


# IP1R18A SERIES IP1R18 SERIES IP3R18A SERIES IP3R18 SERIES

### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise stated)

|                   |                       |                                                |                                                | IP1R18A-05<br>IP3R18A-05 |       |      | IP1R18-05<br>IP3R18-05 |       |      |       |  |
|-------------------|-----------------------|------------------------------------------------|------------------------------------------------|--------------------------|-------|------|------------------------|-------|------|-------|--|
| Parameter         |                       | Test Conditions <sup>2</sup>                   |                                                | Min.                     | Тур.  | Max. | Min.                   | Тур.  | Max. | Units |  |
|                   |                       |                                                |                                                | 4.95                     | 5     | 5.05 | 4.85                   |       | 5.15 | V     |  |
| <b> </b> ,,       | Output Voltage        | I <sub>O</sub> = 5mA to 5A                     |                                                |                          |       |      |                        |       |      |       |  |
| Vo                |                       | P <sub>OUT</sub> ≤ 50W                         | $V_{IN} = 8V$ to $20V$                         | 4.85                     |       | 5.15 | 4.75                   |       | 5.25 | V     |  |
|                   |                       | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                                                |                          |       |      |                        |       |      |       |  |
| ΔV <sub>O</sub>   | 1: B 1:               | $V_{IN} = 7.5V \text{ to } 3$                  | 35V                                            |                          | 3     | 15   |                        | 6     | 30   | mV    |  |
| $\Delta V_{I}$    | Line Regulation       | I <sub>O</sub> = 5mA <sup>3</sup>              | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                          | 6     | 30   |                        | 12    | 60   |       |  |
| ΔV <sub>O</sub>   | Land Danida Can       | $I_O = 5$ mA to 5                              | A 3                                            |                          | 5 25  |      |                        | 10    | 50   |       |  |
| $\Delta I_{O}$    | Load Regulation       |                                                | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                          | 10    | 50   |                        | 20    | 100  | mV    |  |
| IQ                | Quiescent Current     | I <sub>O</sub> = 5mA                           | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                          |       | 7    |                        |       | 7    | mA    |  |
|                   |                       | $I_O = 5$ mA to 5                              | A                                              |                          | 10    |      |                        |       | 40   |       |  |
| ١                 | Quiescent Current     | $T_J = Over Ten$                               | np. Range ¹                                    |                          |       |      |                        |       | 10   |       |  |
| $\Delta I_Q$      | Change                | $I_O = 5mA$                                    | V <sub>IN</sub> = 7.5V to 35V                  |                          |       | •    |                        |       |      | mA    |  |
|                   |                       | T <sub>J</sub> = Over Ten                      | np. Range ¹                                    |                          | 3     |      |                        |       | 3    |       |  |
|                   | Dropout Voltage       | I <sub>O</sub> = 5A                            | $\Delta V_{OUT} = 100 \text{mV}$               |                          | 2.5   | 3    |                        | 2.5   | 3    | V     |  |
| V <sub>D</sub>    |                       | $T_J = Over Ten$                               | np. Range ¹                                    |                          | 2.5   | 3    |                        |       |      |       |  |
|                   | Ripple Rejection      | I <sub>O</sub> = 1A                            | f = 120Hz                                      |                          | 80    |      | 60                     | 80    |      | dB    |  |
|                   |                       | $T_J = Over Ten$                               | np. Range <sup>1</sup>                         | 60                       |       |      |                        |       |      |       |  |
|                   | Thermal Regulation    | t <sub>p</sub> = 20ms                          | $\Delta P = 50W$                               |                          | 0.002 | 0.01 |                        | 0.002 | 0.02 | %/W   |  |
| I <sub>PEAK</sub> | Peak Output Current   | V <sub>IN</sub> = 10V                          | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                          | 8     | 12   |                        | 8     | 12   | Α     |  |
|                   | Short Circuit Current | V <sub>IN</sub> = 10V                          |                                                | 7 2                      |       |      |                        | 7     |      | A     |  |
| I <sub>SC</sub>   |                       | V <sub>IN</sub> = 35V                          |                                                |                          |       |      |                        | 2     |      |       |  |
| e <sub>n</sub>    | Output Noise Voltage  | f = 10Hz to 10                                 | 0kHz                                           |                          | 40    |      |                        | 40    |      | μV    |  |
|                   | Thermal Resistance    | K Package                                      |                                                |                          | 1.0   | 1.5  |                        | 1.0   | 1.5  | 00.44 |  |
| $R_{\theta JC}$   | Junction to Case      | V Package                                      |                                                |                          | 1.0   | 1.5  |                        | 1.0   | 1.5  | °C/W  |  |

