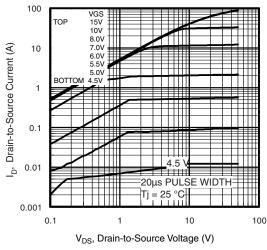
Vishay Siliconix

PARAMETER	SYMBOL	TYP		MAX.			UNIT	
Maximum Junction-to-Ambient	R _{thJA}	-		40				
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.24		-			°C/W	
Maximum Junction-to-Case (Drain)	R _{thJC}	-		0.34				
SPECIFICATIONS ($T_J = 25 \text{ °C}$, u	nless otherw	ise noted)				1		r
PARAMETER	SYMBOL	TES	T CONDITIO	NS	MIN.	TYP.	MAX.	UNI
Static								
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} :	= 0 V, I _D = 250) μΑ	500	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C, I _D :	= 1 mA ^d	-	0.27	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250	Ο μΑ	3.0	-	5.0	V
Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 30 V$		-	-	± 100	nA
Zara Cata Valtaga Drain Current	le e e	V _{DS} =	= 500 V, V _{GS} =	= 0 V	-	-	50	μA
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 400 \	/, V _{GS} = 0 V, T	_J = 125 °C	-	-	2.0	mA
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D =	14 A ^b	-	0.190	0.235	Ω
Forward Transconductance	g _{fs}	V _{DS}	= 50 V, I _D = 14	4 A ^b	12	-	-	S
Dynamic								
Input Capacitance	C _{iss}		$V_{GS} = 0 V,$		-	3600	-	
Output Capacitance	C _{oss}		$V_{DS} = 25 V$,		-	380	-	
Reverse Transfer Capacitance	C _{rss}	f = 1	.0 MHz, see fi	g. 5	-	37	-	
	0		V _{DS} = 1.0 V	, f = 1.0 MHz	-	4800	-	рF
Output Capacitance	Coss		V _{DS} = 400 V	' , f = 1.0 MHz	-	100	-	р.
Effective Output Capacitance	Coss eff.	$V_{GS} = 0 V$	$V_{DS} = 0 V$	' to 400 V ^c	-	220	-	
Effective Output Capacitance (Energy Related)	C _{oss} eff. (ER)		V _{DS} = 0 V	to 400 V ^d	-	160	-	
Internal Gate Resistance	R _G	f = 1	MHz, open d	rain	-	1.2	-	Ω
Total Gate Charge	Qg		L = 22 A	V _{DS} = 400 V	-	-	150	
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V		50	-	-	44	nC
Gate-Drain Charge	Q _{gd}		see fig.	6 and 13 ^b	-	-	72	
Turn-On Delay Time	t _{d(on)}	Voo	= 250 V, I _D = 2	23 A	-	26	-	
Rise Time	t _r				-	94	-	1
Turn-Off Delay Time	t _{d(off)}	R _g :	= 6.0, V _{GS} = 1	UV	-	53	-	ns
Fall Time	t _f	1	see fig. 10 ^b		-	45	-	1
Drain-Source Body Diode Characteristic	s	·						
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	bol		_	-	23	_
Pulsed Diode Forward Current ^a	I _{SM}	integral revers			-	-	92	A
Body Diode Voltage	V _{SD}	T _{.J} = 25 °C	C, I _S = 14 A, V	_{GS} = 0 V ^b	-	-	1.5	V
		T _J = 25 °C			-	170	250	
Body Diode Reverse Recovery Time	t _{rr}	T _J = 125 °C	 c –	23 A,	-	220	330	ns
		$T_J = 25 \text{ °C}$		20 <u>Λ,</u> 100 Α/μs ^b	-	560	840	
Body Diode Reverse Recovery Charge	Q _{rr}	T _J =1 25 °C		-	-	980	1500	μC
Reverse Recovery Current	I _{RRM}		T _J = 25 °C		-	7.6	11	A
Forward Turn-On Time	t _{on}	Intrinsic tu		negligible (turn-	on is dor	1		

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width $\leq 300 \ \mu$ s; duty cycle $\leq 2 \ \%$. c. C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising fom 0 % to 80 % V_{DS} . d. C_{oss} eff. (ER) is a fixed capacitance that stores the same energy time as C_{oss} while V_{DS} is rising fom 0 % to 80 % V_{DS} .


