Electrical Characteristics @ TJ = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Fig.
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200			٧	V _{GE} = 0V,I _c = 250 μA	
$\Delta V_{(BR)CES} / \Delta T_j$	Temperature Coeff. of Breakdown Voltage		+1.2		V/°C	$V_{GE} = 0V$, $I_c = 1 \text{ mA} (25 - 125 °C)$	
			3.05	3.45		I _C = 20A, V _{GE} = 15V	5, 6
	Collector-to-Emitter Saturation		3.37	3.80]	Ic = 25A, VGE = 15V	7, 9
V _{CE(on)}	Voltage		4.23	4.85	V	I _C = 40A, V _{GE} = 15V	10
			3.89	4.50]	Ic = 20A, VGE = 15V, TJ = 125°C	11
			4.31	5.06		Ic = 25A, VGE = 15V, TJ = 125°C	
V _{GE(th)}	Gate Threshold Voltage	4.0	5.0	6.0	V	V _{CE} = V _{GE} , I _C = 250 μA	9,10,11,12
ΔV _{GE(th)} / ΔTj	Temperature Coeff. of Threshold Voltage		- 1.2		mV/°C	V _{CE} = V _{GE} , I _C = 1 mA (25 -125 °C)	
g fe	Forward Transconductance	13.6	15.7	17.8	s	V _{CE} = 50V, I _C = 20A, PW=80μs	
				250		V _{GE} = 0V, V _{CE} = 1200V	
Ices	Zero Gate Voltage Collector Current		420	750	μA	V _{GE} = 0V, V _{CE} = 1200V, T _J =125°C	1
			1482	2200		VGE = 0V, VCE = 1200V, TJ = 150°C	
			1.67	1.96		I _C = 20A	
V _{FM}	Diode Forward Voltage Drop		1.76	2.06	V	I _C = 25A	8
			1.73	2.03]	I _C = 20A, T _J = 125°C	1
			1.87	2.18		I _C = 25A, T _J = 125°C	
Iges	Gate-to-Emitter Leakage Current			±100	nΑ	V _{GE} = ±20V	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Fig.
Q g	Total Gate charge (turn-on)		169	254		Ic = 20A	23
Q ge	Gate - Emitter Charge (turn-on)		24	36	nC	V _{CC} = 600V	CT1
Qgc	Gate - Collector Charge (turn-on)		82	126		V _{GE} = 15V	
E _{on}	Turn-On Switching Loss		850	1050		Ic = 20A, Vcc = 600V	CT4
E _{off}	Turn-Off Switching Loss		425	650	μJ	V_{GE} = 15V, Rg = 5 Ω , L = 200 μ H	WF1
Etot	Total Switching Loss		1275	1800		T」= 25°C, Energy losses include tail and diode reverse recovery	WF2
E _{on}	Turn-on Switching Loss		1350	1550		Ic = 20A, Vcc = 600V	13, 15
E _{off}	Turn-off Switching Loss		610	875	μJ	$V_{GE} = 15V$, $Rg = 5\Omega$, $L = 200\mu H$	CT4
E _{tot}	Total Switching Loss		1960	2425		T _J = 125°C, Energy losses include tail and diode reverse recovery	WF1 & 2
td(on)	Turn - on delay time		50	65		Ic = 20A, Vcc = 600V	14, 16
tr	Rise time		20	30	ns	V_{GE} = 15V, Rg = 5 Ω , L = 200 μ H	CT4
td(off)	Turn - off delay time		204	230		T _J = 125°C	WF1
tf	Fall time		24	35			WF2
C ies	Input Capacitance		2200			V _{GE} = 0V	
Coes	Output Capacitance		210		рF	Vcc = 30V	22
C _{res}	Reverse Transfer Capacitance		85			f = 1.0 MHz	
RBSOA	Reverse bias safe operating area	FU	LL SQU	ARE		$T_{\rm J} = 150^{\circ}{\rm C}$, Ic = 120A $V_{\rm CC} = 1000{\rm V}$, $V_{\rm P} = 1200{\rm V}$ $Rg = 5\Omega$, $V_{\rm GE} = +15{\rm V}$ to 0V	4 CT2
SCSOA	Short Circuit Safe Operating Area	10			μs	$T_J = 150$ °C $V_{CC} = 900V$, $V_P = 1200V$ $Rg = 5\Omega$, $V_{GE} = +15V$ to $0V$	CT3 WF4
Erec	Reverse recovery energy of the diode		1600	2100	μJ	T _J = 125°C	17,18,19
trr	Diode Reverse recovery time		300		ns	Vcc = 600V, Ic = 20A	20, 21
Irr	Peak Reverse Recovery Current		32	36	Α	V_{GE} = 15V, Rg = 5 Ω , L = 200 μ H	CT4, WF3
Le	Internal Emitter Inductance		13		nН	Measured 5 mm from the package.	