### **Notes**

1) Applies over full temperature range:-

 $T_J = -55 \text{ to } +150^{\circ}\text{C for IP1R18A} - 05 / \text{IP1R18} - 05$ 

 $T_J = 0 \text{ to } +125^{\circ}\text{C for IP3R18A-05} / \text{IP3R18-05}$ 

All other specifications apply at  $T_J = 25$ °C unless otherwise stated.

2) Test conditions unless otherwise stated:-

 $V_{IN} = 10V$  ,  $I_{OUT} = 2.5A$  .

Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 50W.

3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.

**Semelab plc.** Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: <a href="mailto:sales@semelab.co.uk">sales@semelab.co.uk</a> Website: <a href="mailto:http://www.semelab.co.uk">http://www.semelab.co.uk</a>



# IP1R18A SERIES IP1R18 SERIES IP3R18A SERIES IP3R18 SERIES

## **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise stated)

|                   |                       |                                                | IP1R18A-12<br>IP3R18A-12                       |       |       | IP1R18-12 |       |       |       |       |  |  |
|-------------------|-----------------------|------------------------------------------------|------------------------------------------------|-------|-------|-----------|-------|-------|-------|-------|--|--|
| Parameter         |                       | Test Conditions <sup>2</sup>                   |                                                |       |       |           | Min.  | 3R18– |       | Units |  |  |
| Parameter         |                       | rest Condition                                 | 0115 -                                         | Min.  | Typ.  | Max.      |       | Typ.  | Max.  |       |  |  |
| Vo                | Output Voltage        |                                                |                                                | 11.88 | 12    | 12.12     | 11.64 | 12    | 12.36 | V     |  |  |
|                   |                       | $I_0 = 5$ mA to 5A                             |                                                |       |       |           |       |       |       |       |  |  |
|                   |                       |                                                | $V_{IN} = 15V$ to 27V                          | 11.64 |       | 12.36     | 11.40 |       | 12.60 | V     |  |  |
|                   |                       | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                                                |       |       |           |       |       |       |       |  |  |
| $\Delta V_{O}$    | Line Regulation       | $V_{IN} = 14.5V \text{ to}$                    | 35V                                            | 5 30  |       |           | 10    | 60    | mV    |       |  |  |
| $\Delta V_{I}$    | Line Regulation       | $I_{O} = 5 \text{mA}^{3}$                      | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |       | 10    | 60        |       | 20    | 120   | IIIV  |  |  |
| $\Delta V_{O}$    | Lood Dogulation       | $I_O = 5$ mA to $5$                            | Д 3                                            |       | 10 60 |           |       | 20    | 120   | \/    |  |  |
| $\Delta I_{O}$    | Load Regulation       |                                                | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |       | 20    | 120       |       | 40    | 240   | mV    |  |  |
| IQ                | Quiescent Current     | I <sub>O</sub> = 5mA                           | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |       |       | 7         |       |       | 7     | mA    |  |  |
|                   |                       | $I_O = 5 \text{mA to } 5 \text{m}$             | 4                                              |       | 10    |           |       |       | 4.0   |       |  |  |
| ١                 | Quiescent Current     | T <sub>J</sub> = Over Ten                      | np. Range ¹                                    |       |       |           |       |       | 10    |       |  |  |
| $\Delta I_{Q}$    | Change                | I <sub>O</sub> = 5mA                           | $V_{IN} = 14.5V \text{ to } 35V$               |       |       |           |       |       |       | mA    |  |  |
|                   |                       | $T_J = Over Ten$                               | np. Range ¹                                    |       | 3     |           |       |       | 3     |       |  |  |
| ,,                | Dropout Voltage       | I <sub>O</sub> = 5A                            | $\Delta V_{OUT} = 250 \text{mV}$               |       | 2.5 3 | 0         | 3     | 2.5   | 3     | V     |  |  |
| $V_D$             |                       | $T_J = Over Ten$                               | np. Range ¹                                    |       |       | 3         |       |       |       |       |  |  |
|                   | Ripple Rejection      | I <sub>O</sub> = 1A                            | f = 120Hz                                      | 50    | 72    |           | 52    | 72    |       | dB    |  |  |
|                   |                       | $T_J = Over Ten$                               | np. Range <sup>1</sup>                         | 52    |       |           |       |       |       |       |  |  |
|                   | Thermal Regulation    | t <sub>p</sub> = 20ms                          | $\Delta P = 50W$                               |       | 0.002 | 0.01      |       | 0.002 | 0.02  | %/W   |  |  |
| I <sub>PEAK</sub> | Peak Output Current   | V <sub>IN</sub> = 17V                          | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |       | 8     | 12        |       | 8     | 12    | Α     |  |  |
|                   | Short Circuit Current | V <sub>IN</sub> = 17V                          |                                                |       | 4     |           |       | 4     |       |       |  |  |
| I <sub>SC</sub>   |                       | V <sub>IN</sub> = 35V                          |                                                |       | 2     |           |       | 2     |       | A     |  |  |
| e <sub>n</sub>    | Output Noise Voltage  |                                                |                                                |       | 75    |           |       | 75    |       | μV    |  |  |
|                   | Thermal Resistance    | K Package                                      |                                                |       | 1.0   | 1.5       |       | 1.0   | 1.5   | 0000  |  |  |
| $R_{\theta JC}$   | Junction to Case      | V Package                                      |                                                |       | 1.0   | 1.5       |       | 1.0   | 1.5   | °C/W  |  |  |