www.vishay.com 2

Document Number: 91209 S11-0445-Rev. B, 21-Mar-11

This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig. 1 - Typical Output Characteristics

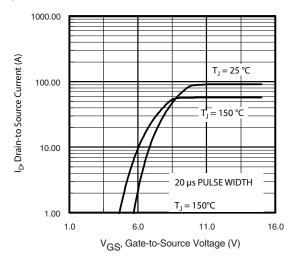


Fig. 3 - Typical Transfer Characteristics

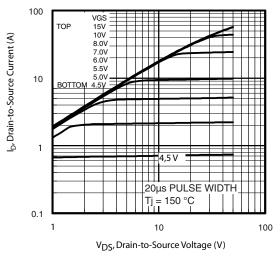


Fig. 2 - Typical Output Characteristics

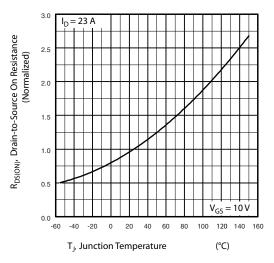


Fig. 4 - Normalized On-Resistance vs. Temperature

Document Number: 91209 S11-0445-Rev. B, 21-Mar-11

www.vishay.com 3

Vishay Siliconix

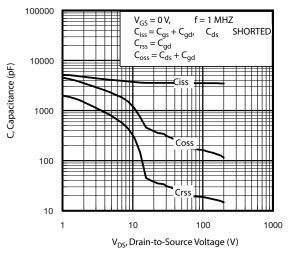


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

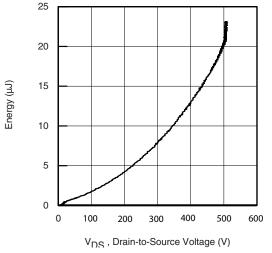


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

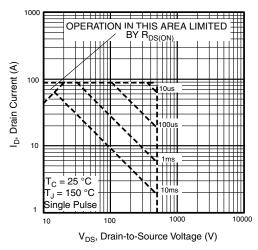


Fig. 7 - Maximum Safe Operating Area

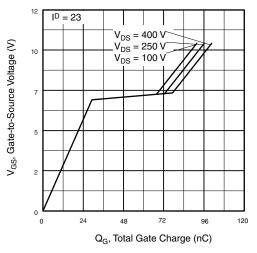


Fig. 8 - Typical Gate Charge vs. Gate-to-Source Voltage

S11-0445-Rev. B, 21-Mar-11

This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Document Number: 91209

Vishay Siliconix

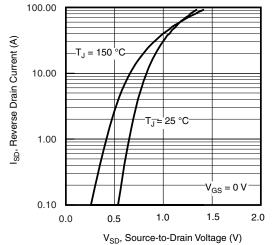


Fig. 9 - Typical Source-Drain Diode Forward Voltage

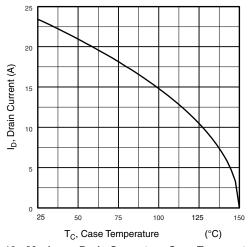


Fig. 10 - Maximum Drain Current vs. Case Temperature

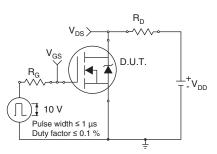


Fig. 11a - Switching Time Test Circuit

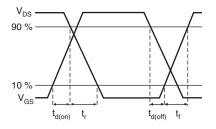


Fig. 11b - Switching Time Waveforms

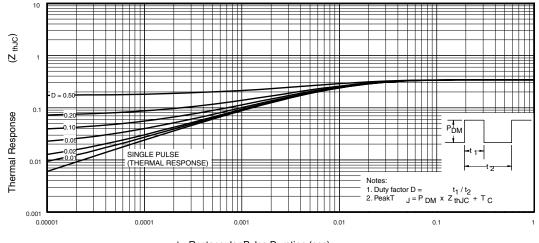


Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Document Number: 91209 S11-0445-Rev. B, 21-Mar-11 www.vishay.com 5

This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u> Downloaded from Arrow.com.

