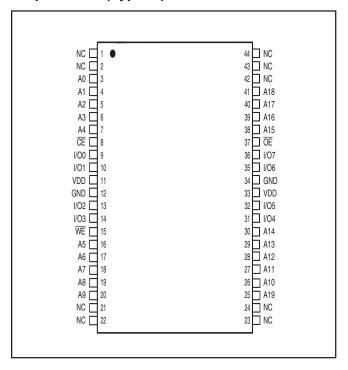


PIN CONFIGURATION 36 mini BGA (B) (9mm x 11mm)


48-pin Mini BGA (M) (9mm x 11mm)

PIN DESCRIPTIONS

A0-A19	Address Inputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O7	Data Input / Output
V _{DD}	Power
GND	Ground
NC	No Connection

44-pin TSOP (Type II)

TRUTH TABLE

Mode	WE	CE	ŌĒ	I/O Operation	V _{DD} Current
Not Selected (Power-down)	X	Н	Χ	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	High-Z	lcc
Read	Н	L	L	D оит	lcc
Write	L	L	Χ	Din	lcc

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit	
VTERM	Terminal Voltage with Respect to GND	-0.5 to V _{DD} + 0.5	V	
VDD	VDD Relates to GND	-0.3 to 4.0	V	
Тѕтс	Storage Temperature	-65 to +150	°C	
Рт	Power Dissipation	1.0	W	

Notes:

OPERATING RANGE

Range	Ambient Temperature	V _{DD}	
Commercial	0°C to +70°C	3.3V +10%, -5%	
Industrial	–40°C to +85°C	3.3V +10%, -5%	

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit	
CIN	Input Capacitance	VIN = 0V	6	рF	
Cı/o	Input/Output Capacitance	Vout = 0V	8	pF	

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = 3.3V$.

04/13/06

^{1.} Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Parameter	Test Conditions		Min.	Max.	Unit
Output HIGH Voltage	$V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$		2.4	_	V
Output LOW Voltage	V _{DD} = Min., I _{OL} = 8.0 mA		_	0.4	V
Input HIGH Voltage			2.2	VDD + 0.3	V
Input LOW Voltage(1)			-0.3	0.8	V
InputLeakage	$GND \le VIN \le VDD$	Com.	-1	1	μΑ
		ma.	_o	<u> </u>	
Output Leakage	$GND \leq V_{OUT} \leq V_{DD}, Outputs \ Disabled$	Com.	− 1 − 5	1 5	μΑ
	Output HIGH Voltage Output LOW Voltage Input HIGH Voltage Input LOW Voltage(1) Input Leakage	Output HIGH Voltage $V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$ Output LOW Voltage $V_{DD} = Min., I_{OL} = 8.0 \text{ mA}$ Input HIGH Voltage Input LOW Voltage ⁽¹⁾ Input Leakage $GND \le V_{IN} \le V_{DD}$	Output HIGH Voltage $V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$ Output LOW Voltage $V_{DD} = Min., I_{OL} = 8.0 \text{ mA}$ Input HIGH Voltage Input LOW Voltage ⁽¹⁾ Input Leakage $GND \le V_{IN} \le V_{DD}$ Com. Ind.	Output HIGH Voltage $VDD = Min., IOH = -4.0 \text{ mA}$ 2.4 Output LOW Voltage $VDD = Min., IOL = 8.0 \text{ mA}$ — Input HIGH Voltage 2.2 Input LOW Voltage ⁽¹⁾ —0.3 Input Leakage $GND \le VIN \le VDD$ Com. -1 Ind. -5 Output Leakage $GND \le VOUT \le VDD, Outputs Disabled Com1$	Output HIGH Voltage $VDD = Min., IOH = -4.0 \text{ mA}$ 2.4 — Output LOW Voltage $VDD = Min., IOL = 8.0 \text{ mA}$ — 0.4 Input HIGH Voltage 2.2 $VDD + 0.3$ Input LOW Voltage ⁽¹⁾ —0.3 0.8 Input Leakage $CDD \le VIN \le VDD$ Com. —1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note:

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-8	3	-1	0	
Symbol	Parameter	Test Conditions		Min.	Max.	Min.	Max.	Unit
Icc	VDD Dynamic Operating Supply Current	VDD = Max., IOUT = 0 mA, f = fMAX	Com. Ind.	_	110 120	_	100 110	mA
ISB1	TTL Standby Current (TTL Inputs)	$V_{DD} = Max.,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $\overline{CE} \ge V_{IH}, f = 0$	Com. Ind.		30 35		30 35	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{split} & \frac{\text{V}_{\text{DD}} = \text{Max.,}}{\text{CE}} \geq \text{V}_{\text{DD}} - 0.2\text{V,} \\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{DD}} - 0.2\text{V, or} \\ & \text{V}_{\text{IN}} \leq 0.2\text{V, f} = 0 \end{split}$	Com. Ind.		20 25		20 25	mA

Note:

^{1.} $V_{IL}=-3.0V$ for pulse width less than 10 ns.