### **Notes**

1) Applies over full temperature range:-

 $T_J = -55 \text{ to } +150^{\circ}\text{C for IP1R18A} - 12 / IP1R18 - 12$ 

 $T_J = 0 \text{ to } +125^{\circ}\text{C for IP3R18A} - 12 / \text{IP3R18} - 12$ 

All other specifications apply at  $T_J = 25$ °C unless otherwise stated.

2) Test conditions unless otherwise stated:-

 $V_{IN} = 17V$  ,  $I_{OUT} = 2.5A$  .

Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 50W.

3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.

**Semelab plc.** Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: <a href="mailto:sales@semelab.co.uk">sales@semelab.co.uk</a> Website: <a href="mailto:http://www.semelab.co.uk">http://www.semelab.co.uk</a>



# IP1R18A SERIES IP1R18 SERIES IP3R18A SERIES IP3R18 SERIES

## **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise stated)

|                   |                       |                                                | IP1R18A-15<br>IP3R18A-15                       |                |                    | IP    |       |                    |       |                   |
|-------------------|-----------------------|------------------------------------------------|------------------------------------------------|----------------|--------------------|-------|-------|--------------------|-------|-------------------|
| Parameter         |                       | Test Conditions <sup>2</sup>                   |                                                | IP.<br>  Min.  | зк 18A-<br>Тур.    | Max.  | Min.  | 3R18–′<br>Typ.     | Max.  | Units             |
| 1 diametei        |                       | rest conditi                                   | Olis                                           | 14.85          | 1 <b>yp.</b><br>15 | 15.15 | 14.55 | 1 <b>yp.</b><br>15 | 15.45 | V                 |
|                   | Output Voltage        | $I_O = 5$ mA to $5$                            | A                                              | 11.00 10 10.10 |                    | 14.00 | - 10  | 10.40              | V     |                   |
| Vo                |                       | ľ                                              | $V_{IN} = 18V \text{ to } 30V$                 | 14.55          |                    | 15.45 | 14.25 |                    | 15.75 | V                 |
|                   |                       | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                                                |                |                    |       |       |                    |       |                   |
| $\Delta V_{O}$    | 11 B 1 d              | $V_{IN} = 17.5V \text{ to}$                    | 35V                                            |                | 8                  | 40    |       | 16                 | 80    |                   |
| $\Delta V_{I}$    | Line Regulation       | I <sub>O</sub> = 5mA <sup>3</sup>              | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                | 16                 | 80    |       | 32                 | 160   | mV                |
| $\Delta V_{O}$    | Load Regulation       | $I_O = 5$ mA to 5                              | A 3                                            |                | 16 80              |       |       | 32                 | 160   | m\/               |
| $\Delta I_{O}$    | Load Regulation       |                                                | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                | 32                 | 160   |       | 64                 | 320   | mV                |
| IQ                | Quiescent Current     | I <sub>O</sub> = 5mA                           | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                |                    | 7     |       |                    | 7     | mA                |
|                   |                       | $I_O = 5$ mA to 5.                             | A                                              |                | 10                 |       |       |                    | 10    |                   |