Vishay Siliconix

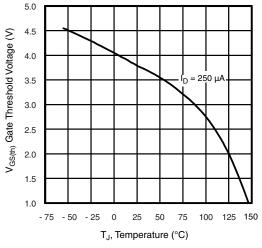


Fig. 13 - Threshold Voltage vs. Temperature

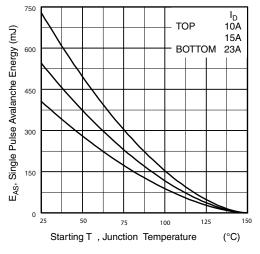


Fig. 14 - Maximum Avalanche Energy s. Drain Current

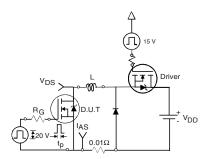


Fig. 15a - Unclamped Inductive Test Circuit

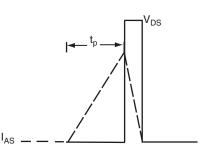


Fig. 15b - Unclamped Inductive Waveforms

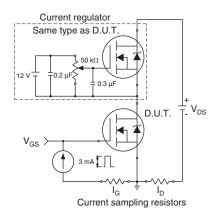
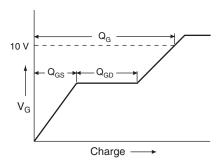
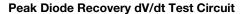
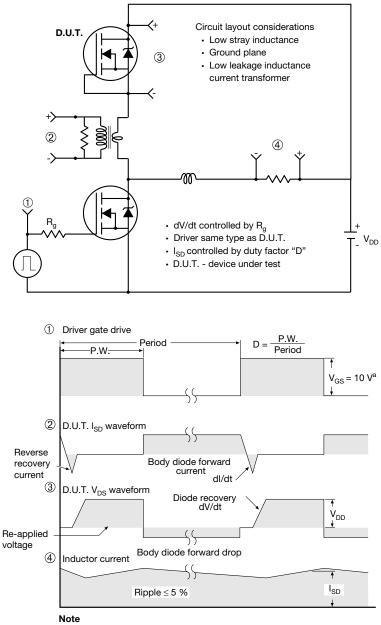


Fig. 16a - Gate Charge Test Circuit




Fig. 16b - Basic Gate Charge Waveform


www.vishay.com 6 Document Number: 91209 S11-0445-Rev. B, 21-Mar-11

This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Downloaded from Arrow.com.

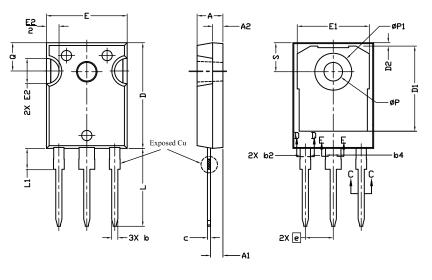
Vishay Siliconix

a. V_{GS} = 5 V for logic level devices

Fig. 17 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91209.

Document Number: 91209 S11-0445-Rev. B, 21-Mar-11


This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

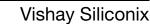
Vishay Siliconix

TO-247AC (High Voltage)

VERSION 1: FACILITY CODE = 9

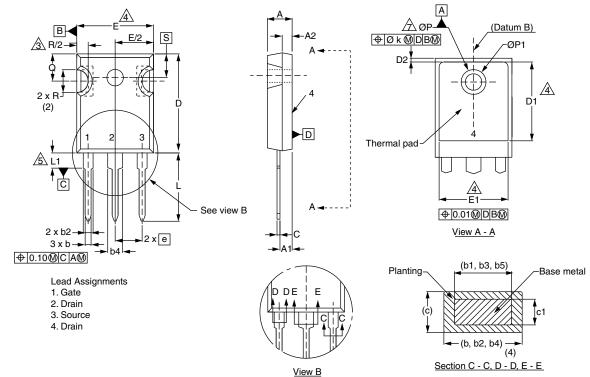
Section C--C, D--D, E--E

1	 \


	MILLIN	IETERS	
DIM.	MIN.	MAX.	NOTES
А	4.83	5.21	
A1	2.29	2.55	
A2	1.50	2.49	
b	1.12	1.33	
b1	1.12	1.28	
b2	1.91	2.39	6
b3	1.91	2.34	
b4	2.87	3.22	6, 8
b5	2.87	3.18	
С	0.55	0.69	6
c1	0.55	0.65	
D	20.40	20.70	4