International TOR Rectifier

IRGP20B120UD-EP

Fig.1 - Maximum DC Collector Current vs. Case Temperature

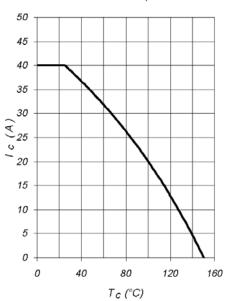


Fig.3 - Forward SOA

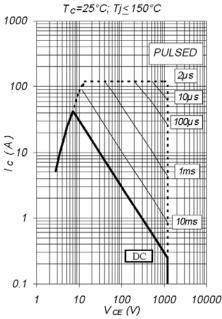


Fig.2 - Power Dissipation vs. Case Temperature

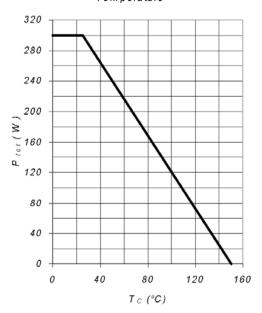


Fig.4 - Reverse Bias SOA Tj = 150° C, $V_{GE} = 15V$

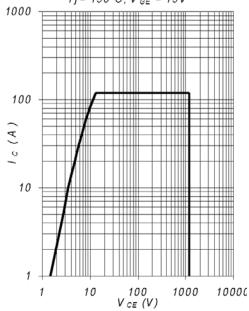
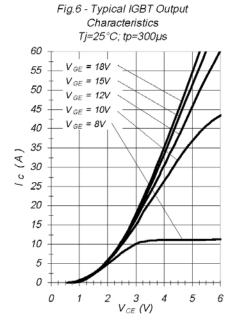
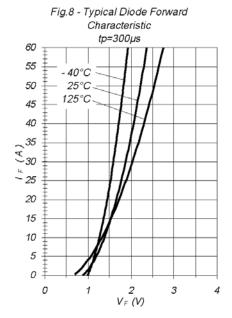


Fig.5 - Typical IGBT Output Characteristics Tj= -40°C; tp=300μs 60 V_{GE} = 18V = 55 V_{GE} = 15V 50 $V_{GE} = 12V$ 45 $V_{GE} = 10V$ $V_{GE} = 8V$ 40 35 30 25 20 15 10 5

3 V _{CE} (V)

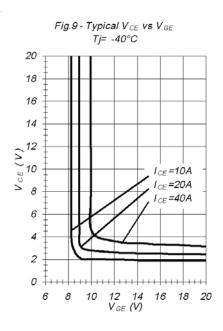
Fig.7 - Typical IGBT Output

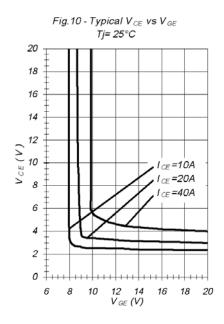

5

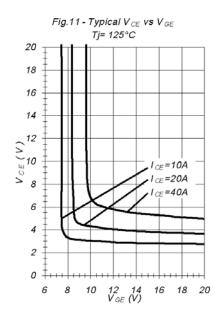

0

0

1


Characteristics Tj=125°C; tp=300µs 60 $V_{GE} = 18V$ 55 $V_{GE} = 15V$ 50 $V_{GE} = 12V$ 45 $V_{GE} = 10V$ $V_{GE} = 8V$ 40 35 × 30 ~ 25 20 15 10 5 0 3 V _{CE} (V) 0 1 5 6





