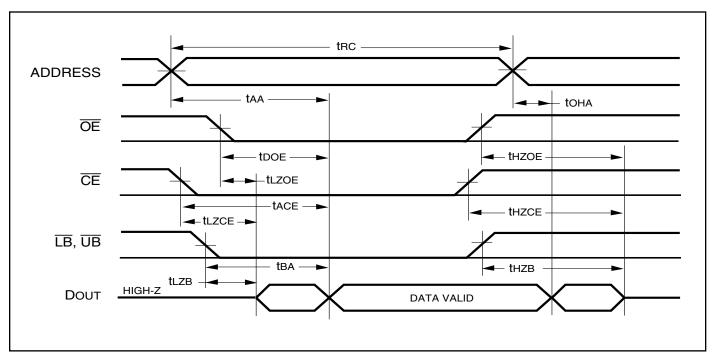
Symbol	Parameter	-12 Min	ns Max.		Min	-15 ns Max. Unit		
			wax.			wax.		
t RC	Read Cycle Time	12	_		15		ns	
taa	Address Access Time	_	12		_	15	ns	
tона	Output Hold Time	3	_		3	_	ns	
tace	CE Access Time	_	12		_	15	ns	
tDOE	OE Access Time	_	6		_	7	ns	
thzoe(2)	OE to High-Z Output	_	6		0	6	ns	
tLZOE ⁽²⁾	OE to Low-Z Output	0	_		0	_	ns	
thzce(2	CE to High-Z Output	0	6		0	6	ns	
tLZCE ⁽²⁾	CE to Low-Z Output		3	_		3	— ns	
tва	LB, UB Access Time	_	6		_	7	ns	
tнzв	LB, UB to High-Z Output	0	6		0	6	ns	
t LZB	LB, UB to Low-Z Output	0	_		0	_	ns	

Notes:

^{1.} Test conditions assume signal transition times of 1.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0V to V_{DD} V and output loading specified in Figure 1a.


2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

^{3.} Not 100% tested.



AC WAVEFORMS

READ CYCLE NO. 1^(1,2) (Address Controlled) ($\overline{CS} = \overline{OE} = V_{IL}$, \overline{UB} or $\overline{LB} = V_{IL}$)

READ CYCLE NO. 2^(1,3)

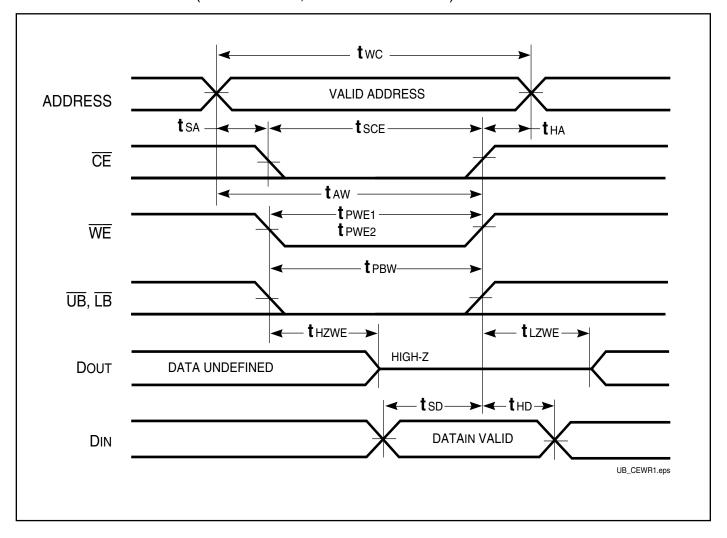
Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , \overline{CE} , \overline{UB} , or \overline{LB} = V_{IL}.
- 3. Address is valid prior to or coincident with \overline{CE} LOW transition.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,2) (Over Operating Range)