^{1.} At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Levels	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS

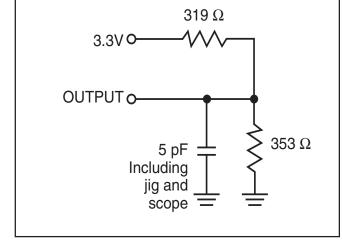
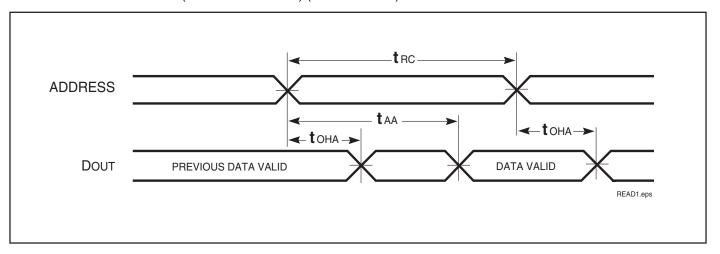


Figure 1

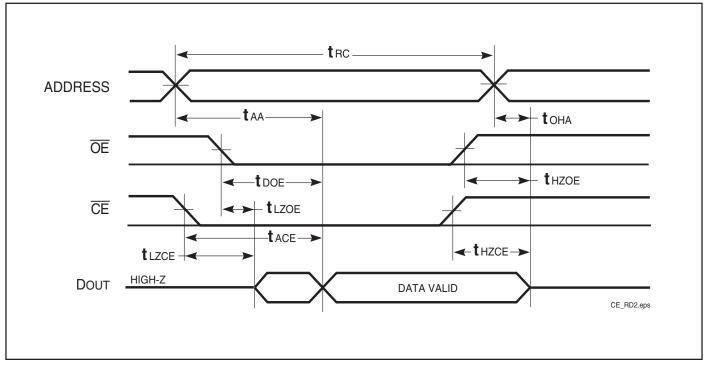
Figure 2

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-8	}	-1	0	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	8	_	10	_	ns
taa	Address Access Time	_	8	_	10	ns
t oha	Output Hold Time	3	_	3	_	ns
t ACE	CE Access Time	_	8	_	10	ns
t DOE	OE Access Time	_	3.5	_	4	ns
thzoe(2)	OE to High-Z Output	_	3	_	4	ns
tlzoe(2)	OE to Low-Z Output	0	_	0	_	ns
thzce(2	CE to High-Z Output	_	3	0	4	ns
tlzce(2)	CE to Low-Z Output	3	_	3	_	ns
t PU	PowerUpTime	0	_	0	_	ns
t PD	Power Down Time	_	8	_	10	ns


Notes:

^{1.} Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.


^{2.} Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage.

AC WAVEFORMS READ CYCLE NO. $1^{(1,2)}$ (Address Controlled) ($\overline{CE} = \overline{OE} = VIL$)

READ CYCLE NO. 2^(1,3) ($\overline{\text{CE}}$ and $\overline{\text{OE}}$ Controlled)

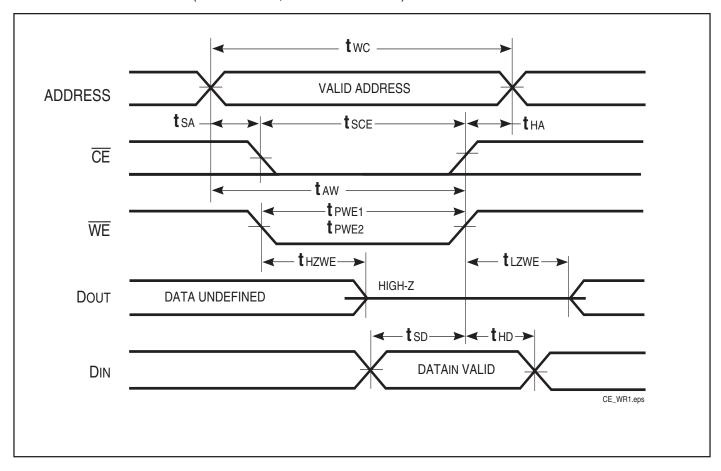
Notes:

- 1. WE is HIGH for a Read Cycle.
- The device is continuously selected. OE, CE = VIL.
 Address is valid prior to or coincident with CE LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Operating Range)

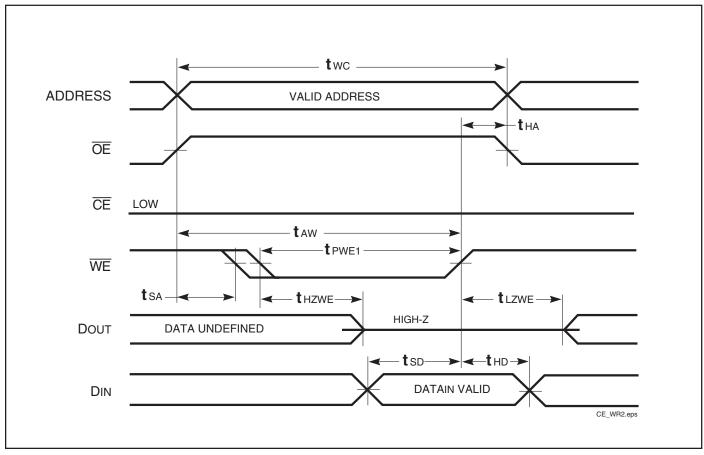
		-{	 3	-10		
Symbol	Parameter	Min.	Max.	Min. M	ax. Unit	
twc	Write Cycle Time	8	_	10 -	– ns	
tsce	CE to Write End	6.5	_	8 -	– ns	
taw	Address Setup Time to Write End	6.5	_	8 -	– ns	
t HA	Address Hold from Write End	0	_	0 -	– ns	
t sa	Address Setup Time	0	_	0 -	– ns	
tpwe1	WE Pulse Width	6.5	_	8 -	– ns	
tPWE2	WE Pulse Width (OE = LOW)	8	_	10 -	– ns	
tsp	Data Setup to Write End	5	_	6 -	– ns	
tho	Data Hold from Write End	0	_	0 -	– ns	
thzwe ⁽²⁾	WE LOW to High-ZOutput	_	3.5	_	5 ns	
tlzwe ⁽²⁾	WE HIGH to Low-Z Output	2	_	2 -	– ns	

Notes:


2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

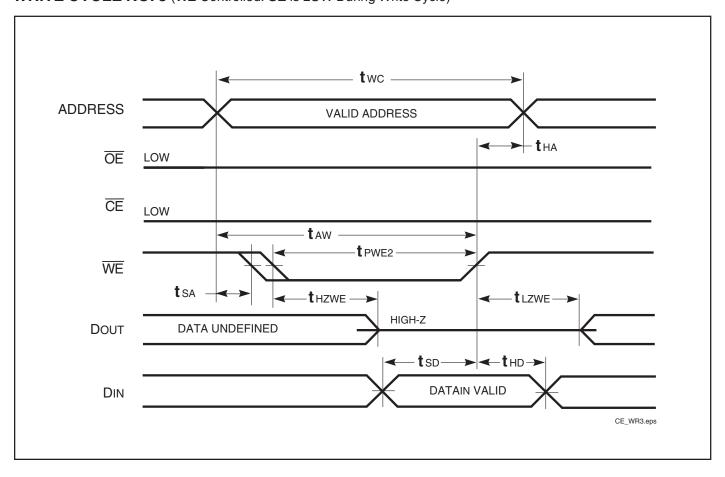
^{1.} Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.

^{3.} The internal write time is defined by the overlap of $\overline{\textbf{CE}}$ LOW and $\overline{\textbf{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.



AC WAVEFORMS WRITE CYCLE NO. 1^(1,2) ($\overline{\text{CE}}$ Controlled, $\overline{\text{OE}}$ = HIGH or LOW)

AC WAVEFORMS WRITE CYCLE NO. 2^(1,2) (WE Controlled: OE is HIGH During Write Cycle)



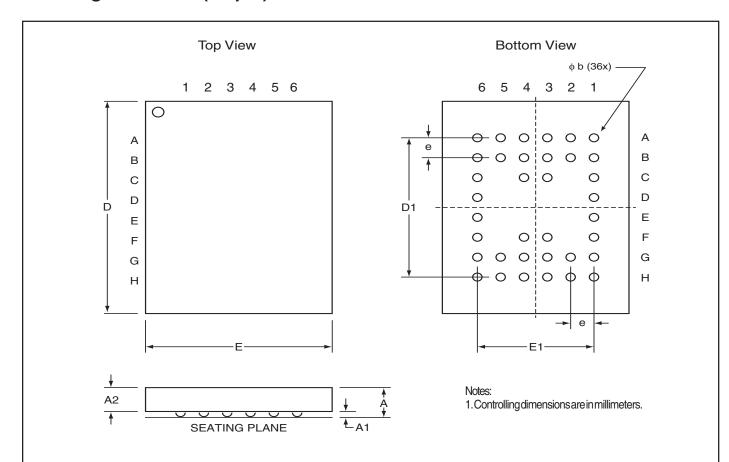
Notes:

- 1. The internal write time is defined by the overlap of $\overline{\textbf{CE}}$ LOW and $\overline{\textbf{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{\text{OE}}$ > VIH.

AC WAVEFORMS WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

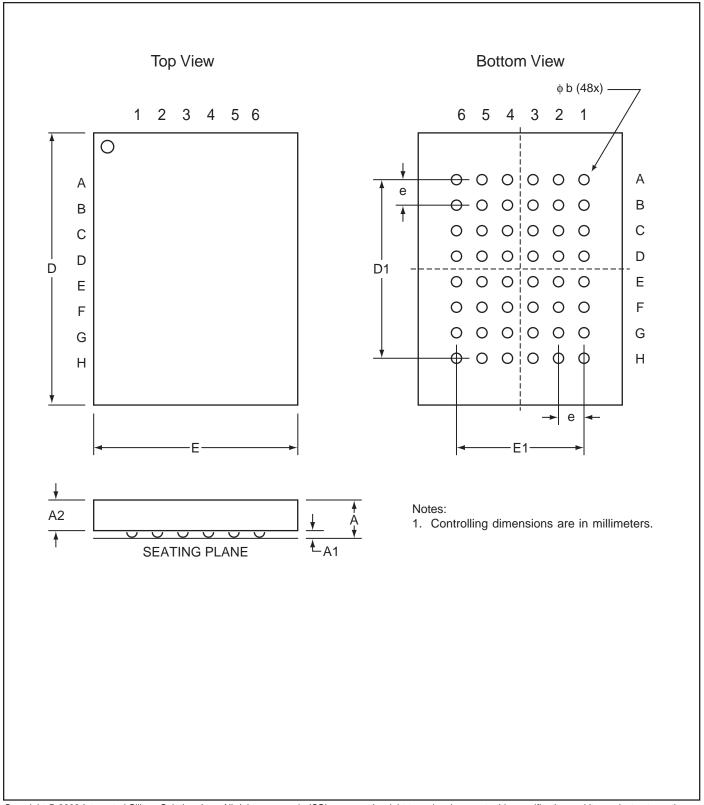

Speed (ns)	Order Part No.	Package
8	IS61LV10248-8M IS61LV10248-8T IS61LV10248-8B	48 mini BGA (9mm x 11mm) TSOP (Type II) 36 mini BGA (9mm x 11mm)
10	IS61LV10248-10T	TSOP (Type II)

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
8	IS61LV10248-8MI IS61LV10248-8TI IS61LV10248-8BI	48 mini BGA (9mm x 11mm) TSOP (Type II) 36 mini BGA (9mm x 11mm)
10	IS61LV10248-10MI IS61LV10248-10TI IS61LV10248-10TLI IS61LV10248-10BI IS61LV10248-10BLI	48 mini BGA (9mm x 11mm) TSOP (Type II) TSOP (Type II), Lead-free 36 mini BGA (9mm x 11m) 36 mini BGA (9mm x 11m), Lead-free

Mini Ball Grid Array Package Code: B (36-pin)

mBGA - 9mm x 11mm


	MILL	IMET	ERS	INCHES					
Sym.	Min.	Тур.	Max.	Min.	Тур.	Max.			
N0. Leads		36							
Α	_	_	1.20	_	_	0.047			
A1	0.24	_	0.30	0.009	_	0.012			
A2	0.60	_	_	0.024	_	_			
D	10.90	11.00	11.10	0.429	0.433	0.437			
D1	5.25 BSC			0	0.207 BSC				
E	8.90	9.00	9.10	0.350	0.354	0.358			
E1	3	.75 BS	C	0.	148 BS	SC			
е	36 1.2 0.24 - 0.3 0.60 10.90 11.00 11.1 5.25 BSC 8.90 9.00 9.10 3.75 BSC 0.75 BSC			0.	0.030 BSC				
b	0.30	0.35	0.40	0.012	0.014	0.016			

PACKAGING INFORMATION

Mini Ball Grid Array

Package Code: M (48-pin)