|                   | Quiescent Current     | $T_J = Over Ten$                               | np. Range ¹                                    |                |                    |       | 10    |                    |       | l <sub>mA</sub> l |
| $\Delta I_{Q}$    | Change                | $I_O = 5mA$                                    | V <sub>IN</sub> = 17.5V to 35V                 |                |                    | 3     |       |                    | 3     |                   |
|                   |                       | $T_J = Over Ten$                               | np. Range <sup>1</sup>                         |                |                    |       |       |                    |       |                   |
| V <sub>D</sub>    | Dropout Voltage       | I <sub>O</sub> = 5A                            | $\Delta V_{OUT} = 300 \text{mV}$               |                | 2.5 3              | م     |       | 2.5                | 3     | V                 |
| V D               |                       | $T_J = Over Ten$                               | np. Range <sup>1</sup>                         |                |                    | 3     |       |                    |       |                   |
|                   | Ripple Rejection      | I <sub>O</sub> = 1A                            | f = 120Hz                                      | 50             | 70                 |       | 50    | 70                 |       | dB                |
|                   |                       | $T_J = Over Ten$                               | np. Range <sup>1</sup>                         |                |                    |       |       |                    |       |                   |
|                   | Thermal Regulation    | t <sub>p</sub> = 20ms                          | $\Delta P = 50W$                               |                | 0.002              | 0.01  |       | 0.002              | 0.02  | %/W               |
| I <sub>PEAK</sub> | Peak Output Current   | V <sub>IN</sub> = 20V                          | T <sub>J</sub> = Over Temp. Range <sup>1</sup> |                | 8                  | 12    |       | 8                  | 12    | Α                 |
|                   | Short Circuit Current | V <sub>IN</sub> = 20V                          |                                                | 3.5 3.5        |                    | 3.5   |       | Α                  |       |                   |
| I <sub>SC</sub>   |                       | V <sub>IN</sub> = 35V                          |                                                |                | 2                  |       |       | 2                  |       |                   |
| e <sub>n</sub>    | Output Noise Voltage  |                                                |                                                |                | 90                 |       |       | 90                 |       | μV                |
| Ь                 | Thermal Resistance    | K Package                                      |                                                |                | 1.0                | 1.5   |       | 1.0                | 1.5   | °C/W              |
| $R_{\theta JC}$   | Junction to Case      | V Package                                      |                                                |                | 1.0                | 1.5   |       | 1.0                | 1.5   | C/ VV             |

### **Notes**

1) Applies over full temperature range:-

 $T_J = -55 \text{ to } +150^{\circ}\text{C for IP1R18A} - 15 / \text{IP1R18} - 15$ 

 $T_J = 0 \text{ to } +125^{\circ}\text{C for IP3R18A} -15 / \text{IP3R18} -15$ 

All other specifications apply at  $T_J = 25$ °C unless otherwise stated.

2) Test conditions unless otherwise stated:-

 $V_{IN} = 20V$  ,  $I_{OUT} = 2.5A$  .

Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 50W.

3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.

**Semelab plc.** Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: <a href="mailto:sales@semelab.co.uk">sales@semelab.co.uk</a> Website: <a href="mailto:http://www.semelab.co.uk">http://www.semelab.co.uk</a>