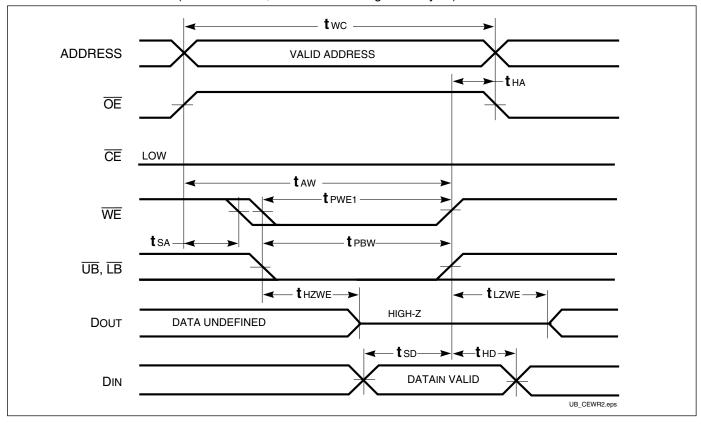
		-12 ns		-15	-15 ns		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
twc	Write Cycle Time	12	_	15	_	ns	
tsce	CE to Write End	9	_	10	_	ns	
taw	Address Setup Time to Write End	9	_	10	_	ns	
t HA	Address Hold from Write End	0	_	0	_	ns	
t sa	Address Setup Time	0	_	0	_	ns	
tрwв	LB, UB Valid to End of Write	9	_	10	_	ns	
tpwE1	WE Pulse Width (OE = HIGH)	9	_	10	_	ns	
tpwE2	WE Pulse Width (OE = LOW)	11	_	12	_	ns	
tsp	Data Setup to Write End	9	_	9	_	ns	
t HD	Data Hold from Write End	0	_	0	_	ns	
thzwe ⁽³⁾	WE LOW to High-Z Output	_	6	_	7	ns	
tLZWE ⁽³⁾	WE HIGH to Low-Z Output	3	_	3	_	ns	

Notes:

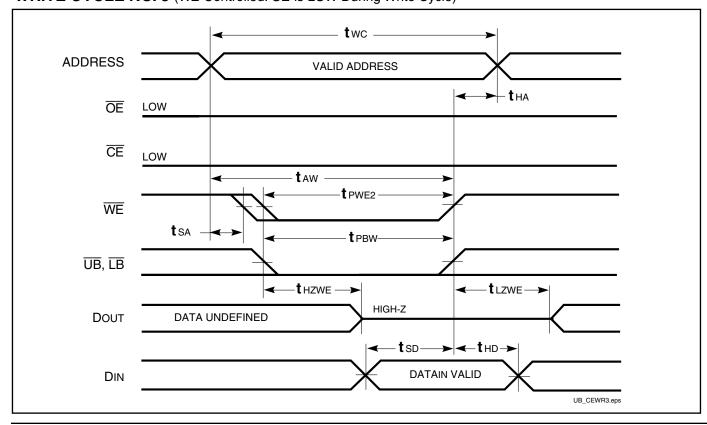

2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

^{1.} Test conditions for IS61WV6416BLL assume signal transition times of 1.5ns or less, timing reference levels of 1.25V, input pulse levels of 0V to V_{DD} V and output loading specified in Figure 1a.

^{3.} The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{UB}}$ or $\overline{\text{LB}}$, and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.



WRITE CYCLE NO. $1^{(1,2)}$ (\overline{CE} Controlled, \overline{OE} = HIGH or LOW)



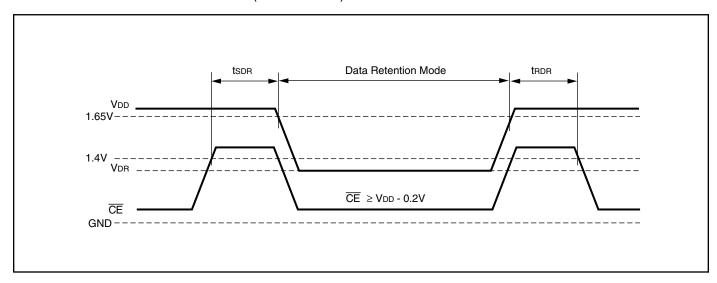
WRITE CYCLE NO. $2^{(1)}$ (WE Controlled, \overline{OE} = HIGH during Write Cycle)

WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

WRITE CYCLE NO. 4 (LB, UB Controlled, Back-to-Back Write) (1,3)

Notes:

- 1. The internal Write time is defined by the overlap of $\overline{\text{CE}} = \text{LOW}$, $\overline{\text{UB}}$ and/or $\overline{\text{LB}} = \text{LOW}$, and $\overline{\text{WE}} = \text{LOW}$. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The t_{SA} , t_{HA} , t_{SD} , and t_{HD} timing is referenced to the rising or falling edge of the signal that terminates the Write.
- 2. Tested with \overline{OE} HIGH for a minimum of 4 ns before $\overline{WE} = LOW$ to place the I/O in a HIGH-Z state.
- 3. WE may be held LOW across many address cycles and the LB, UB pins can be used to control the Write function.



DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition	Operations	Min.	Typ. ⁽¹⁾	Max.	Unit
VDR	VDD for Data Retention	See Data Retention Waveform	n	1.8	_	3.6	V
IDR	Data Retention Current	$V_{DD} = 1.8V, \overline{CE} \ge V_{DD} - 0.2V$	сом.	_	6	20	μA
			IND.	_	6	50	
			AUTO	_	6	75	
tsdr	Data Retention Setup Time	See Data Retention Waveform	n	0	_	_	ns
trdr	Recovery Time	See Data Retention Waveform	n	trc	_	_	ns

Note:

DATA RETENTION WAVEFORM (CE Controlled)

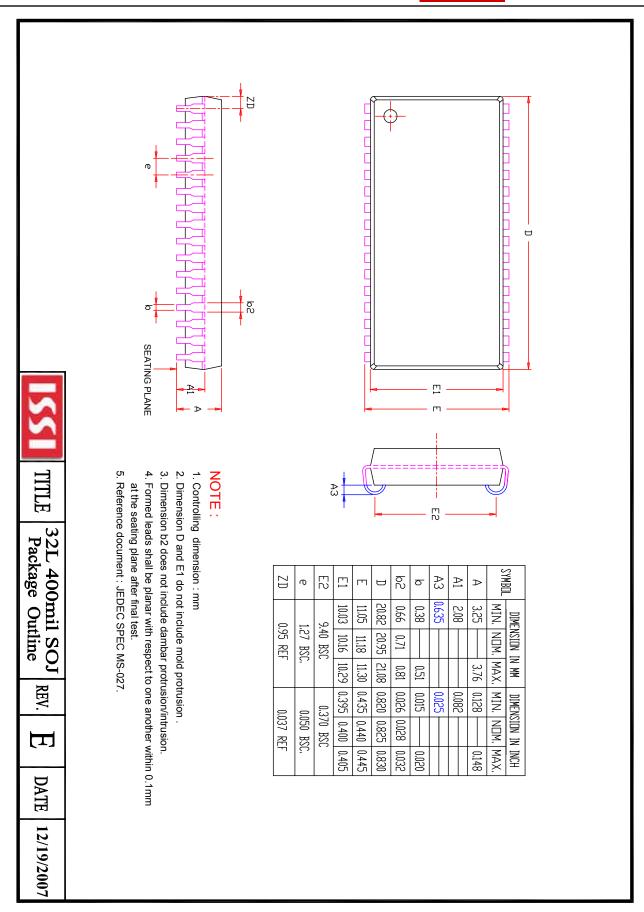
^{1.} Typical values are measured at VDD = 2.5V, $TA = 25^{\circ}C$. Not 100% tested.