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

PACKAGING INFORMATION

Mini Ball Grid Array Package Code: M (48-pin)

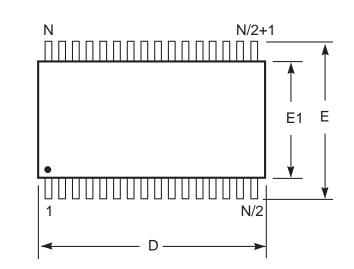
mBGA - 6mm x 8mm

	MILI	IMET	ERS	INCHES				
Sym.	Min.	Тур.	Max.	Min. Typ. Max.				
N0. Leads		48						
Α	_	_	1.20	.— — 0.047				
A1	0.25	_	0.40	0.010 — 0.016				
A2	0.60	_	_	0.024 — —				
D	7.90	8.00	8.10	0.311 0.314 0.319				
D1	5	.60BS	С	0.220BSC				
E	5.90	6.00	6.10	0.232 0.236 0.240				
E1	4	.00BS	С	0.157BSC				
е	0	.80BS	С	0.031BSC				
b	0.40	0.45	0.50	0.016 0.018 0.020				

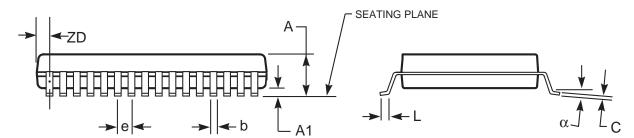
mBGA - 7.2mm x 8.7mm

	MILL	IMET	ERS	INCHES					
Sym.	Min.	Тур.	Max.	Min. Typ. Max.					
N0. Leads		48							
Α	_	_	1.20	— — 0.047					
A1	0 .24	_	0.30	0.009 — 0.012					
A2	0.60	_	_	0.024 — —					
D	8.60	8.70	8.80	0.339 0.343 0.346					
D1	5	.25BS	3	0.207BSC					
E	7.10	7.20	7.30	0.280 0.283 0.287					
E1	3	.75BS	С	0.148BSC					
е	0	.75BS	0	0.030BSC					
b	0.30	0.35	0.40	0.012 0.014 0.016					

mBGA - 9mm x 11mm


	MILL	IMET	ERS	INCHES
Sym.	Min.	Тур.	Max.	Min. Typ. Max.
N0. Leads		48		
Α	_	_	1.20	— — 0.047
A1	0.24	_	0.30	0.009 — 0.012
A2	0.60	_	_	0.024 — —
D	10.90	11.00	11.10	0.429 0.433 0.437
D1	5	.25BS	2	0.207BSC
E	8.90	9.00	9.10	0.350 0.354 0.358
E1	3	.75BS	3	0.148BSC
е	0	.75BS	3	0.030BSC
b	0.30	0.35	0.40	0.012 0.014 0.016

PACKAGING INFORMATION


Plastic TSOP

Package Code: T (Type II)

Notes:

- Controlling dimension: millimieters, unless otherwise specified.
- 2. BSC = Basic lead spacing between centers.
- Dimensions D and E1 do not include mold flash protrusions and should be measured from the bottom of the package.
- 4. Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.

Plastic TSOP (T - Type II)													
	Millimeters		Inche	Inches		Millimeters		Inches		Millimeters		Inches	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Ref. Std.													
No. Leads (N) 32				44					50				
Α	_	1.20	_	0.047	_	1.20	_	0.047	_	1.20	_	0.047	
A1	0.05	0.15	0.002	0.006	0.05	0.15	0.002	0.006	0.05	0.15	0.002	0.006	
b	0.30	0.52	0.012	0.020	0.30	0.45	0.012	0.018	0.30	0.45	0.012	0.018	
С	0.12	0.21	0.005	0.008	0.12	0.21	0.005	0.008	0.12	0.21	0.005	0.008	
D	20.82	21.08	0.820	0.830	18.31	18.52	0.721	0.729	20.82	21.08	0.820	0.830	
E1	10.03	10.29	0.391	0.400	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405	
Е	11.56	11.96	0.451	0.466	11.56	11.96	0.455	0.471	11.56	11.96	0.455	0.471	
е	1.27	BSC	0.050 E	BSC	0.80	BSC	0.032	BSC	0.80	BSC	0.031	BSC	
L	0.40	0.60	0.016	0.024	0.41	0.60	0.016	0.024	0.40	0.60	0.016	0.024	
ZD	0.95	REF	0.037	REF	0.81	REF	0.03	2 REF	0.88	REF	0.035	REF	
α	0°	5°	0°	5°	0°	5°	0°	5°	0°	5°	0°	5°	

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.