International TOR Rectifier

IRGP20B120UD-EP

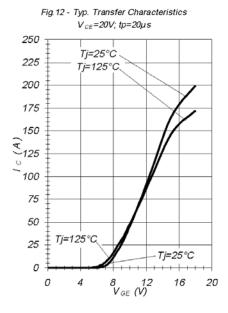


Fig.13 - Typical Energy Loss vs Ic Tj=125°C; L=200 μ H; V_{CE} =600V; Rg=22 Ω ; V_{GE} =15V

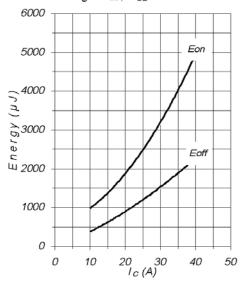


Fig. 15 - Typical Energy Loss vs Rg Tj=125°C; L=200 μ H; V_{CE} =600V; I_{CE} =20A; V_{CE} =15V

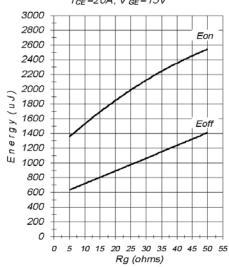
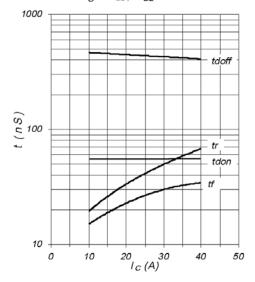
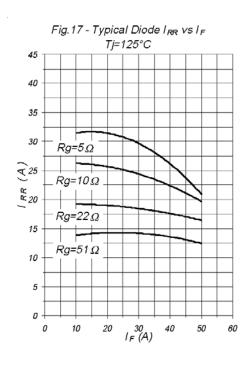
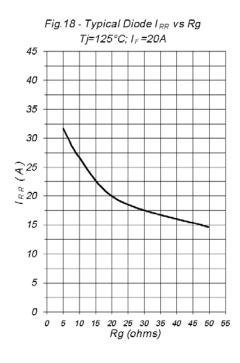
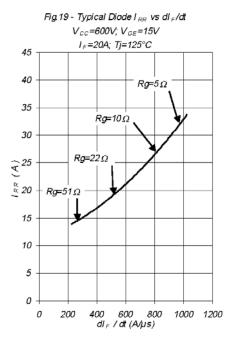
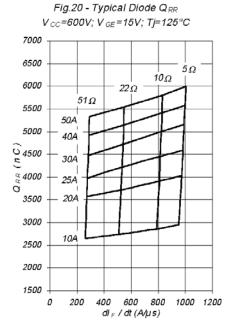


Fig.14 - Typical Switching Time vs lc Tj=125°C; $L=200\mu H$; $V_{CE}=600V$; $Rg=22 \Omega$; $V_{GE}=15V$


Fig.16 - Typical Switching Time vs Rg $Tj=125^{\circ}C$; $L=200\mu H$; $V_{CE}=600V$; $I_{CE}=20A$; $V_{GE}=15V$




International TOR Rectifier

IRGP20B120UD-EP

International TOR Rectifier

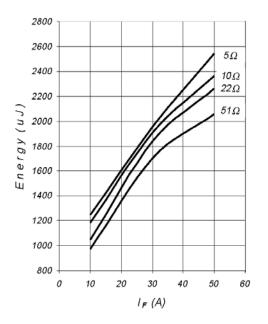


Fig.22 - Typical Capacitance vs V_{CE} V_{GE} =0V; f=1MHz

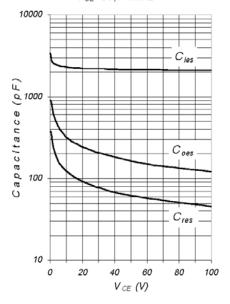
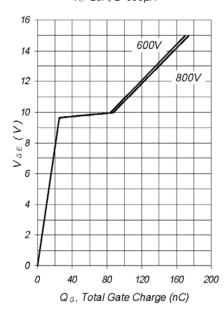