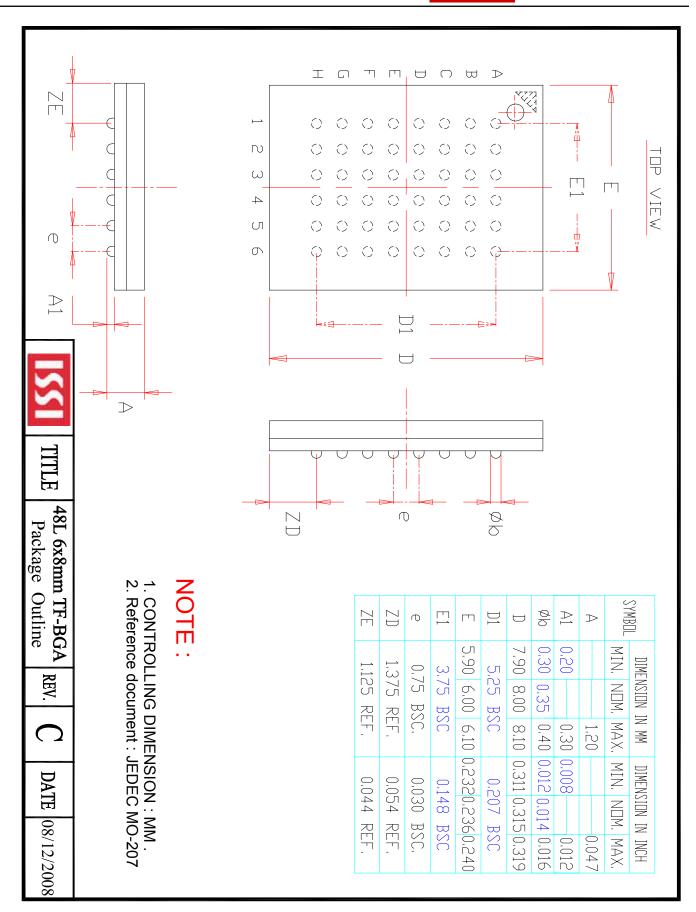
ORDERING INFORMATION

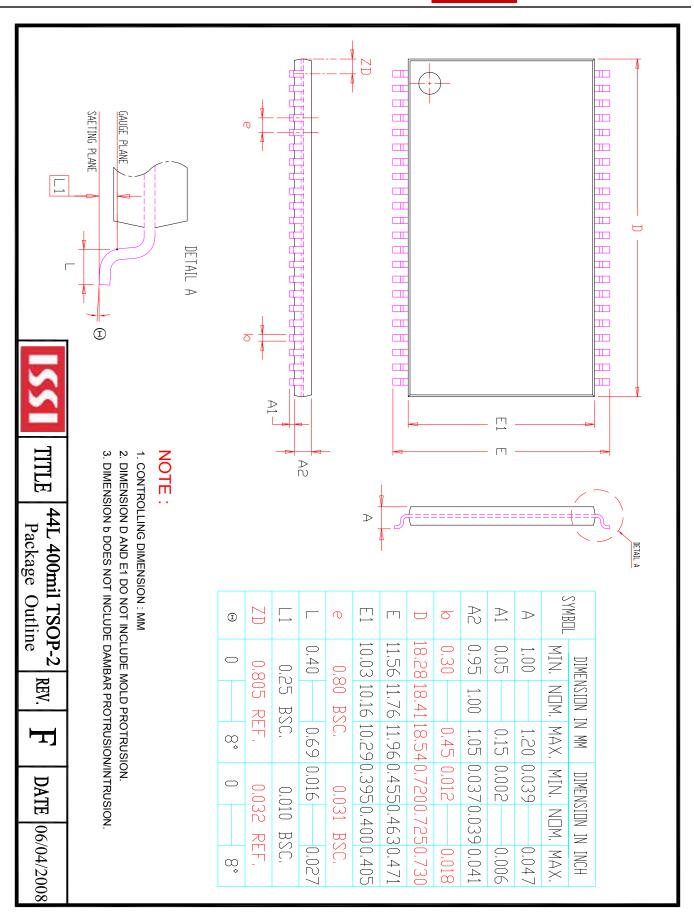
Commercial Temperature Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package	
12	IS61WV6416BLL-12KL	400-mil Plastic SOJ, Lead-free	

Industrial Temperature Range: -40°C to +85°C


Speed (ns)	Order Part No.	Package
12	IS61WV6416BLL-12TI	Plastic TSOP
12	IS61WV6416BLL-12TLI	Plastic TSOP, Lead-free
12	IS61WV6416BLL-12KLI	400-mil Plastic SOJ, Lead-free
12	IS61WV6416BLL-12BI	mini BGA (6mm x 8mm)
12	IS61WV6416BLL-12BLI	mini BGA (6mm x 8mm), Lead-free
15	IS61WV6416BLL-15TLI	Plastic TSOP, Lead-free
15	IS61WV6416BLL-15BI	mini BGA (6mm x 8mm)
15	IS61WV6416BLL-15BLI	mini BGA (6mm x 8mm), Lead-free


Temperature Range (A3): −40°C to +125°C


Speed (ns)	Order Part No.	Package
15 (12¹)	IS64WV6416BLL-15TA3	Plastic TSOP
15 (12¹)	IS64WV6416BLL-15TLA3	Plastic TSOP, Lead-free
15 (12¹)	IS64WV6416BLL-15BA3	mini BGA (6mm x 8mm)
15 (12¹)	IS64WV6416BLL-15BLA3	mini BGA (6mm x 8mm), Lead-free

Noto

^{1.} Speed = 12ns for $V_{DD} = 3.3V \pm 10\%$. Speed = 15ns for $V_{DD} = 2.5V - 3.6V$.