	MILLIN	IETERS	
DIM.	MIN.	MAX.	NOTES
D1	16.25	16.85	5
D2	0.56	0.76	
E	15.50	15.87	4
E1	13.46	14.16	5
E2	4.52	5.49	3
е	5.44	BSC	
L	14.90	15.40	
L1	3.96	4.16	6
ØР	3.56	3.65	7
Ø P1	7.19) ref.	
Q	5.31	5.69	
S	5.54	5.74	

Notes

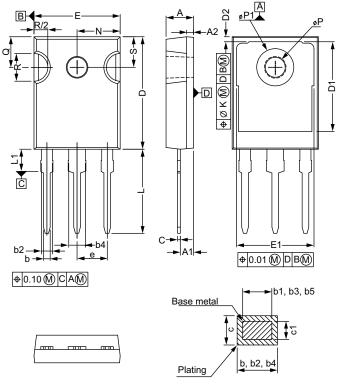

- ⁽¹⁾ Package reference: JEDEC[®] TO247, variation AC
- (2) All dimensions are in mm
- ⁽³⁾ Slot required, notch may be rounded
- ⁽⁴⁾ Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁵⁾ Thermal pad contour optional with dimensions D1 and E1
- (6) Lead finish uncontrolled in L1
- (7) Ø P to have a maximum draft angle of 1.5° to the top of the part with a maximum hole diameter of 3.91 mm
- (8) Dimension b2 and b4 does not include dambar protrusion. Allowable dambar protrusion shall be 0.1 mm total in excess of b2 and b4 dimension at maximum material condition

Revision: 19-Oct-2020

VERSION 2: FACILITY CODE = Y

	MILLIN	IETERS	
DIM.	MIN.	MAX.	NOTES
A	4.58	5.31	
A1	2.21	2.59	
A2	1.17	2.49	
b	0.99	1.40	
b1	0.99	1.35	
b2	1.53	2.39	
b3	1.65	2.37	
b4	2.42	3.43	
b5	2.59	3.38	
с	0.38	0.86	
c1	0.38	0.76	
D	19.71	20.82	
D1	13.08	-	

	MILLIN	IETERS	
DIM.	MIN.	MAX.	NOTES
D2	0.51	1.30	
Е	15.29	15.87	
E1	13.72	-	
е	5.46	BSC	
Øk	0.2	254	
L	14.20	16.25	
L1	3.71	4.29	
ØР	3.51	3.66	
Ø P1	-	7.39	
Q	5.31	5.69	
R	4.52	5.49	
S	5.51	BSC	


Notes

- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994
- ⁽²⁾ Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁴⁾ Thermal pad contour optional with dimensions D1 and E1
- ⁽⁵⁾ Lead finish uncontrolled in L1
- ⁽⁶⁾ Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- ⁽⁷⁾ Outline conforms to JEDEC outline TO-247 with exception of dimension c

Vishay Siliconix

VERSION 3: FACILITY CODE = N

	MILLIMETERS			MILLIMETERS	
DIM.	MIN.	MAX.	DIM.	MIN.	MAX.
А	4.65	5.31	D2	0.51	1.35
A1	2.21	2.59	E	15.29	15.87
A2	1.17	1.37	E1	13.46	-
b	0.99	1.40	e	5.46	BSC
b1	0.99	1.35	k	0.2	254
b2	1.65	2.39	L	14.20	16.10
b3	1.65	2.34	L1	3.71	4.29
b4	2.59	3.43	N	7.62 BSC	
b5	2.59	3.38	Р	3.56	3.66
С	0.38	0.89	P1	-	7.39
c1	0.38	0.84	Q	5.31	5.69
D	19.71	20.70	R	4.52	5.49
D1	13.08	-	S	5.51 BSC	

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994

⁽²⁾ Contour of slot optional

⁽³⁾ Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

⁽⁴⁾ Thermal pad contour optional with dimensions D1 and E1

⁽⁵⁾ Lead finish uncontrolled in L1

⁽⁶⁾ Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")

3

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.