Fig.23 - Typ. Gate Charge vs. V_{GE} I_C =20A; L=600 μ H

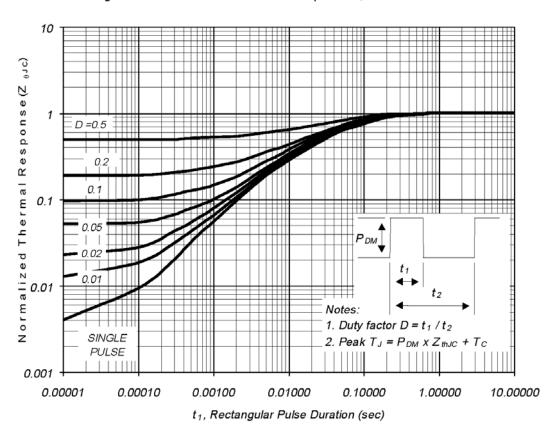


Fig.24 - Normalized Transient Thermal Impedance, Junction-to-Case

Fig. CT.1 - Gate Charge Circuit (turn-off)

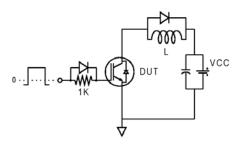


Fig. CT.2 - RBSOA Circuit

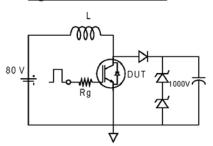


Fig. CT.3 - S.C. SOA Circuit

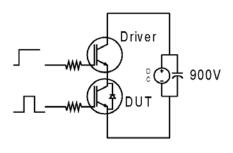


Fig. CT.4 - Switching Loss Circuit

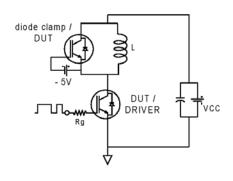


Fig. CT.5 - Resistive Load Circuit

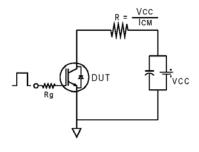


Fig. WF.1 - Typ. Turn-off Loss Waveform @ Tj=125°C using Fig. CT.4

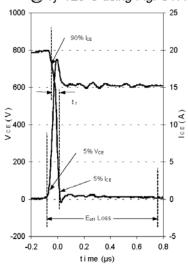


Fig. WF.3 - Typ. Diode Recovery Waveform @ Tj=125°C using Fig. CT.4

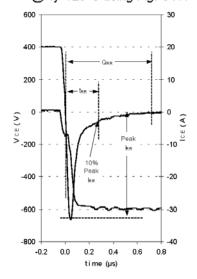


Fig. WF.2 - Typ. Turn-on Loss Waveform @ Tj=125°C using Fig. CT.4

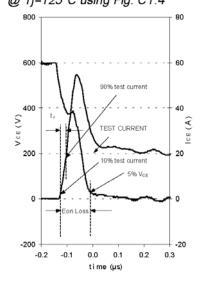
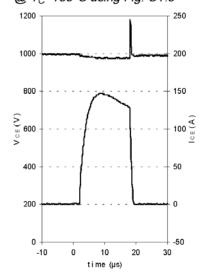
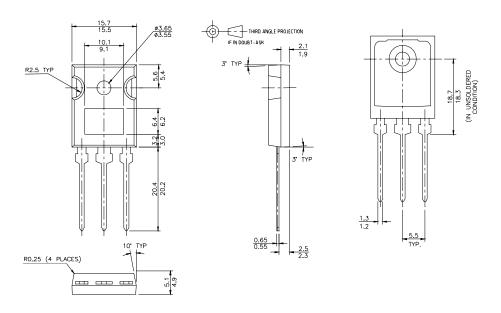
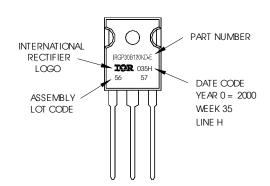




Fig. WF.4 - Typ. S.C. Waveform $@T_C=150^{\circ}\text{C using Fig. CT.3}$

International IOR Rectifier

TO-247AD Package Outline

TO-247AD Part Marking Information


EXAMPLE: THIS IS AN IRGP30B120KD-E WITH ASSEMBLY

LOT CODE 5657

ASSEMBLED ON WW 35, 2000

IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/